Max-Margin Markov Networks

Ben Taskar, Carlos Guestrin, Daphne Koller

Presented by Lu Wang Cornell University Department of Computer Science

Review

- Problem
 - Learning tasks have complex output spaces
- Structural SVM
 - Notation: $\vec{\omega}$, $\psi(X,Y)$
 - Prediction: $f(X) = \arg \max{\{\vec{\omega} \cdot \psi(X,Y)\}}$
 - Soft-Margin Struct SVM(Margin Rescaling)

$$\begin{split} & \min_{\vec{o},\vec{i}} \frac{1}{2} \vec{o}^T \vec{o} + C \sum_{i=1}^n \xi_i \\ & st. \forall y \in Y \setminus y_i : \vec{o}^T \psi(x_i, y_i) \geq \vec{o}^T \psi(x_i, y) + \Delta(y_i, y) - \xi_i \\ & \dots \end{split}$$

$\forall y \in Y \setminus y_1 : \vec{\varpi}^T \psi(x_1, y_1) \geq \vec{\varpi}^T \psi(x_1, y) + \Delta(y_1, y) - \xi_1$

Goals of Paper

- This paper proposes Maximum Margin Markov(M3)Networks
 - That incorporates the advantages of SVM
 - · Using kernels to deal with high-dimensional features efficiently
 - Having strong generalization guarantees
 - That incorporates the advantage of probabilistic graphical model
 - · Having ability to capture correlations in structured data

Outline

- Structure in classification problem
- How to construct the model to integrate the kernel models with graphical models?
- Margin-based structured classification
- Exploiting structure in M³ networks
 - How to reduce the number of constraints from exponential to polynomial?
- SMO learning of M³ networks
 - How to deal with the massive matrix when solving the QP?

Structure in classification problem

- Markov network(pairwise Markov Network)
 - Defined as a graph: G = (Y, E)
 - Potential: $\Psi_{ij}(\mathbf{x}, y_i, y_j)$, corresponding to edge(i,j)
 - The network encodes a joint conditional probability distribution as $P(y|x) \propto \prod_{(i,j) \in E} \psi_{ij}(x, y_i, y_j)$

A set of features

 $f_k(\mathbf{x},\mathbf{y}) = \sum_{i,j} f_k(\mathbf{x},y_i,y_j)$

using struct SVM • The network potentials are $\psi_{ij}(x, y_i, y_j) = \exp[\sum_{k=1}^n w_k f_k(x, y_i, y_j)] = \exp[w^T f(x, y_i, y_j)]$

Margin-based structured classification

Primal formulation

 $\left|\min \frac{1}{2} \|w\|^2 + C \sum \xi_x\right|$ $s.t.w^{T}\Delta f_{x}(y) \ge \Delta t_{x}(y) - \xi_{x}, \forall x, y$

 Integrate per-label loss, such as the proportion of incorrect labels predicted 2. Integrate slack variable

- $\Delta f_x(y) = f(x,t(x)) f(x,y) = \sum_{(i,j)} \Delta f_x(y_i,y_j)$
- $\Delta t_{x}(y) = \sum_{i=1}^{l} \Delta t_{x}(y_{i})$
- Dual formulation

 $\max \sum \alpha_{x}(y)\Delta t_{x}(y) - \frac{1}{2} \|\sum \alpha_{x}(y)\Delta f_{x}(y)\|^{2}$ s.t. $\sum \alpha_x(y) = C, \forall x; \alpha_x(y) \ge 0, \forall x, y$

Margin-based structured classification

Taskar 05

Exploiting structure in M³ networks(1/7)

Reconsider the dual formulation

$$\begin{split} \max \sum_{x,y} \alpha_{x}(y) \Delta t_{x}(y) - \frac{1}{2} \| \sum_{x,y} \alpha_{x}(y) \Delta f_{x}(y) \|^{2} \\ s.t. \sum_{y} \alpha_{x}(y) = C, \forall x; \alpha_{x}(y) \geq 0, \forall x, y \end{split}$$

