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Markov Networks
Undirected graphical models

Markov Networks
 Potential functions defined over cliques

 Log-linear model:
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Example of First Order Logic 
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Example of First Order Logic 
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First Order Logic
Knowledge base: 

a set of formulas that describe the relationships 
between „objects‟ in a „world‟ (a domain of interest, 
C).

For example, suppose we wish to explain the dating 
patterns of graduate students.

Our toy world would include graduate students (objects) 
as its domain, C.  These could be specific objects 
(constants) or could range over the whole domain 
(variables), perhaps indexed by type (CS, Econ, etc.).

We would wish to characterize the set of important 
relationships between these students (formulas) that 
would allow us to evaluate why certain graduate 
students date.

KB C F1,...,FN

First Order Logic

Formulas: 

Statements about the world. 

“If X likes movies, and Y likes movies, X and Y 

would like to go on a date together.”

PredicateA(X)∧PredicateA(Y)  PredicateB(X,Y)

Fi

First Order Logic

• Predicates: 

A mapping over constants or variables that returns 

True or False.

LikeMovies(Bob) =1  if Bob likes movies; 0, 

otherwise.

• Functions:

A mapping over objects that returns an object.

Roomate(Sara)=Karen

First Order Logic

• Terms: 

Any predicate, function, constant or variable.

• Atomic formula (atoms, or positive literal):

Any predicate over multiple terms.

EnjoyedDate(Bob, Roomate(Sara)); 

Also EnjoyedDate(Bob,Bob)

Formulas are constructed from atomic formulas using 
logical connectives and qualifiers (∧,∨,~,,, 
universal and existential qualification).

A negated atomic formulas is called a negative literal.

First Order Logic

• Clausal Form (also clausal normal form of CNF) 

Regularization of a formula on the basis of 

forming conjunctions of clauses (themselves 

disjunctions of literals)

E.g. CNF(Fi(A,B,C))=(AVB)∧(C)

• Inference in FOL is semi-decidable

[(AVB)∧(C) is equivalent to (AVB)∧~(~C))], so 

we restrict ourselves to Horn clauses (clauses 

containing at most one positive literal).
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SameDept
(A,B)

XBill
X1=1 (likes movies)
X2=1 (is roommates with himself)
X3=0 (not roommates with Sara)
X4= 0 (not roommates with Karen)
X5=1 (in same dept. with himself)
X6=1 (in same dept. with Sara)
X7=1 (in diff dept. than Karen)
X8=1 (enjoyed date with himself)
X9=1 (enjoyed date with Karen)
X10=0 (did not enjoy date with Sara)
X11=1 (2nd date with himself)
X12=1 (2nd date with Karen)
X13=0 (no 2nd date with Sara)

XKaren
X1=1 (likes movies)
X2=0 (is not roommates with Bill)
X3=1 (is roommates with Sara)
X4= 1 (is roommates with herself)
X5=0 (in diff dept. than Bill)
X6=0 (in diff dept. than Sara)
X7=1 (in same dept. with herself)
X8=1 (enjoyed date with Bill)
X9=1 (enjoyed date with Karen)
X10=0 (did not enjoy date with Sara)
X11=1 (2nd date with Bill)
X12=1 (2nd date with herself)
X13=0 (no 2nd date with Sara)

XSara
X1=0 (does not like movies)
X2=0 (is not roommates with Bill)
X3=1 (is roommates with herself)
X4= 1 (is roommates with Karen)
X5=1 (in same dept. with Bill)
X6=1 (in same dept. with herself)
X7=0 (in diff dept. than Karen)
X8=1 (enjoyed date with Bill)
X9=0 (did not enjoy date with Karen)
X10=1 (enjoyed date with herself)
X11=0 (did not mate with Bill)
X12=0 (did not  mate with Karen)
X13=1 (no 2nd date with herself)

LikesMov(
A,B)

RoomMts(
A,B)

EnjoyDt(A,
B)

2ndDate(A
,B)

Hypothesis 1:
If two students were in the 
same department, they went 
on a second date.

Hypothesis 2:
If two students both like 
movies and they had a 
successful date, they went on 
a second date.

Example 1: Love Triangle

• Hypothesis 1:
– If two students were in the same department and they 

had a successful date, they will have a 2ndDate.
• F1=SameDept(A,B) ∧ EnjoyDt(A,B)2ndDate(A,B)
• CNF(F1)=~SameDept(A,B) ∨~EnjoyDt(A,B) ∨2ndDate(A,B)

• Hypothesis 2:
– If two students both like movies and they had a 

successful date, they will have a 2ndDate.
• F2=LikesMov(A)∧LikesMov(B)∧EnjoyDt(A,B)2ndDate(A,B)
• CNF(F2)=(~LikesMov(A) ∨ ~LikesMov(B) ∨ 

~EnjoyDt(A,B))∨2ndDate(A,B)

First Order Logic

• There is no uncertainty in first-order logic:

– If a statement about our toy world is true it is 
ALWAYS true, so soften to possible worlds

First-Order Logic

If a formula describing 

the world is true it is 

always true.

