Modeling Sequence Data: HMMs and Viterbi

CS4780/5780 – Machine Learning Fall 2013

Thorsten Joachims Cornell University

Reading:

Manning/Schuetze, Sections 9.1-9.3 (except 9.3.1)

Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)

(http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html dev/main.html

Hidden Markov Model

- States: $y \in \{s_1, ..., s_k\}$
- Outputs symbols: $x \in \{o_1, ..., o_m\}$
- Starting probability $P(Y_1 = y_1)$
 - Specifies where the sequence starts
- Transition probability P(Y_i = y_i | Y_{i-1} = y_{i-1})
 - Probability that one states succeeds another
- Output/Emission probability P(X_i = x_i | Y_i = y_i)
 - Probability that word is generated in this state
- => Every output+state sequence has a probability

$$P(x,y) = P(x_1, ..., x_l, y_1, ..., y_l)$$

$$= P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1})$$

Estimating the Probabilities

- Given: Fully observed data
 - Pairs of emission sequence with their state sequence
- Estimating transition probabilities P(Y_i | Y_{i-1})

$$P(Y_i = a | Y_{i-1} = b) = \frac{\text{\# of times state a follows state b}}{\text{\# of times state b occurs}}$$

Estimating emission probabilities P(X_i | Y_i)

$$P(X_i = a | Y_i = b) = \frac{\text{\# of times output a is observed in state b}}{\text{\# of times state b occurs}}$$

- Smoothing the estimates
 - Laplace smoothing -> uniform prior
 - See naïve Bayes for text classification
- Partially observed data
 - Expectation Maximization (EM)

Viterbi Example

$P(X_i Y_i)$		Ī	bank	at	CFCU	go	to	the
DET		0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP		0.94	0.01	0.01	0.01	0.01	0.01	0.01
N		0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP		0.01	0.01	0.48	0.01	0.01	0.47	0.01
V		0.01	0.4	0.01	0.01	0.55	0.01	0.01
P(Y ₁)			P(Y _i Y _{i-1})	DET	PRP	N	PREP	V
P(Y ₁) DET	0.3		P(Y _i Y _{i-1}) DET	DET 0.01	PRP 0.01	N 0.96	PREP 0.01	V 0.01
- -	0.3		· · · -					
DET			DET	0.01	0.01	0.96	0.01	0.01
DET	0.3		DET	0.01	0.01	0.96	0.01	0.01

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence
 - Given fully specified HMM:
 - $P(Y_1 = y_1)$,
 - $P(Y_i = y_i \mid Y_{i-1} = y_{i-1})$
 - $P(X_i = X_i \mid Y_i = Y_i)$
 - Find $y^* = \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} P(x_1, \dots, x_l, y_1, \dots, y_l)$ $= \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} \left\{ P(y_1) P(x_1 | y_1) \prod_{i=2}^{l} P(x_i | y_i) P(y_i | y_{i-1}) \right\}$
 - "Viterbi" algorithm has runtime linear in length of sequence
 - Example: find the most likely tag sequence for a given sequence of words

HMM's for POS Tagging

- Design HMM structure (vanilla)
 - States: one state per POS tag
 - Transitions: fully connected
 - Emissions: all words observed in training corpus
- Estimate probabilities
 - Use corpus, e.g. Treebank
 - Smoothing
 - Unseen words?
- Tagging new sentences
 - Use Viterbi to find most likely tag sequence

Experimental Results

Tagger	Accuracy	Training time	Prediction time
НММ	96.80%	20 sec	18.000 words/s
TBL Rules	96.47%	9 days	750 words/s

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - Lexicalized
 - from [Pla and Molina, 2001]

Discriminative vs. Generative

• Bayes Rule
$$h_{\text{bayes}}(x) = \underset{y \in Y}{\operatorname{argmax}} [P(Y = y | X = x)]$$

= $\underset{y \in Y}{\operatorname{argmax}} [P(X = x | Y = y)P(Y = y)]$

- Generative:
 - Make assumptions about P(X = x | Y = y) and P(Y = y)
 - Estimate parameters of the two distributions
- Discriminative:
 - Define set of prediction rules (i.e. hypotheses) H
 - Find h in H that best approximates the classifications made by

$$h_{\text{bayes}}(x) = \underset{y \in Y}{\operatorname{argmax}} [P(Y = y | X = x)]$$

- Question: Can we train HMM's discriminately?
 - Later in semester: discriminative training of HMM and general structured prediction.