Discriminative Unsupervised Learning of Structured Predictors Linli Xu, Dana Wilkinson, Finnegan Southey, Dale Schuurmans Presented by Kent Sutherland & Mark Verheggen March 2, 2010	Outline Unsupervised Hidden Markov Models Unsupervised max-margin training Unsupervised M3N training Approximations
Hidden Markov Models • Set of states, initial state, and transitions • Generative model • Models joint probability • Easy to train given complete training data	Unsupervised Training • Typically use EM when there are no labels • But: • Not guaranteed to find a global solution • Can't be used in a discriminative approach
Unsupervised SVM • Optimize the standard SVM objective over all class labelings • For two classes: • $\min_{\mathbf{w},\mathbf{y}}\frac{1}{2}\ \mathbf{w}\ ^2 + \Sigma_i \left[1 - y_i\phi(\mathbf{x})^T\mathbf{w}\right]_+$ • This approach has (at least) three issues.	 Issue 1: Degenerate Solutions All points might be assigned to a single class Correction: add a class-balance constraint Forces a roughly equal proportion of labels For two classes: - ε ≤ y^Te ≤ ε

Issue 2: NP-Hard Problem

- ullet There are exponentially many possible ullet
- But, look at the dual SVM objective:

•
$$\max_{0 \le \lambda \le 1} \lambda^T \mathbf{e} - \frac{1}{2\beta} \langle K \circ \lambda \lambda^T, \mathbf{y} \mathbf{y}^T \rangle$$

- \mathbf{y} only occurs in the term $\mathbf{y}\mathbf{y}^T.$

NP-Hard

- Let $M:=\mathbf{y}\mathbf{y}^T$. Then $M_{ij}=y_iy_j\in\{-1,1\}.$
- That is, M_{ij} indicates whether $y_i = y_j$.
- \bullet Iff M is an equivalence relation, the following
 - diag(M) = \mathbf{e} ($y_i = y_i$) $M = M^T$ ($y_i = y_j \iff y_j = y_i$) $M \succeq 0$ ($y_i = y_j, y_j = y_k \implies y_i = y_k$)

NP-Hard

- ullet Optimize over M instead of ${\bf y}$
- Relax the integer constraints on M so that $M_{ij} \in [-1,1]$
- Add the constraints $M\succeq 0$, $\mathrm{diag}(M)=\mathbf{e}$

$$\min_{\substack{M\succeq 0, \mathrm{diag}(\mathrm{M}) = \mathbf{e} \\ 0 \leq \lambda \leq 1}} \lambda^T \mathbf{e} - \frac{1}{2\beta} \left\langle K \circ \lambda \lambda^T, M \right\rangle \right)$$

Formulation for Max-Margin Markov Networks

- The same idea, but applied to M3N. Messier.
- Key differences:
 - Class labels y replaced with indicator matrices.
 - Two sets of labels (states, transitions)

NP-Hard

Re-written as a semidefinte program:

$$\begin{split} \min_{\substack{M,\delta,\mu \geq 0,\nu \geq 0 \\ M \circ K}} \delta & \text{ subject to } \\ \left[\begin{array}{cc} M \circ K & \mathbf{e} + \mu - \nu \\ (\mathbf{e} + \mu - \nu)^T & \frac{2}{\beta}(\delta - \nu^T \mathbf{e}) \end{array} \right] \succeq 0 \\ \operatorname{diag}(M) = \mathbf{e}, & M \succeq 0, & -\epsilon \mathbf{e} \leq M \mathbf{e} \leq \epsilon \mathbf{e} \end{split}$$

Initial Experiment

- Proof of concept
- 4 toy datasets, 2 simplified datasets
- New model significantly outperforms EM

Data set	CDHMM	EM
syth. data1 (95%)	3.38 ± 0.75	15.09 ± 1.92
SYTH. DATA2 (90%)	8.12 ± 1.57	17.49 ± 1.81
SYTH. DATA3 (80%)	22.12 ± 1.40	30.06 ± 1.24
SYTH. DATA4 (70%)	31.50 ± 1.46	39.90 ± 0.86
PROTEIN DATA1	51.75 ± 1.80	58.11 ± 0.47
PROTEIN DATA2	50.38 ± 2.04	57.23 ± 0.39

${\sf Approximations}$ ${\sf Approximation}$ Semidefinite programming is too slow • Iteratively retrain using the SVM: Reformulate problem Initialize labeling - Alternate between optimizing ${\it M}$ and λ,ξ Traing SVM \bullet Still uses a semidefinite program to find $\emph{M}:$ Label data with new discriminant $\min_{M} \min_{0 \leq \lambda \leq 1, \xi \geq 0} \omega(M; \lambda, \xi) = \lambda^{T} (K \circ M) \lambda / 2\beta + \xi^{T} \mathbf{e}$ Retrain SVM using relabeled data subject to convex constraints Approximation Results Questions? • Intuitively similar approach to EM • Approximation scales to larger datasets Still outperforms EM $\begin{array}{c|cccc} Table \ 3. & Prediction \ error \ for \ larger \ data \ sets. \\ \hline DATA \ SET & ACDHMM & EM \\ \hline 2002-8EQ & 43.12 \pm 2.20 & 46.27 \pm 1.51 \\ \hline 1085-8EQ & 44.33 \pm 2.30 & 48.67 \pm 1.51 \\ \hline 5\times 10\text{-}SEQ & 46.44 \pm 2.12 & 48.67 \pm 1.82 \\ \hline \end{array}$