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Probably Approximately Correct
Learning




Example: Smart Investing

e Task: Pick stock analyst based on past performance.

* Experiment:

— Review analyst prediction “next day up/down” for past 10
days. Pick analyst that makes the fewest errors.
— Situation 1:
e 1 stock analyst {A1}, A1 makes 5 errors
— Situation 2:
* 3 stock analysts {B1,B2,B3}, B2 best with 1 error
— Situation 3:

e 1003 stock analysts {C1,...,C1000},
C543 best with O errors

* Question: Which analysts are you most confident in,
Al, B2, or C543?



Useful Formula

Hoeffding/Chernoff Bound:

For any distribution P(X) where X can take the values
0 and 1, the probability that an average of an i.i.d.
sample deviates from its mean p by more than € is
bounded as




Generalization Error Bound:
Finite H, Non-Zero Error

* Setting
— Sample of n labeled instances S
— Learning Algorithm L with a finite hypothesis space H
— L returns hypothesis h=L(S) with lowest training error

« What is the probability that the prediction error of h exceeds the
fraction of training errors by more than &?
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Overfitting vs. Underfitting

Accuracy
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With probability at least (1-9):




Generalization Error Bound:
Infinite H, Non-Zero Error

Setting
— Sample of n labeled instances S
— Learning Algorithm L using a hypothesis space H with VCDim(H)=d
— L returns hypothesis h=L(S) with lowest training error

Definition: The VC-Dimension of H is equal to the maximum number d of
examples that can be split into two sets in all 2¢ ways using functions
from H (shattering).

Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S
of size n, with probability (1-0) it holds that