• If we interpret the variables $\alpha_x(y)$ as a density function over y conditional on x, the dual objective is a function of expectations of $\Delta t_x(y)$ and $\Delta f_x(y)$

Exploiting structure in M3 networks(2/7)

- Find an instrument
 - Since $\Delta t_x(y) = \sum_{i=1}^{J} \Delta t_x(y_i)$ and $\Delta f_x(y) = \sum_{(i,j)} \Delta f_x(y_i,y_j)$ are sums of functions over nodes and edges, we only need node and edge marginals of the measure $\alpha_x(y)$ to compute their expectations
 - $$\begin{split} & \text{ Define } \\ & \mu_{x}(y_{i},y_{j}) = \sum_{\mathbf{y} \in \{\mathbf{y}_{i},\mathbf{y}_{j}\}} \alpha_{x}(\mathbf{y}), \forall (i,j) \in E, \forall y_{i},y_{j}, \forall \mathbf{x} \\ & \mu_{x}(y_{i}) = \sum_{\mathbf{y} \in \{\mathbf{y}_{i}\}} \alpha_{x}(\mathbf{y}), \forall i, \forall \mathbf{y}_{i}, \forall \mathbf{x} \end{split}$$

Exploiting structure in M3 networks(3/7)

Reform the dual formulation

Exploiting structure in M³ networks(4/7)

The connection

 $Taskar\,05$

Exploiting structure in M³ networks(5/7)

We must enforce consistency between the pairwise and singleton marginals, that is,

$$\sum_{y_i} \mu_x(y_i, y_j) = \mu_x(y_i), \forall y_j, \forall (i, j) \in E, \forall x$$

$$\sum_{y_i} \mu_x(y_i) = C$$

Exploiting structure in M³ networks(6/7)

Then, we get the equivalent factored dual QP

$$\begin{aligned} & \max \sum_{x} \sum_{i, y_{i}} \mu_{x}(y_{i}) \Delta t_{x}(y_{i}) - \frac{1}{2} \sum_{x, x} \sum_{i, j} \sum_{r, s} \mu_{x}(y_{i}, y_{j}) \mu_{x}(y_{r}, y_{s}) \Delta f_{x}(y_{i}, y_{j})^{T} \Delta f_{x}(y_{r}, y_{s}) \\ & \text{s.t.} \sum_{y_{i}} \mu_{x}(y_{i}, y_{j}) = \mu_{x}(y_{j}); \sum_{y_{i}} \mu_{x}(y_{i}) = C; \mu_{x}(y_{i}, y_{j}) \geq 0 \end{aligned}$$

And the factored primal

$$\begin{aligned} &\min \ \frac{1}{2} \| w \|^2 + C \sum_{x} \sum_{i} \xi_{x,i} + C \sum_{x} \sum_{(i,j)} \xi_{x,ij} \\ &s.t. \ \mathbf{w}^{\mathsf{T}} \Delta \mathbf{f}_{\mathbf{x}}(y_i, y_j) + \sum_{(i',j) \neq i} m_{x,i'}(y_j) + \sum_{(j',j) \neq j} m_{x,j'}(y_i) \ge -\xi_{x,ij}; \\ &\sum_{x,y} m_{x,j}(y_i) \ge \Delta t_x(y_i) - \xi_{x,i}; \xi_{x,ij} \ge 0, \xi_{x,i} \ge 0 \end{aligned}$$

Exploiting structure in M³ networks(7/7)

SMO learning of M³ networks

- The SMO approach solves this QP by analytically optimizing two-variable subproblems.
- Take any two variables α_x(y¹),α_x(y²) and move weight from one to another

*Taskar 04

Summary

- Max-Margin Markov Networks
 - integrates the kernel methods with the graphical models
- Reduce exponential constraints and variables to polynomial by
 - Using marginal dual variables
- Solve the QP by
 - SMO approach, specifically, by analytically optimizing two-variable subproblems

