
3/9/2010

1

Apprenticeship Learning via Inverse

Reinforcement Learning
Pieter Abbeel and Andrew Y. Ng [ICML 2004]

CS 6784

March 9, 2010

(Presented by Dane & Vasu)

Markov Decision Processes

 Used for modeling sequential decision
problems.

 Set of states S

 Set of available actions A.

 Transition probabilities Ps,a

◦ Give probabilities for arriving in a new state
after performing action a while in state s.

 Reward functions R(s)

◦ The ‘value’ of being in state s. Assume to
be bounded in the absolute value by 1.

Example

Gridworld
• States given by grid cells

– Additionally, specified start and end
states

• At each cell, action is given by
direction of movement

• Transition follows the specified
action with 80% probability, else
move to an adjacent cell randomly

• A transition to a given cell is
accompanied by an immediate
reward

• A policy maps each state to an
action

Policies

 D gives the distribution of starting states

 Ƴ is a discount factor – earlier rewards are
given more weight.

   00

00~

|)(|)(

|)()(
0

t t

t

t t

t

t t

t

Ds

sEwswE

sREsVE

• π gives a function from states to
distributions over actions.

• The value of a policy is given by:

Computing Optimal Policies

 Reinforcement Learning

◦ For instance, Q-learning

 Q: S x A  ℝ is a function that gives the
‘quality’ of an action from a certain state

 The agent uses Q to explore the state space,
and updates the function at each transition
based on the experienced reward

 We know the reward function R(s), but not
the transition probabilities.

The Problem

 It is often difficult to specify the reward
function, even if you are capable of
making good decisions.

 E.g. You might be a perfectly good
driver, but describing a reward function

for good driving isn’t so obvious.

 The solution: Apprenticeship learning.

◦ Observe expert behavior, and assuming their
actions to be optimal, derive the reward
function.

3/9/2010

2

Assumptions

 There is some feature vector over
states

 The unknown reward function R*(s)
can be given by w*T Φ(s) for some
w* ∈ ℝk, ∥w*∥1 ≤ 1

kS]1,0[:

The Expert

 We have access to some expert policy πE

 More accurately, we have examples of state
sequences generated by said policy.

 We are also able to estimate the feature

expectations μE
◦ Given a set of m state sequences

◦ Calculate an estimate:

m

i

ii ss
1

)(

1

)(

0 ,...,

i

t

m

i t

t

E s
m 1 0

1
ˆ

• Given an MDP\R, a feature mapping
Φ and the expert’s feature
expectations µE, find a policy whose
performance is close to that of the
expert's, on the unknown reward
function R* = w*T Φ .

• To accomplish this, we find a policy
that induces feature expectations
close to the expert policy.

Algorithm (max-margin) Algorithm

w(1)

w(2)

w(3)

μ(π(0))

μ(π(1))
μ(π(2))

μE

• Randomly pick some policy π(0), compute (or approx. via Monte Carlo) μ(0) = μ(π(0)) and set i = 1

• Compute , to get the argmax w(i)

• If t(i) ≤ ε , then terminate.

• Using the RL algorithm, compute the optimal policy π(i) for the MDP using rewards R = (w(i))TΦ.

• Compute (or estimate) μ(i)= μ(π(i)) .

• Set i = i + 1, and go back to step 2.

)(minmax)(

)1(,...,2,11:

)(

2

j

E

T

ijww

i wt

Compare with Structural SVM

)ˆ,(
1)ˆ,(),(,

...
2

1
minarg

yy
yxwyxwji

tsCww

i

i
i

T

ii

T

i iw

Training examples:

{(x1,y1),…,(xn,yn)}

IRL (ith iteration)SVM

{(MDP\R, μE)}

Constraints:

)ˆ,(
1)ˆ,(),(,

yy
yxwyxwji

i

i
i

T

ii

T)(

)1(,...,2,1min jT

E

T

ij ww

Algorithm Termination

 Algorithm terminates with t ≤ ε. For any w (and in particular the expert’s wE)
there is at least one π(i) whose performance under R is at least as good as
the expert's performance minus ε

 Ask the agent designer to manually test/examine the policies found by the
algorithm, and pick one with acceptable performance.

 OR, solve:

 Note: the algorithm does not necessarily recover the underlying reward
function correctly – it only (approximately) matches the feature expectations.

μ(0)

μ(1)
μ(2)

μE

E

TiT wwiww)(

2
:,1:

1,0,..minarg)(

2 i i ii

i

iE ts

3/9/2010

3

Projection Method

 Instead of keeping all prior feature expectations,
just look at the most recent expectations, and an
orthogonal projection of the expert expectations

• We no longer have to solve a QP, so no SVMs here.

– In case you’re just not an SVM kind of guy/gal.

Another Nice Animation…

Terminate when the length of the projection falls
below some threshold.

Experimental Results

Gridworld:

• Projection method converges slightly faster than max-margin

• In general, IRL performs better than more naïve alternatives
even with a small amount of training data

More Results

Driving task:

(Please turn off your cell phones during the movie)

Conclusions
 Assumed access to demonstrations by an expert

maximizing a reward function linear in known
features

◦ (How reasonable is this? Quite, for rich feature spaces.)

 Algorithm based on inverse reinforcement learning

◦ terminates in a small number of iterations

◦ guarantees policy with performance comparable to
or better than expert on the expert's unknown
reward function (but without recovering the reward
function!)

 Open problems:

◦ non-linear reward functions

◦ automatic feature construction and feature
selection

