Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel and Andrew Y. Ng [ICML 2004]

CS 6784 March 9, 2010 (Presented by Dane & Vasu)

Markov Decision Processes

- Used for modeling sequential decision problems.
- Set of states S
- Set of available actions A.
- Transition probabilities $P_{s,a}$
- Give probabilities for arriving in a new state after performing action a while in state s.
- Reward functions *R*(*s*)
- The 'value' of being in state s. Assume to be bounded in the absolute value by 1.

Example

Gridworld

- · States given by grid cells
 - Additionally, specified start and end states
- At each cell, action is given by direction of movement
- Transition follows the specified action with 80% probability, else move to an adjacent cell randomly
- A transition to a given cell is accompanied by an immediate reward
- A policy maps each state to an action

Policies

- π gives a function from states to distributions over actions.
- The value of a policy is given by:

- D gives the distribution of starting states
- $m{\gamma}$ is a discount factor earlier rewards are given more weight.

Computing Optimal Policies

Reinforcement Learning

- For instance, Q-learning
- Q: $S \times A \rightarrow \mathbb{R}$ is a function that gives the 'quality' of an action from a certain state
- The agent uses Q to explore the state space, and updates the function at each transition based on the experienced reward
- We know the reward function R(s), but not the transition probabilities.

The Problem

- It is often difficult to specify the reward function, even if you are capable of making good decisions.
- E.g. You might be a perfectly good driver, but describing a reward function for good driving isn't so obvious.
- The solution: Apprenticeship learning.
- Observe expert behavior, and assuming their actions to be optimal, derive the reward function.

Assumptions

· There is some feature vector over states

$$\phi: S \rightarrow [0,1]^k$$

• The unknown reward function $R^*(s)$ can be given by $w^{*T} \phi(s)$ for some $w^* \in \mathbb{R}^k, \|w^*\|_1 \le 1$

The Expert

- ullet We have access to some expert policy $\pi_{\scriptscriptstyle F}$ More accurately, we have examples of state sequences generated by said policy.
- We are also able to estimate the feature expectations μ_F
 - Given a set of m state sequences

$$S_1^{(i)}, S_1^{(i)}, \dots \bigcup_{i \neq 1}^{m}$$

· Calculate an estimate:

$$\hat{\mu}_E = \frac{1}{m} \sum_{i=1}^m \sum_{t=0}^\infty \gamma^t \phi \left(\mathbf{C} \right)$$

Algorithm (max-margin)

- · Given an MDP\R, a feature mapping ϕ and the expert's feature expectations μ_E , find a policy whose performance is close to that of the expert's, on the unknown reward function $R^* = w^{*T} \phi$.
- To accomplish this, we find a policy that induces feature expectations close to the expert policy.

Compare with Structural SVM

$$\arg\min_{w} \frac{1}{2} w.w + C \sum_{i} \xi_{i} s.t.$$

$$\forall i \forall j, w^{T} \Psi(x_{i}, y_{i}) \ge w^{T} \Psi(x_{i}, \hat{y}) + 1 - \frac{\xi_{i}}{\Lambda(y_{i}, \hat{y})}$$

SVM

IRL (ith iteration)

Training examples:

 $\{(x_1,y_1),...,(x_n,y_n)\}$

 $\{(MDP\R, \mu_E)\}$

 $\forall i \forall j, w^T \Psi(x_i, y_i) \geq w^T \Psi(x_i, \hat{y}) + 1 - \frac{\xi_i}{\Delta(y_i, \hat{y})} \qquad \text{min } _{j \in \ \mathbb{N}^2, \dots, (i-1)} \ \underline{j}^{w^T} \mu_E \geq w^T \mu^{(j)} + \varepsilon$

Algorithm terminates with $t \le \epsilon$. For any w (and in particular the expert's w_{θ}) there is at least one π^0 whose performance under R is at least as good as the expert's performance minus ϵ

 $\forall w : ||w||_2 \le 1, \exists i : w^T \mu^{(i)} \ge w^T \mu_E - \varepsilon$

- Ask the agent designer to manually test/examine the policies found by the algorithm, and pick one with acceptable performance.
- OR, solve: $\underset{\mu}{\operatorname{arg min}} \|\mu_E \mu\|_2 s.t. \mu = \sum_i \lambda_i \mu^{(i)}, \lambda_i \ge 0, \sum_i \lambda_i = 1$

Note: the algorithm does not necessarily recover the underlying reward function correctly - it only (approximately) matches the feature expectations

Projection Method

Instead of keeping all prior feature expectations, just look at the most recent expectations, and an orthogonal projection of the expert expectations

- Set $\mu^{(i-1)} = \frac{\mu^{(i-2)} + \frac{(\mu^{(i-1)} \bar{\mu}^{(i-2)})^T (\mu_E \bar{\mu}^{(i-2)})}{(\mu^{(i-1)} \bar{\mu}^{(i-2)})^T (\mu^{(i-1)} \bar{\mu}^{(i-2)})} (\mu^{(i-1)} \bar{\mu}^{(i-2)})$ (This computes the orthogonal projection of μ_E onto the line through $\bar{\mu}^{(i-2)}$ and $\mu^{(i-1)}$.)
- Set $w^{(i)} = \mu_E \bar{\mu}^{(i-1)}$
- We no longer have to solve a QP, so no SVMs here. - In case you're just not an SVM kind of guy/gal.

Experimental Results Gridworld: Projection method converges slightly faster than max-margin

Conclusions

- Assumed access to demonstrations by an expert maximizing a reward function linear in known features
- (How reasonable is this? Quite, for rich feature spaces.)
- Algorithm based on inverse reinforcement learning
- terminates in a small number of iterations
- guarantees policy with performance comparable to or better than expert on the expert's unknown reward function (but without recovering the reward function!)
- Open problems:
 - non-linear reward functions
 - automatic feature construction and feature selection