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Goals of Paper

This paper proposes Maximum Margin
Markov(M3)Networks
That incorporates the advantages of SVM
Using kernels to deal with high-dimensional features
efficiently
Having strong generalization guarantees
That incorporates the advantage of probabilistic
graphical model
Having ability to capture correlations in structured data

Structure in classification problem
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Review

Problem
Learning tasks have complex output spaces
Structural SVM
Notation: @, ¥(X.Y)
Prediction: f(X):argmaX{@V-w(X,Y)}
Soft-Margin Struct SVM(Margin Rescaling)
min %(T)T @+ Cg ¢

SLYY Y \y, 1@ Y (X, V) 2@y (%, Y) + A, V) &

VY e\ 1@y (%, y) 28"y (X%, V) + AL Y) &

Outline

Structure in classification problem
How to construct the model to integrate the
kernel models with graphical models?
Margin-based structured classification
Exploiting structure in M3 networks
How to reduce the number of constraints from
exponential to polynomial?
SMO learning of M3 networks
How to deal with the massive matrix when solving
the QP?

Margin-based structured classification

Markov network( pairwise Markov Network)
Defined as a graph: G=(Y.E)
Potential:v;(x.%.¥;) , corresponding to edge(i,j)
The network encodes a joint conditional

probability distribution as Probabilistic
P(yIX)ooIL; jycet (X, ¥ ¥;) g::z:i:la'
A set of features TrainW.
= using
fxy)= 3. fyy) struct SVM

(i,i)<E
The network potentials are
vy (6 Y1) = expl s Wi (%, Y YT =explw f(xy;, vl

Primal formulation

min % Il wi? +sz:§x

StwAf, (y) 2 At, (y)-£, VXY
A Y)=FC)FxY)=D ) A ()

AL(Y)=31 AL (1)
Dual formulation

max ¥, (AL 0) -3 | L o AT, )P

1. Integrate per-label loss,
such as the proportion of
incorrect labels predicted

2. Integrate slack variable

Sty a, (¥)=C, VX0, (y) 2 0,vx,y
y
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Margin-based structured classification Exploiting structure in M3 networks(z/7)

Reconsider the dual formulation
max Y a, (Y)At, (y) f% > e, (AT, ) I
o w

st a, (¥)=C,Vxa, (y) = 0,vx,y
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If we interpret the variables «,(y) as a density
function over y conditional on x, the dual
objective is a function of expectations ofat,(v) and Af, ()
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Exploiting structure in M3 networks(2/7) Exploiting structure in M3 networks(3/7)
Find an instrument Reform the dual formulation
Since At (=Y At (y) and ALK)=2, AL (y;) are max Y- o, (y)Atx(y)—%llZOtx(y)Afx(y)||2
sums of functions over nodes and edges, we only Y Y :
need node and edge marginals of the measure () S-t';ux ¥)=C,v%i0, (¥) 2 0,vxy P“,":fe';
to compute their expectations Asto the first term
Define
. (AL, ()= (VAL (v,)=)_ At (v;) D= D1 (V)AL ()
#Y) =2, a0 VG 1) S E VY, v ‘za ILOZL T DN O=2 00 2 @ = 2 ‘
() =2 0, Vi VY, X Asto the second term

Fax WAL W)=D > WA, (y) = DAL YY) D @)= D, (Yiy)AL 4y;)
y y i ()] ()
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Exploiting structure in M3 networks(4/7) Exploiting structure in M3 networks(s/7)

The connection R

We must enforce consistency between the
pairwise and singleton marginals, that is,

Do (¥ Y;) = (%), 9y, VG, J) € B, VX

D i (y)=C
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sjlorRrn N

(™ G
B
EYr 26 o

ﬂoo}ﬁé

Taskar 05



2/16/2010

Exploiting structure in M3 networks(6/7) Exploiting structure in M3 networks(7/7)

£3a
D)

m3za(¥a)

Then, we get the equivalent factored dual QP

1
max 33 it (YIA(Y) =5 22D b (Yo VDb (Yo Yo AR, O ¥,) A8 0, ¥,)
X iy, X% i,j rs e
S (0 ¥) = 24 (Y0 20 () = Ci (%, ;) 20 , S ‘
Vi Vi Wy Wl v
w w il Y2
And the factored primal s - 3
— ¥ Tty y
= © +C .
RS ZZ§+ z;‘;é' M ()2 100, # ¥ =6, W,
st.W'Af (y.,y. )+ m . m,(y)=-E ; M, (Y2) + My (¥2) 2 1(Y, # ¥5)) = &, VY,
B (m;:l . (yJ)Jruunz;":J b ()2 5 M (Y5 + My () 2 (Y, # V) =&, Wy,
me S 2 AL ()~ &6y 20,6, 20 My (Vo) + My (V) 2 1Y, # ¥4 =0, Y,
@ - i M (%5) 2 1055 # ¥) = &5, vys
SMO learning of M3 networks Summary
The SMO approach solves this QP by analytically _
optimizing two-variable subproblems. Max-Margin Markov Networks
Take any two variables «.¢").«.4*) and move weight integrates the kernel methods with the graphical
from one to another models
2=a', (Vo )=a,y?)-a' (v*) Reduce exponential constraints and variables
0 = 1 3 V) A G = YL Y, =YD= =YY, = Y,) to polynomial by
— — Using marginal dual variables
Lo b
g . - Solve the QP by
~ ‘ N ‘ — 'i — SMO approach, specifically, by analytically
select || smo || project == optimizing two-variable subproblems
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The End

Thanks!




