Modeling Sequence Data: HMMs and Viterbi

CS4780/5780 – Machine Learning Fall 2013

Manning/Schuetze, Sections 9.1-9.3 (except 9.3.1)

Thorsten Joachims Cornell University

Reading

Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)
(http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html)

Hidden Markov Model

- States: $y \in \{s_1,...,s_k\}$
- Outputs symbols: $x \in \{o_1,...,o_m\}$
- Starting probability P(Y₁ = y₁)
 Specifies where the sequence starts
- Transition probability P(Y_i = y_i | Y_{i-1} = y_{i-1})
 Probability that one states succeeds another
- Output/Emission probability P(X_i = x_i | Y_i = y_i)
 Probability that word is generated in this state
- => Every output+state sequence has a probability

$$\begin{split} P(x,y) &= P(x_1, \dots, x_l, y_1, \dots, y_l) \\ &= P(y_1) P(x_1|y_1) \prod_{l=2}^l P(x_l|y_l) P(y_l|y_{l-1}) \end{split}$$

Estimating the Probabilities

- · Given: Fully observed data
 - Pairs of emission sequence with their state sequence
- Estimating transition probabilities P(Y_i|Y_{i-1})

 $P(Y_i = a | Y_{i-1} = b) = \frac{\text{\# of times state a follows state b}}{\text{\# of times state b occurs}}$

Estimating emission probabilities P(X_i|Y_i)

 $P(X_i = a | Y_i = b) =$ # of times output a is observed in state |

- · Smoothing the estimates
 - Laplace smoothing -> uniform prior
- See naïve Bayes for text classification
- Partially observed data
 - Expectation Maximization (EM)

Viterbi Example

$P(X_i Y_i)$		1		bank	а	t	C	FCU	8	go	to		the
DET 0.0		0.01		0.01	0.01		0.01		0.01		0.	01	0.94
PRP	RP 0.94		0.01	0.01		0.01		0.01		0.	01	0.01	
N		0.01		0.4	0.01		0.4		0.16		0.	01	0.01
PREP		0.01		0.01	0.48		0	0.01		0.01		47	0.01
V		0.01		0.4	0.01		0	0.01		0.55		01	0.01
P(Y ₁)				P(Y _i Y _{i-1})		DET		PRP		N	Р	REP	V
DET	0.3	3		DET		0.01	0.01			0.96		.01	0.01
PRP	0.3			PRP		0.01		0.01		0.01		.2	0.77
N	0.1			N		0.01		0.2		0.3	0.3		0.19
PREP	0.1			PREP		0.3	Ī	0.2	ĺ	0.3	0	.19	0.01
V	0.2	2		V		0.2		0.19		0.3		.3	0.01

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence
 - Given fully specified HMM:
 - P(Y₁ = y₁),
 - $P(Y_i = y_i | Y_{i-1} = y_{i-1}),$
 - P(X_i = x_i | Y_i = y_i)
 - $\operatorname{Find} y^* = \underset{\substack{y \in [y_1, \dots, y_l] \\ y \in [y_1, \dots, y_l]}}{\operatorname{argmax}} P(x_1, \dots, x_l, y_1, \dots, y_l)$ $= \underset{\substack{y \in [y_1, \dots, y_l] \\ y \in [y_1, \dots, y_l]}}{\operatorname{argmax}} \left\{ P(y_1) P(x_1 | y_1) \prod_{i=2}^l P(x_i | y_i) P(y_i | y_{i-1}) \right\}$
 - "Viterbi" algorithm has runtime linear in length of sequence
 - Example: find the most likely tag sequence for a given sequence of words

HMM's for POS Tagging

- Design HMM structure (vanilla)
 - States: one state per POS tag
 - Transitions: fully connected
 - Emissions: all words observed in training corpus
- Estimate probabilities
 - Use corpus, e.g. Treebank
 - Smoothing
 - Unseen words?
- Tagging new sentences
 - Use Viterbi to find most likely tag sequence

Experimental Results

Tagger	Accuracy	Training time	Prediction time
нмм	96.80%	20 sec	18.000 words/s
TBL Rules	96.47%	9 days	750 words/s

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - Lexicalized
 - from [Pla and Molina, 2001]

Discriminative vs. Generative

• Bayes Rule
$$h_{\text{bayes}}(x) = \mathop{\rm argmax}_{y \in Y} [P(Y=y|X=x)]$$

$$= \mathop{\rm argmax}_{y \in Y} [P(X=x|Y=y)P(Y=y)]$$

- Generative:
 - Make assumptions about P(X = x | Y = y) and P(Y = y)- Estimate parameters of the two distributions
- Discriminative:

 - Define set of prediction rules (i.e. hypotheses) H
 Find h in H that best approximates the classifications made by $h_{\text{bayes}}(x) = \underset{y \in Y}{\operatorname{argmax}} [P(Y = y | X = x)]$
- Question: Can we train HMM's discriminately?
 - Later in semester: discriminative training of HMM and general structured prediction.