#### Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data

Anguelov et. al., (CVPR), 2005

Presentation for CS 6784 Sarah lams, 18 Feb 2010

## Intuition for the problem

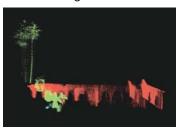
(I) ID vehicles vs background (synthetic data)



(3) Find head, limbs, torso, background

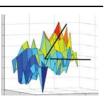


(2) Find buildings, trees, shrubs, ground



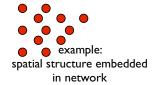
#### **Features**

- How planar is the neighborhood of the point?
- Is a point close to the ground?
- Are there many points nearby?
- What are the principal components of the spin images?



#### Capture problem structure

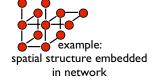
- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label,  $Y_i \in \{1, ..., K\}$
- The entire network is associated with a set of labels,  $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$
- They are interested in a distribution over  $\{1,\dots,K\}^N$  specified by the geometry of the graph



example: one possible labeling  $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$ 

#### Capture problem structure

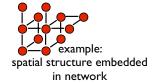
- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label,  $Y_i \in \{1, ..., K\}$
- The entire network is associated with a set of labels,  $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$
- $\bullet$  They are interested in a distribution over  $\{1,\dots,K\}^N$  specified by the geometry of the graph

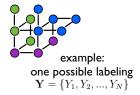


example: one possible labeling  $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$ 

# Capture problem structure

- Markov network captures geometry of the problem
- Scan points are represented by nodes in a graph
- Edges connect nearby scan points
- Each node will eventually have a label,  $Y_i \in \{1, ..., K\}$
- The entire network is associated with a set of labels,  $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$
- $\bullet$  They are interested in a distribution over  $\{1,\dots,K\}^N$  specified by the geometry of the graph





## Pairwise MRF assumption

- pairwise Markov network: nodes and edges are associated with potentials, φ<sub>i</sub>(Y<sub>i</sub>) and φ<sub>ii</sub>(Y<sub>i</sub>,Y<sub>j</sub>)
- all potentials are then multiplied (and normalized) to produce P(Y| X)
- This is identical to saying the logs of the potentials are added to produce log P(Y|X)
- the feature values,  $\psi_i$ , at each node dictate the values of  $\phi_i(Y_i)$
- the similarity of the prospective labels,  $\psi_{ij}$ , along an edge dictates  $\phi_{ij}(Y_i, Y_j)$

$$P(Y|X) = \frac{1}{Z} \prod_{i} \phi_i(Y_i) \prod_{ij} \phi_{ij}(Y_i, Y_j)$$

$$\log P(Y|X) = \sum_{i} \log \phi_i(Y_i)$$
$$+ \sum_{ij} \log \phi_{ij}(Y_i, Y_j) - \log(Z)$$

$$\log \phi_i(k) = \mathbf{w}_n^k \cdot \psi_i$$

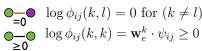
$$\log \phi_{ij}(k,l) = \mathbf{w}_e^{kl} \cdot \psi_{ij}$$

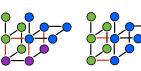
#### **AMN** assumption

- want to find the Y that maximized P(Y|X). Note maximizing P(Y|X) is identical to maximizing log P(Y|X)
- they make one more assumption to simplify the optimization problem: edge weight is 0 when an edge connects nodes with different labels. Otherwise, the weight is non-negative.
- This is the associative Markov network assumption.

$$\arg \max_{\mathbf{Y}} \log P(Y|X) =$$

$$\mathsf{I} \quad \arg \max_{\mathbf{Y}} \left( \sum_{i} \log \phi_{i}(Y_{i}) + \sum_{ij} \log \phi_{ij}(Y_{i}, Y_{j}) - \log(Z) \right)$$





## Optimization problem

$$\arg \max_{\mathbf{Y}} \log P(Y|X) = \arg \max_{\mathbf{Y}} \left( \sum_{i} \log \phi_{i}(Y_{i}) + \sum_{ij} \log \phi_{ij}(Y_{i}, Y_{j}) - \log(Z) \right)$$

$$\log \phi_{i}(k) = \mathbf{w}_{n}^{k} \cdot \psi_{i}$$

$$\log \phi_{ij}(k, l) = 0 \text{ for } (k \neq l)$$

$$\log \phi_{ij}(k, k) = \mathbf{w}_{e}^{k} \cdot \psi_{ij} \geq 0$$

$$\arg\max_{\mathbf{Y}}\log P(Y|X) = \arg\max_{\mathbf{Y}} \left( \sum_{i} \sum_{k} (\mathbf{w}_{n}^{k} \cdot \psi_{i}) y_{i}^{k} + \sum_{ij} \sum_{k} (\mathbf{w}_{e}^{k} \cdot \psi_{ij}) y_{ij}^{k} \right)$$

- Given weights, we can solve this (min-cut algorithm)
- Or (evidently), we can reformulate as integer program & relax to linear program: they choose this route because this arg max will reappear in the course of their learning method!

