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Probably Approximately Correct 
Learning 

Example: Smart Investing 

• Task: Pick stock analyst based on past performance. 
• Experiment:  

– Review analyst prediction “next day up/down” for past 10 
days. Pick analyst that makes the fewest errors. 

– Situation 1:  
• 1 stock analyst {A1}, A1 makes 5 errors 

– Situation 2:  
• 3 stock analysts {B1,B2,B3}, B2 best with 1 error 

– Situation 3:  
• 1003 stock analysts {C1,…,C1000},  

C543 best with 0 errors 

• Question: Which analysts are you most confident in, 
A1, B2, or C543? 

Useful Formula 

Hoeffding/Chernoff Bound: 

For any distribution P(X) where X can take the values 
0 and 1, the probability that an average of an i.i.d. 
sample deviates from its mean p by more than  is 
bounded as 

Generalization Error Bound:  
Finite H, Non-Zero Error 

• Setting 

– Sample of n labeled instances S 

– Learning Algorithm L with a finite hypothesis space H 

– L returns hypothesis ĥ=L(S) with lowest training error  

• What is the probability that the prediction error of ĥ exceeds the 
fraction of training errors by more than ? 

 

(x1,y1), …, (xn,yn) Learner (xn+1,yn+1), … 

Training Sample Strain Test Sample Stest ĥ Strain 

Overfitting vs. Underfitting 

[Mitchell, 1997] 

With probability at least (1-): 
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Generalization Error Bound:  
Infinite H, Non-Zero Error 

• Setting 

– Sample of n labeled instances S 

– Learning Algorithm L using a hypothesis space H with VCDim(H)=d 

– L returns hypothesis ĥ=L(S) with lowest training error 
  

• Definition: The VC-Dimension of H is equal to the maximum number d of 
examples that can be split into two sets in all 2d ways using functions 
from H (shattering). 

• Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S 
of size n, with probability (1-) it holds that 

 


