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Part-of-Speech Tagging

+ Predict sequence of POS tags for sequence of
words:

sentence POS

x1 = (The, bear, chased, the, cat)|y; = (DET,N,V.DET, N)

x5 = (Students, bear,a, burden) |yo = (N,V,DET,N)

« Ambiguity

— He will race/V the car.

— When will the race/NOUN end?

— I bank/V at CFCU.

— Go to the bank/NOUN!
» Average of ~2 parts of speech for each word
20 — 400 different tags (i.e. word classes)

Predicting Sequences

« Bayesrule: h(x) = argmax[P(X =z|Y =y P =y)]
— Generative model yey
+ Design decisions:
— Representation
« Linear chain Hidden Markov Model
— Prediction (i.e. inference)
« Viterbi algorithm
— Learning
+ Maximum likelihood

Representation: Hidden Markov Model

— Bayesrule: i(a) = argmax [P(X =a|Y =y) P(Y =1)]
— Independence assumpti’Sns for compact representation
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[Y] Det—N — V — Det — N

[x] The bear chased the cat

— Prediction rule:
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Representation: Hidden Markov Model

« States:y € {S;,...,8,}

— Special starting state s,
+ Outputs symbols: x € {0y,...,0,}
+ Transition probability P(Y,=y0| Y, = y(D)

— Probability that one states succeeds another
 Output/Emission probability P(X, = x®| Y, =y®)

— Probability that word is generated in this state
=> Every output + state sequence has a probability
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Learning: Estimating HMM Probabilities

« Maximum Likelihood: Given (xj,y1), ... (xn.¥s), find
o = argmax [] [P(Y =y, X = ;|w)]

we i=1
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- Closed-formsolutions
— Estimating transition probabilities P(Y, = y,| Y, = Y;)
PYe=y, [Yo=y,) = #olemesStateAFolIowsStateB

#ofTimesStateBOccurs
— Estimating mission probabilities P(X; = X,| Y¢ = Y;)
#0ofTimesOutputAlsObse rvedInStateB

#ofTimesStateBOccurs

» Need for smoothing the estimates (e.g. Laplace)

P(Xe=X, [Ye=y,) =




Prediction/Inference: Viterbi Algorithm

Prediction: Find most likely state sequence

— Given x and fully specified HMM:

* P(Y. =Y.l Y, =) (transition probabilities)
* P(X.=X,| Y. =y, (emission probabilities)

— Find the most likely state (i.e tag) sequence (yy,...,y;) for a
given sequence of observed output symbols (i.e. words)
(Xq5-- X)) .
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— Viterbi algorithm uses dynamic programming
« Construct trellis graph for HMM
« Shortest path in this graph is most likely state sequence
— Viterbi algorithm has runtime linear in length of sequence

Viterbi Example

P(X=x|Y=y) | I bank |at CFCU |go to the
DET 0.01 |0.01 (001 |0.01 |0.01 |0.01 [0.94
PRP 094 |0.01 (001 001 |0.01 |0.01 [0.01
N 0.01 |04 001 |04 016 [0.01 |0.01
PREP 0.01 0.01 0.48 0.01 0.01 0.47 0.01
\% 0.01 |04 001 [001 |055 |0.01 |0.01

P(Y|Ype) | DET [PRP [N PREP |V
START [03 03 |01 |01 |02
DET 001 |001 (096 |001 |0.01

PRP 0.01 ]0.01 |0.01 |02 0.77
N 0.01 |02 0.3 0.3 0.19
PREP 0.3 0.2 0.3 019 |[0.01
\ 0.2 019 |03 0.3 0.01

Directed Graphical Models

» Representation of joint distribution
— Exploit conditional independence between random variables
* Example

— Joint distribution
P(P,T,1,X,5) = P(P)P(T)P(I | PT)P(X | )P(S | T)

from [Koller/etal/07 |

Undirected Graphical Models

» Markov Networks / Markov Random Fields
— More flexible representation of joint distribution
» Example
— Joint distribution Py (X1, ..., X,)==P(Xy,..., X,.)




