Structured Output Prediction

CS4780/5780 - Machine Learning Fall 2013

> Thorsten Joachims Cornell University

T. Joachims, T. Hofmann, Yisong Yue, Chun-Nam Yu, Predicting Structured Objects with Support Vector Machines, Communications of the ACM, Research Highlight, 52(11):97-104, 2009. http://mags.acm.org/communications/200911/

Discriminative vs. Generative

Bayes Decision Rule

$$h_{bayes}(x) = argmax_{y \in Y} [P(Y = y | X = x)]$$
$$= argmax_{y \in Y} [P(X = x | Y = y)P(Y = y)]$$

- Idea: Make assumptions about P(X = x | Y = y), P(Y = y)Method: Estimate parameters of the two distributions, then apply Bayes decision rule.

- Discriminative:
 - Idea: Define set of prediction rules (i.e. hypotheses) H, then search for $h\in H$ that best approximates

 $h_{bayes}(x) = argmax_{y \in Y} \left[P(Y = y | X = x) \right]$

- Method: find $h \in H$ that minimizes training error.

Question: Can we train HMM's discriminately?

Idea for Discriminative Training of HMM

Start:

$$-h_{bayes}(x) = argmax_{y \in Y} [P(Y = y|X = x)]$$

= $argmax_{y \in Y} [P(X = x|Y = y)P(Y = y)]$

Idea:

- Model
$$P(Y = y | X = x)$$
 with $\overrightarrow{w} \cdot \phi(x, y)$ so that
$$(argmax_{y \in Y} [P(Y = y | X = x)]) = (argmax_{y \in Y} [\overrightarrow{w} \cdot \phi(x, y)])$$

Intuition:

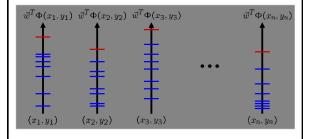
- Tune \overrightarrow{w} so that correct y has the highest value of $\vec{w} \cdot \phi(x,y)$
- $\phi(x,y)$ is a feature vector that describes the match between x and y

Training HMMs with Structural SVM

- Define $\phi(x,y)$ so that model is isomorphic to нмм
 - One feature for each possible start state
 - One feature for each possible transition
 - One feature for each possible output in each possible state
 - Feature values are counts

Structural Support Vector Machine

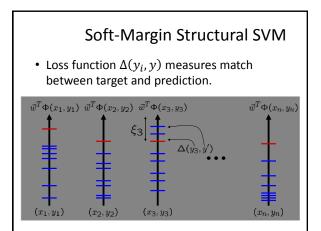
- Joint features $\phi(x, y)$ describe match between x and y
- Learn weights \vec{w} so that $\vec{w} \cdot \phi(x, y)$ is max for correct y

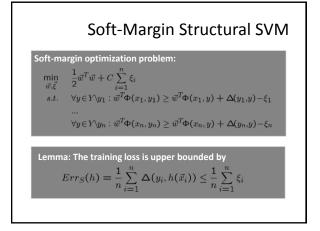


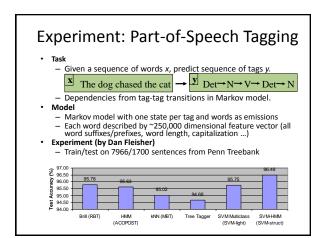
Structural SVM Training Problem

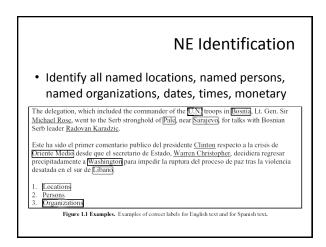
Hard-margin optimization problem: $\frac{1}{2}\vec{w}^T\vec{w}$ $\forall y \in Y \setminus y_1 : \vec{w}^T \Phi(x_1, y_1) \ge \vec{w}^T \Phi(x_1, y) + 1$ $\forall y \in Y \setminus y_n : \vec{w}^T \Phi(x_n, y_n) \ge \vec{w}^T \Phi(x_n, y) + 1$

- Training Set: $(x_1, y_1), ..., (x_n, y_n)$
- Prediction Rule: $h_{svm}(x) = argmax_{v \in Y} [\overrightarrow{w} \cdot \phi(x, y)]$
- Optimization:
 - Correct label y_i must have higher value of $\overrightarrow{w} \cdot \phi(x, y)$ than any incorrect label y
 - Find weight vector with smallest norm

