3/9/2010

Apprenticeship Learning via Inverse

Reinforcement Learning
Pieter Abbeel and Andrew Y. Ng [ICML 2004]

CS 6784
March 9,2010
(Presented by Dane & Vasu)

Markov Decision Processes

» Used for modeling sequential decision
problems.

« Set of states S
« Set of available actions A.

« Transition probabilities 7, ,

> Give probabilities for arriving in a new state
after performing action a while in state s.

« Reward functions R(s)

> The ‘value’ of being in state s. Assume to
be bounded in the absolute value by 1.

Example
Gridworld
« States given by grid cells
— Additionally, specified start and end
-1 1 states
3 03 B e

* Ateach cell, action is given by
t direction of movement
Transition follows the specified
action with 80% probability, else
move to an adjacent cell randomly
e -1 T « Atransition to a given cell is

’ ol o2 accompanied by an immediate
reward

—>
.

* A policy maps each state to an
action

Policies

» mrgives a function from states to
distributions over actions.

» The value of a policy is given by:
2 SOV S OIES |
—epr vz mweR s
M

« Dgives the distribution of starting states

« Y is a discount factor — earlier rewards are
given more weight.

Computing Optimal Policies

s Reinforcement Learning
For instance, Q-learning

s Q@ Sx A= Ris a function that gives the
‘quality’ of an action from a certain state

« The agent uses Qto explore the state space,
and updates the function at each transition
based on the experienced reward

« We know the reward function R(s), but not
the transition probabilities.

The Problem

s It is often difficult to specify the reward
function, even if you are capable of
making good decisions.

« E.g. You might be a perfectly good
driver, but describing a reward function
for good driving isn’t so obvious.

» The solution: Apprenticeship learning.

- Observe expert behavior, and assuming their
actions to be optimal, derive the reward
function.

3/9/2010

Assumptions

e There is some feature vector over

states
¢:S —>[01]

» The unknown reward function R'(s)
can be given by w7 &(s) for some
w e R [[W]l, <1

The Expert

» We have access to some expert policy .
» More accurately, we have examples of state
sequences generated by said policy.
» We are also able to estimate the feature
expectations g
> Given a set of m state sequences
%i) NON
191 e i

o Calculate an estimate:

A 1 m L4 ~
He = HZi:th:O e ‘t(/—

Algorithm (max-margin)

» Given an MDP\R, a feature mapping
@ and the expert’s feature
expectations pg find a policy whose
performance is close to that of the
expert's, on the unknown reward
function R*= w7 @.

» To accomplish this, we find a policy
that induces feature expectations
close to the expert policy.

Algorithm

[!
(e

p(z®)

Randomly pick some policy a(®), compute (or approx. via Monte Carlo) p@ = p(z@) and set i = 1
Compute t© = MEX g M o, 1y JWT (e — 1) to get the argmax w0

1ft0<¢, then terminate. -

Using the RL algorithm, compute the optimal policy n() for the MDP using rewards R = (w®)Te.
Compute (or estimate) p®= p(a®).

Seti=i+1,and go back to step 2.

Compare with Structural SVM

argmin ,, %W.WJr CY &st.

S N &
ViV, W (X, y,) WX,))+1-—2—
v ' Ay,)
SVM IRL (ith iteration)
Training examples:

{6 ya)se (X Yal
Constraints:

{(MDPR, pe)}

£ .
ViV, WP (X, y,) = WP, §) +1-—= min ooy W tte 2W i+ e

Ay, 9)

Algorithm Termination

[}
p@®

Algorithm terminates with ¢ < €. For any w(and in particular the expert’s w;)
there is at least one 7 whose performance under Ris at least as good as
the expert's performance minus €

ww:wl, <1,3iw 1O =W g -
Ask the agent designer to manually test/examine the policies found by the
algorithm, and pick one with acceptable performance.

OR, solve: arg min“H,uE ~/1H25.t./1 = Z 2@, 2 > 0,2/11 =1

Note: the algorithm does not necessarily recover the underlying reward

function correctly - it only (approximately) matches the feature expectations.

3/9/2010

Projection Method

+ Instead of keeping all prior feature expectations,
just look at the most recent expectations, and an
orthogonal projection of the expert expectations

- Set ﬁ“’l) =

_(i—2) (=D —a=2)T (pp—a(i=2) —(i—2)
Iz + (H(Fl),ﬁ(zf:r))n"m(zfm,ﬁ(PQ)) (1 Iz)

(This computes the orthogonal projection of g onto
the line through z¢~2 and ,u.(”l).)

(—1) _

- Set w'? = e — ﬁ(ifl)

« We no longer have to solve a QP, so no SVMs here.
— In case you’re just not an SVM kind of guy/gal.

Another Nice Animation...

.
()

e
\Wn
n(®)=n®

ety e

Terminate when the length of the projection falls
below some threshold.

Experimental Results

Gridworld:
ol —EE] o
1 Loz,
om Iﬂ- Eq
os

3 8

i o g

[r—r———

i

+ Projection method converges slightly faster than max-margin
« In general, IRL performs better than more naive alternatives
even with a small amount of training data

More Results

Driving task:

(Please turn off your cell phones during the movie)

Conclusions

Assumed access to demonstrations by an expert

' maximizing a reward function linear in known
features
> (How reasonable is this? Quite, for rich feature spaces.)
Algorithm based on inverse reinforcement learning

terminates in a small number of iterations

- guarantees policy with performance comparable to
or better than expert on the expert's unknown
reward function (but without recovering the reward
function!)

Open problems:

> non-linear reward functions

> automatic feature construction and feature
selection