Prob{Fi=T}=1.

Markov Logic Networks

If a formula is true in one world it may not be true 

in others.  The more worlds it is true in, the more 

probable the formula is true.

Prob{Fi=T}=0.7. 

T

T T

F T

T

TF T

F T

Example 1: Love Triangle 

• Hypothesis 1:
– Under FOL:

• Each is in the same department with themselves.  Also, Karen and 
Sara/Bill are in different departments and did not go on a 2nd date.  
However, Bill is in the same department with Sara, and they did not go 
on a 2nd date so the statement is violated.

– Under MLN:
• In five out of six cases the claim is true so we assign a weight that 

reflects this reality.

• Hypothesis 2:
– Under FOL:

• This is true in all six cases.

– Under MLN:
• In six of six cases the claim is true so we we assign a weight that 

reflects this reality.

Markov Logic Network 

Overview

 Intuition and Definition

 Setup of MLN

 Examples

 Inference

 Learning

 Software

Markov Logic: Intuition

A logical KB is a set of hard constraints

on the set of possible worlds

Let‟s make them soft constraints:

When a world violates a formula,

It becomes less probable, not impossible

Give each formula a weight

(Higher weight   Stronger constraint)

satisfiesit  formulas of weightsexpP(world)
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Markov Logic: Definition

A Markov Logic Network (MLN) is a set of pairs 
(F, w) where

F is a formula in first-order logic

w is a real number

Together with a set of constants,
it defines a Markov network with

One node for each grounding of each predicate in 
the MLN

One feature for each grounding of each formula F
in the MLN, with the corresponding weight w

Markov Logic Networks

MLN is template for ground Markov nets

Probability of a world x:

Typed variables and constants greatly reduce 
size of ground Markov net

Functions, existential quantifiers, etc.

Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x

i
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Z
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1
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 Unique names. Different constants refer to 

different objects

 Domain closure. The only objects in the domain 

are those representable using the constant and 

function symbols in (L,C)

 Known functions. For each function appearing 

in L, the value of that function applied to every 

possible tuple of arguments is known, and is an 

element of C.

MLN Assumptions Grounding of MLN with Assumptions 1-3.

Example: 2nd Date
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Example: 2nd Date
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Example: 2nd Date
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Example: 2nd Date
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Example: 2nd Date
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ACndDateBCndDateACndDate

CBndDateBBndDateABndDate

CAndDateBAndDateAAndDate

YXndDate
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CAEnjoyDtBAEnjoyDtAAEnjoyDt

CLikesMovBLikesMovALikesMovG

YXndDateYXEnjoyDtYLikesMovXLikesMov  Goal:

 Phase 1:

 Return the minimal subset M of the 

ground Markov network required to 

compute P(F1|F2, ML,C).

 Phase 2:

 Perform inference on M, using Gibbs 

sampling.

MLN Inference

P F1 | F2 ,M L,C

P F1 F2 |M L,C

P F2 |M L,C

P X x |M L,C

x F1 F 2

P X x |M L,C

x F 2

~ED(

C,A)

~2nd

D(A,

C)

~ED(

A,C)

~ED

(B,A)

~ED

(A,A)

~ED

(B,B)

~LM

(A)

~LM

(B)

2ndD

(A,B)

~ED

(A,B)

~ED(

D,A)

~ED(

D,D)

~LM

(D)

2ndD

(A,D)

~ED(

A,D)

~ED(

B,C)

~ED(

C,C)

~LM(

C)

2ndD

(B,C)

~ED(

B,C)

Suppose we wish to 

infer whether A and D 

would go on a second 

date, given information 

regarding movie 

preference and date 

history.
:= Known, F2

:= Unknown, F1

Legend:

~ED(

D,A)

~ED(

D,D)

~LM

(D)

2ndD

(A,D)

~ED(

A,D)

~ED

(B,A)

~ED

(A,A)

~ED

(B,B)

~LM

(A)

~LM

(B)

2ndD

(A,B)

~ED

(A,B)

~Enjoy

Date(D,A)

~Enjoy

Date(A,A)

~Enjoy

Date(D,D)

~LikeMov(

A)

~LikeMov(

D)

2ndDate(A

,D)

~Enjoy

Date(A,D)

~Enjoy

Date(D,A)

~Enjoy

Date(A,A)

~Enjoy

Date(D,D)

~LikeMov(

A)

~LikeMov(

D)

2ndDate(A

,D)

~Enjoy

Date(A,D)

Pr{2ndDate(A,D)=T|~LikeMov(A)=F,~EnjoyDate(A,D)=F,~LikeMov(D)=T,~EnjoyDate(D,A)=F}

