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Markov Decision Processes

 Used for modeling sequential decision 
problems.

 Set of states S

 Set of available actions A.

 Transition probabilities Ps,a

◦ Give probabilities for arriving in a new state 
after performing action a while in state s.

 Reward functions R(s)

◦ The ‘value’ of being in state s.  Assume to 
be bounded in the absolute value by 1.

Example

Gridworld
• States given by grid cells

– Additionally, specified start and end 
states

• At each cell, action is given by 
direction of movement

• Transition follows the specified 
action with 80% probability, else 
move to an adjacent cell randomly

• A transition to a given cell is 
accompanied by an immediate 
reward

• A policy maps each state to an 
action

Policies

 D gives the distribution of starting states

 Ƴ is a discount factor – earlier rewards are 
given more weight.
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• π gives a function from states to 
distributions over actions.

• The value of a policy is given by:

Computing Optimal Policies

 Reinforcement Learning

◦ For instance, Q-learning

 Q: S x A  ℝ is a function that gives the 
‘quality’ of an action from a certain state

 The agent uses Q to explore the state space, 
and updates the function at each transition 
based on the experienced reward

 We know the reward function R(s), but not 
the transition probabilities.

The Problem

 It is often difficult to specify the reward 
function, even if you are capable of 
making good decisions.

 E.g.  You might be a perfectly good 
driver, but describing a reward function 

for good driving isn’t so obvious.

 The solution: Apprenticeship learning.

◦ Observe expert behavior, and assuming their 
actions to be optimal, derive the reward 
function.
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Assumptions

 There is some feature vector over 
states 

 The unknown reward function R*(s) 
can be given by w*T Φ(s) for some 
w* ∈ ℝk, ∥w*∥1 ≤ 1

kS ]1,0[:

The Expert

 We have access to some expert policy πE

 More accurately, we have examples of state 
sequences generated by said policy.

 We are also able to estimate the feature 

expectations μE
◦ Given a set of m state sequences

◦ Calculate an estimate: 

m

i

ii ss
1

)(

1

)(

0 ,...,

i

t

m

i t

t

E s
m 1 0

1
ˆ

• Given an MDP\R, a feature mapping 
Φ and the expert’s feature 
expectations  µE, find a policy whose 
performance is close to that of the 
expert's, on the unknown reward 
function R* = w*T Φ .

• To accomplish this, we find a policy 
that induces feature expectations 
close to the expert policy.

Algorithm (max-margin) Algorithm

w(1)

w(2)

w(3)

μ(π(0))

μ(π(1))
μ(π(2))

μE

• Randomly pick some policy π(0), compute (or approx. via Monte Carlo) μ(0) = μ(π(0)) and set i = 1

• Compute                                                ,                                    to get the argmax w(i)

• If t(i) ≤ ε , then terminate.

• Using the RL algorithm, compute the optimal policy π(i) for the MDP using rewards R = (w(i))TΦ.

• Compute (or estimate) μ(i)= μ(π(i)) .

• Set i = i + 1, and go back to step 2. 
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Compare with Structural SVM
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Training examples:

{(x1,y1),…,(xn,yn)}

IRL (ith iteration)SVM

{(MDP\R, μE)}

Constraints:
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Algorithm Termination

 Algorithm terminates with t ≤ ε. For any w (and in particular the expert’s wE) 
there is at least one π(i) whose performance under R is at least as good as 
the expert's performance minus ε

 Ask the agent designer to manually test/examine the policies found by the 
algorithm, and pick one with acceptable performance. 

 OR, solve:

 Note: the algorithm does not necessarily recover the underlying reward 
function correctly – it only (approximately) matches the feature expectations.
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Projection Method

 Instead of keeping all prior feature expectations, 
just look at the most recent expectations, and an 
orthogonal projection of the expert expectations

• We no longer have to solve a QP, so no SVMs here.

– In case you’re just not an SVM kind of guy/gal.

Another Nice Animation…

Terminate when the length of the projection falls 
below some threshold.

Experimental Results

Gridworld:

• Projection method converges slightly faster than max-margin

• In general, IRL performs better than more naïve alternatives 
even with a small amount of training data

More Results

Driving task:

(Please turn off your cell phones during the movie)

Conclusions
 Assumed access to demonstrations by an expert 

maximizing a reward function linear in known 
features 

◦ (How reasonable is this? Quite, for rich feature spaces.)

 Algorithm based on inverse reinforcement learning

◦ terminates in a small number of iterations

◦ guarantees policy with performance comparable to 
or better than expert on the expert's unknown 
reward function (but without recovering the reward 
function!)

 Open problems: 

◦ non-linear reward functions 

◦ automatic feature construction and feature 
selection