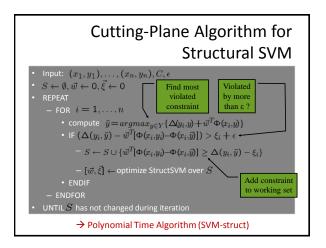








Experiment: Named Entity Recognition Data Spanish Newswire articles 300 training sentences 9 tags no-name, beginning and continuation of person name, organization, location, misc name Output words are described by features (e.g. starts with capital letter, contains number, etc.) Error on test set (% mislabeled tags): Generative HMM: 9.36% Support Vector Machine HMM: 5.08%



General Problem: Predict Complex Outputs

- Supervised Learning from Examples
 - Find function from input space X to output space Y

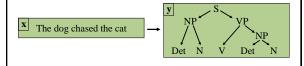
$$h: X \to Y$$

such that the prediction error is low.

- Typical
 - Output space is just a single number
 - Classification: -1,+1
 - · Regression: some real number
- General
 - Predict outputs that are complex objects

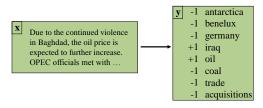
Examples of Complex Output Spaces

- Natural Language Parsing
 - Given a sequence of words x, predict the parse tree y.
 - Dependencies from structural constraints, since y has to be a tree.



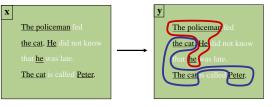
Examples of Complex Output Spaces

- · Multi-Label Classification
 - Given a (bag-of-words) document x, predict a set of labels y.
 - Dependencies between labels from correlations between labels ("iraq" and "oil" in newswire corpus)



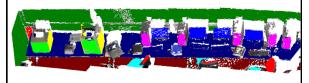
Examples of Complex Output Spaces

- Noun-Phrase Co-reference
 - Given a set of noun phrases x, predict a clustering y.
 - Structural dependencies, since prediction has to be an equivalence relation.
 - Correlation dependencies from interactions.



Examples of Complex Output Spaces

- Scene Recognition
 - Given a 3D point cloud with RGB from Kinect camera
 - Segment into volumes
 - Geometric dependencies between segments (e.g. monitor usually close to keyboard)



Wrap-Up

Classification · Other Methods Discriminative > - Logical rule learning Decision Trees - Perceptron -→ – Online Learning Linear SVMs Logistic Regression - Kernel SVMs -→ – Neural Networks Generative – RBF Networks → Boosting - Multinomial Naïve Bayes — Bagging Multivariate Naïve Bayes Parametric (Graphical) Less Naïve Bayes Models Linear Discriminant - Non-Parametric Models Nearest Neighbor → Methods + Theory + - *-Regression Practice - *-Multiclass

Structured Prediction

· Discriminative

Generative

- Structural SVMs

- Hidden Markov Model

- · Other Methods
 - Maximum Margin Markov Networks
 - Conditional Random Fields
 - Markov Random Fields
 - Bayesian Networks
 - Statistical Relational Learning
- → CS4782 Prob Graphical Models

Unsupervised Learning

- Clustering
 - Hierarchical Agglomerative Clustering
 - K-Means
 - Mixture of Gaussians and EM-Algorithm
- · Other Methods
 - Spectral Clustering
 - Latent Dirichlet Allocation
 - Latent Semantic Analysis
 - Multi-Dimensional Scaling
- · Other Tasks
 - Outlier Detection
 - Novelty Detection
 - Dimensionality Reduction
 - Non-Linear Manifold Detection
- → CS4850 Math Found for the Information Age

Other Learning Problems and **Applications**

- Recommender Systems, Search Ranking, etc.
- · Reinforcement Learning and Markov Decision **Processes**
 - CS4758 Robot Learning
- Computer Vision
 - CS4670 Intro Computer Vision
- Natural Language Processing
 - CS4740 Intro Natural Language Processing

Other Machine Learning Courses at Cornell

- INFO 3300 New course by David Mimno
- CS 4700 Introduction to Artificial Intelligence
- CS 4780/5780 Machine Learning
- CS 4758 Robot Learning
- CS 4782 Probabilistic Graphical Models
- OR 4740 Statistical Data Mining
- CS 6756 Advanced Topics in Robot Learning: 3D Perception
- CS 6780 Advanced Machine Learning
- CS 6784 Advanced Topics in Machine Learning
- ORIE 6740 Statistical Learning Theory for Data Mining
- ORIE 6750 Optimal learning
- ORIE 6780 Bayesian Statistics and Data Analysis
- ORIE 6127 Computational Issues in Large Scale Data-Driven Models
- BTRY 6502 Computationally Intensive Statistical Inference
- MATH 7740 Statistical Learning Theory