## Learning method

$$\arg \max_{\mathbf{Y}} \log P(Y|X) = \arg \max_{\mathbf{Y}} \left( \sum_{i} \sum_{k} (\mathbf{w}_{n}^{k} \cdot \psi_{i}) y_{i}^{k} + \sum_{ij} \sum_{k} (\mathbf{w}_{e}^{k} \cdot \psi_{ij}) y_{ij}^{k} \right)$$
$$= \arg \max_{\mathbf{V}} \mathbf{w} \mathbf{X} \mathbf{y}$$

- Switch to vector notation (all those subscripted w's, ψ's & y's become vectors in a natural way, with Ψ→X)
- They take a single training scene.
- Could train weights to maximize P(Y<sub>correct</sub>|X)
- Instead, maximize confidence in correct answer:
   P(Y<sub>correct</sub>|X)-P(Y|X)
   (where Y<sub>correct</sub> is the true label, and Y is any other labeling
   - this is maximum margin for the Markov network)
- Advantages: allows some kernelization later on
- Evidently pretty accurate

## M<sup>3</sup>N problem

$$\begin{aligned} \max_{\gamma} s.t. \quad \mathbf{wX}(\mathbf{y_{correct}} - \mathbf{y}) &\geq \gamma \Delta(\mathbf{y_{correct}}, \mathbf{y}); \|\mathbf{w}\|^2 \leq 1 \\ \Delta(\mathbf{y_{correct}}, \mathbf{y}) &= N - \mathbf{y_{correct, nodes}^T y_{nodes}} \end{aligned}$$

- Note that y is an indicator vector, so when y<sub>correct</sub> and y agree on a node label, that contributes to their dot product. When they disagree, it contributes 0 to the dot product.
- They define the loss function to count how many times y
  is wrong on labeling the nodes. (Note M³N was
  approached without a loss function restriction on Tuesday).
- As usual, next they'll divide through by the margin  $(\gamma)$  and add a slack variable (in case the data isn't separable)

# Primal formulation

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C\xi \text{ s.t. } \mathbf{w} \mathbf{X} (\mathbf{y}_{\mathbf{correct}} - \mathbf{y}) \geq N - \mathbf{y}_{\mathbf{correct}, \mathbf{nodes}}^{\mathbf{T}} \mathbf{y}_{\mathbf{nodes}} - \xi \ \forall \mathbf{y}$$

- this is a quadratic program
- exponentially many constraints
- we can replace the constraints with a single constraint over a quadratic program!

$$\begin{split} \mathbf{w} \mathbf{X} (\mathbf{y}_{\mathbf{correct}} - \mathbf{y}) &\geq N - \mathbf{y}_{\mathbf{correct}, \mathbf{nodes}}^{\mathbf{T}} \mathbf{y}_{\mathbf{nodes}} - \boldsymbol{\xi} \ \forall \mathbf{y} \\ &\Rightarrow \mathbf{w} \mathbf{X} \mathbf{y}_{\mathbf{correct}} - N + \boldsymbol{\xi} \geq \mathbf{w} \mathbf{X} \mathbf{y} - \mathbf{y}_{\mathbf{correct}, \mathbf{nodes}}^{\mathbf{T}} \mathbf{y}_{\mathbf{nodes}} \ \forall \mathbf{y} \\ &\Rightarrow \mathbf{w} \mathbf{X} \mathbf{y}_{\mathbf{correct}} - N + \boldsymbol{\xi} \geq \max_{\mathbf{v}} \mathbf{w} \mathbf{X} \mathbf{y} - \mathbf{y}_{\mathbf{correct}, \mathbf{nodes}}^{\mathbf{T}} \mathbf{y}_{\mathbf{nodes}} \end{split}$$

- we recognize this quadratic program from before
- Recall:  $\arg \max \log P(Y|X) = \arg \max \mathbf{w} \mathbf{X} \mathbf{y}$

# Switch to dual (twice)

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C\xi \text{ s.t. } \mathbf{w}\mathbf{X}\mathbf{y}_{\mathbf{correct}} - N + \xi \geq \max_{\mathbf{y}} \mathbf{w}\mathbf{X}\mathbf{y} - \mathbf{y}_{\mathbf{correct}, \mathbf{nodes}}^{\mathbf{T}}\mathbf{y}_{\mathbf{nodes}}$$

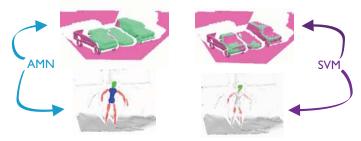
They switch to the dual problem in the constraint.

$$\begin{split} \min \frac{1}{2} \|\mathbf{w}\|^2 + C\xi \quad \text{s.t.} \quad \mathbf{w} \mathbf{X} \mathbf{y_{correct}} - N - \xi &\geq \sum_{i=1}^{N} \alpha_i; \mathbf{w_e} \geq 0; \alpha_i - \sum_{ij} \alpha_{ij}^k \geq w_n^k \cdot \psi_i - y_{correct,i}^k \\ \alpha_{ij}^k + \alpha_{ji}^k &\geq w_e^k \cdot \psi_{ij}; \alpha_{ij}^k, \alpha_{ji}^k \geq 0 \end{split}$$

- Then they switch to the dual in the overall problem. (I am not including the dual here.) The primal and dual are related as follows:  $w_n^k = \sum_{i=1}^N \psi_i(Cy_{correct,i}^k \mu_i^k) \qquad w_e^k = f(\phi_{ij}^k) + \sum_{i,j} \psi_{ij}(Cy_{correct,ij}^k \mu_{ij}^k)$
- Since  $w_n^k$  is a sum over  $\psi_i$  multiplied by constants,  $w_n^k \psi$  can be kernelized. The edge potentials cannot be, however, because of the constant term added to the sum.

# Testing the AMN

- The associative Markov network ensures nearby points have the same label (SVM does not do this)
- After five training scenes:



# Testing the AMN

