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Intuition for the problem
(1) ID vehicles vs background

 (synthetic data)
(2) Find buildings, trees, shrubs, 

ground

(3) Find head, limbs, torso, 
background

Features
• How planar is the 

neighborhood of the point?

• Is a point close to the ground?

• Are there many points nearby?

• What are the principal 
components of the spin 
images?

• Markov network captures geometry of the problem

• Scan points are represented by nodes in a graph

• Edges connect nearby scan points

• Each node will eventually have a label, 

• The entire network is associated with a set of labels,

•  They are interested in a distribution over                      specified 
by the geometry of the graph

Capture problem structure
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Pairwise MRF assumption
• pairwise Markov network: nodes 

and edges are associated with 
potentials, �i(Yi) and �ij(Yi,Yj)

• all potentials are then multiplied 
(and normalized) to produce P(Y|
X)

• This is identical to saying the logs 
of the potentials are added to 
produce log P(Y|X)

• the feature values, �i, at each node 
dictate the values of �i(Yi)

• the similarity of the prospective 
labels, �ij, along an edge dictates 
�ij(Yi,Yj)

P (Y |X) =
1

Z

∏
i

φi(Yi)
∏
ij

φij(Yi, Yj)

log φi(k) = wk
n · ψi

log φij(k, l) = wkl
e · ψij

+
∑
ij

log φij(Yi, Yj)− log(Z)

logP (Y |X) =
∑
i

log φi(Yi)

AMN assumption
• want to find the Y that 

maximized P(Y|X).  Note 
maximizing P(Y|X) is identical 
to maximizing log P(Y|X)

• they make one more 
assumption to simplify the 
optimization problem: edge 
weight is 0 when an edge 
connects nodes with different 
labels.  Otherwise, the weight 
is non-negative.

• This is the associative Markov 
network assumption.
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Optimization problem

• Given weights, we can solve this (min-cut algorithm)

• Or (evidently), we can reformulate as integer program & relax to 
linear program:  they choose this route because this arg max will 
reappear in the course of their learning method!

argmax
Y

⎛
⎝∑

i

log φi(Yi) +
∑
ij

log φij(Yi, Yj)− log(Z)

⎞
⎠argmax

Y
logP (Y |X) =

log φi(k) = wk
n · ψi

log φij(k, l) = 0 for (k �= l)

log φij(k, k) = wk
e · ψij ≥ 0

argmax
Y

⎛
⎝∑

i

∑
k

(wk
n · ψi)y

k
i +

∑
ij

∑
k

(wk
e · ψij)y

k
ij

⎞
⎠argmax

Y
logP (Y |X) =

Learning method

• Switch to vector notation (all those subscripted w’s, �’s 
& y’s become vectors in a natural way, with ��X)

• They take a single training scene.

• Could train weights to maximize P(Ycorrect|X)

• Instead, maximize confidence in correct answer:   
P(Ycorrect|X)-P(Y|X)                                              
(where Ycorrect is the true label, and Y is any other labeling 
- this is maximum margin for the Markov network)

• Advantages: allows some kernelization later on

• Evidently pretty accurate
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M3N problem

• Note that y is an indicator vector, so when ycorrect and y 
agree on a node label, that contributes to their dot 
product.  When they disagree, it contributes 0 to the dot 
product.

• They define the loss function to count how many times y 
is wrong on labeling the nodes.  (Note M3N was 
approached without a loss function restriction on Tuesday).

• As usual, next they’ll divide through by the margin (�) and 
add a slack variable (in case the data isn’t separable)

∆(ycorrect,y) = N − yT
correct,nodesynodes

‖w‖2 ≤ 1max
γ

s.t. wX(ycorrect − y) ≥ γ∆(ycorrect,y);

Primal formulation

• this is a quadratic program

• exponentially many constraints

• we can replace the constraints with a single constraint 
over a quadratic program!

min
1

2
‖w‖2 + Cξ s.t. wX(ycorrect − y) ≥ N − yT
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,
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wXy

• we recognize this quadratic program from before

• Recall:



Switch to dual (twice)
min
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• They switch to the dual problem in the constraint.
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• Then they switch to the dual in the overall problem.  (I am 
not including the dual here.) The primal and dual are related 
as follows:
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k
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∑
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• Since wnk is a sum over �i multiplied by constants, wnk� can 
be kernelized.  The edge potentials cannot be, however, 
because of the constant term added to the sum.

Testing the AMN
• The associative Markov network ensures nearby 

points have the same label (SVM does not do 
this)

• After five training scenes:

AMN SVM

Testing the AMN
AMN SVM with voting

SVMAMN without 
edge connections