F TF

F

w2w1 w3

w2

w3: weight for 

~LikeMov(D)V2nd

Date(A,D)
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2ndDate(A,D)=T 2ndDate(A,D)=F

f1[~LikeMov(A)=F V 

2ndDate(A,D)=T]=1

f1[~LikeMov(A)=F V 

2ndDate(A,D)=F]=0

f2[~EnjoyDate(A,D)=F V 

2ndDate(A,D)=T]=1

f2[~EnjoyDate(A,D)=F V 

2ndDate(A,D)=F]=0

f3[~LikeMov(D)=T V 

2ndDate(A,D)=T]=1

f3[~LikeMov(D)=T V 

2ndDate(A,D)=F]=1

P Xl xl | Bl bl

             

exp wi fi Xl xl ,Bl bl
fi Fl

exp wi fi Xl 0,Bl bl
fi Fl

exp wi fi Xl 1,Bl bl
fi Fl

Confusing part here is the fi formulas…

Pr{2nd(A,D)=T | MB}=e^(w1+2w2+w3)/[e^(w1+2w2+w3)+e^(w3)]

Pr{2nd(A,D)=F | MB}=e^(w3)/[e^(w1+2w2+w3)+e^(w3)]

Learning

 Assumption (closed world; if data is missing then set 

to False)

 MC-MLE

 Pseudo-likelihood 

 CRFs

 Structural SVMs

No. of times feature i is true in data

Expected no. times feature i is true according to model

wi
logPw (X x) ni (x) Pw X x ' ni (x ')

x '

Generative Weight Learning

Maximize likelihood or posterior probability

Numerical optimization (gradient or 2nd order) 

No local maxima

Requires inference at each step (slow! using 

MC-MLE)

Generative Weight Learning
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Pseudo-Likelihood

• Likelihood of each variable given its 
neighbors in the data

• Does not require inference at each step

• Consistent estimator

PL(x) P(xi | neighbors(xi ))
i

Pseudo-Likelihood

l

lll xMBxXPxPL ))(|()(

))(exp(/1))(exp(/1

))(exp(/1

]1[]0[ ll XiiXii

ii

xnwZxnwZ

xnwZ

l

Xjllj

j
l

xnXMBXPxnxPL
w

)())(|0()()(log ]0[

)()(

)(
))(|(

]1[]0[ ll XX

lll
xPxP

xP
xMBxXP

l

lll xMBxXPxPL ))(|(log)(log

)())(|1( ]1[ lXjll xnXMBXP
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Pseudo-Likelihood

Efficiency tricks:

Compute each nj(x) only once

Skip formulas in which xl does not appear

Skip groundings of clauses with > 1 true literal

e.g., (A v ¬B v C) when A=1, B=0

Optimizing pseudo-likelihood

Pseudo-log likelihood is convex

Standard convex optimization algorithms 

work great (e.g., L-BFGS quasi-Newton method)

Pseudo-Likelihood

Pros

Efficient to compute

Consistent estimator

Cons

Works poorly with long-range dependencies

Discriminative Weight 

Learning

• Conditional Random Fields

• M3LN

Discriminative Weight Learning
(using Conditional Random Fields)

Maximize conditional likelihood of query (y) 

given evidence (x)

Voted perceptron: Approximate expected 

counts by counts in MAP state of y given x

No. of true groundings of clause i in data

Expected no. true groundings according to model

),(),()|(log yxnEyxnxyP
w

iwiw

i

Discriminative Weight Learning
(using M3LN (Huynh and Mooney, 2009)

Effectively:

Use MaxWalkSAT for prediction, and LP-

relaxation, other MPE inference algorithm.

min
w, 0

1

2
wTw C

s.t.   y Y: wT n x,y n x,y y,y

x,y n x,y

Alchemy

• http://alchemy.cs.washington.edu

• Alchemy provides a series of algorithms for 

statistical relational learning and probabilistic 

logic inference, based on MLN

• Collective classification

• Link prediction

• Entity resolution

• Social network modeling

• Information extraction
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Conclusion

MLN are versatile ways to represent first order 

logic using Markov random fields

They can be used to construct a template upon 

which other estimation strategies, such as 

structural SVMs, can be attached. 

If you like movies, you might get a second date 

with Yue or Joel. (Talk to us after class)

Thanks!

Appendix

Overlaid Sub-Groups; Full Info

AI

Graphx

Prog

Sys

Theor

y

Overlaid Sub-Groups; Partial Info

AI

Graphx

Prog

Sys

Theor

y

Example: Friends & Smokers

Smoking  causes  cancer.

Friends  have  similar  smoking  habits.
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Example: Friends & Smokers
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Example: Friends & Smokers

)()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx

1.1

5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)
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Example: Friends & Smokers
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Example Grounding

P( Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A))
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Example Grounding
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Example Grounding
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