Learning Ranking Functions with SVMs

CS4780/5780 - Machine Learning Fall 2013

> Thorsten Joachims Cornell University

T. Joachims, Optimizing Search Engines Using Clickthrough Data, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2002

http://www.cs.cornell.edu/People/tj/publications/joachims 02c.pdf

Final Course Projects

- - Start thinking of project ideas, anything relevant to the course goes
- Start recruiting team members
- Oct 22
 - Submit project proposal as group of 3-4 students Oct 24
- Submit peer feedback for proposals
- Nov 21
- Submit status report Dec 5
- Project poster presentations (evening) Dec 11
- · Submit final project report
- Dec 18
 - Submit peer reviews of reports

Adaptive Search Engines

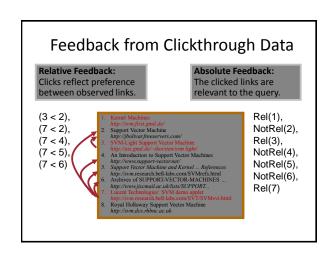
- Traditional Search Engines
 - One-size-fits-all
 - Hand-tuned retrieval function
- Hypothesis
 - Different users need different retrieval functions
 - Different collections need different retrieval functions
- Machine Learning
 - Learn improved retrieval functions
 - User Feedback as training data

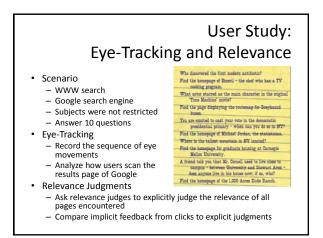
Overview

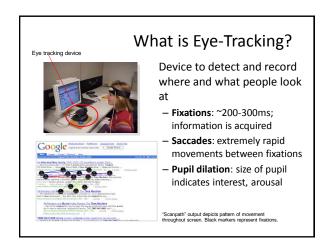
- · How can we get training data for learning improved retrieval functions?
 - Explicit vs. implicit feedback
 - Absolute vs. relative feedback
 - User study with eye-tracking and relevance judgments
- · What learning algorithms can use this training data?
 - Ranking Support Vector Machine
 - User study with meta-search engine

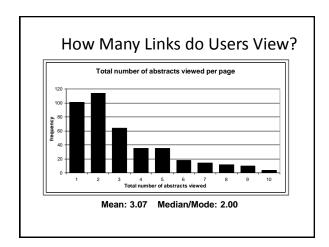
Sources of Feedback

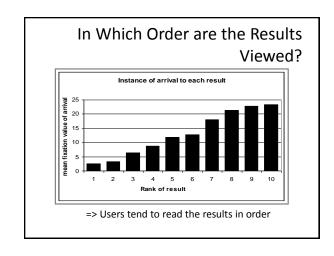
- Explicit Feedback
- Overhead for user
- Only few users give feedback
- => not representative
- Implicit Feedback
 - Queries, clicks, time, mousing, scrolling, etc.
 - No Overhead
 - More difficult to interpret

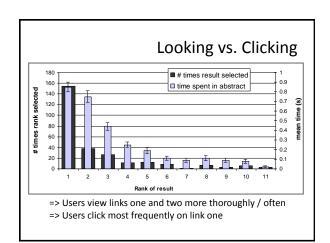












Do Users Look Below the Clicked Link?						
Viewed Clicked Rank						
Rank	1					6
1	90.6%	76.2%	73.9%	60.0%	54.5%	45.5%
2	56.8%	90.5%	82.6%	53.3%	63.6%	54.5%
3	30.2%	47.6%	95.7%	80.0%	81.8%	45.5%
4	17.3%	19.0%	47.8%	93.3%	63.6%	45.5%
5	8.6%	14.3%	21.7%	53.3%	100.0%	72.7%
6	4.3%	4.8%	8.7%	33.3%	18.2%	81.8%
=> Users typically do not look at links below before they click (except maybe the next link)						

How do Clicks Relate to Relevance?

- Experiment (Phase II)
 - Additional 16 subjects
 - Manually judged relevance
 - AbstractPage
- · Manipulated Rankings
 - Normal: Google's ordering
 - Swapped: Top Two Swapped
- Reversed: Ranking reversed
- · Experiment Setup
 - Same as Phase I
 - Manipulations not detectable

Presentation Bias

Hypothesis: Order of presentation influences where users look, but not where they click!

"normal"	$ _{1}^{-}, _{2}^{-}$	$ 1_1^+, 1_2^- $	$ 1_1^-, 1_2^+ $	$ 1_{1}^{+}, 1_{2}^{+} $	total
$rel(l_1) > rel(l_2)$	15	19	1	1	36
$rel(l_1) < rel(l_2)$	11	5	2	2	20
$rel(l_1) = rel(l_2)$	19	9	1	0	29
total	45	33	4	3	85
"swapped"	$ _{1}^{-}, _{2}^{-}$	$ 1_1^+, 1_2^- $	$ 1_1^-, 1_2^+ $	$ 1_{1}^{+}, 2_{1}^{+} $	total
$rel(l_1) > rel(l_2)$	11	15	1	1	28
$rel(l_1) < rel(l_2)$	17	10	7	2	36
$rel(l_1) = rel(l_2)$	36	11	3	0	50
total	64	36	11	3	114

Quality-of-Context Bias

Hypothesis: Clicking depends only on the link itself, but not on other links.

	Rank of clicked link as sorted by relevance judges		
Normal + Swapped	2.67		
Reversed	3.27		

=> Users click on less relevant links, if they are embedded between irrelevant links.

Are Clicks Absolute Relevance Judgments?

- Clicks depend not only on relevance of a link, but also
 - On the position in which the link was presented
 - The quality of the other links
- => Interpreting Clicks as absolute feedback extremely difficult!

Strategies for Generating Relative Feedback

Strategies

- "Click > Skip Above"
 (3>2), (5>2), (5>4)
- "Last Click > Skip Above"
 (5>2), (5>4)
- "Click > Earlier Click"
 (3>1), (5>1), (5>3)
- "Click > Skip Previous"– (3>2), (5>4)
- "Click > Skip Next"
 (1>2), (3>4), (5>6)

Comparison with Explicit Feedback

Explicit Feedback	Abstracts		
Data	Phase I		
Strategy	"normal"		
Inter-Judge Agreement	89.5		
Click > Skip Above	80.8 ± 3.6		
Last Click > Skip Above	83.1 ± 3.8		
Click > Earlier Click	67.2 ± 12.3		
Click > Skip Previous	82.3 ± 7.3		
Click > No Click Next	84.1 ± 4.9		

=> All but "Click > Earlier Click" appear accurate

Is Relative Feedback Affected by Bias?

Explicit Feedback	Abstracts				
Data	Phase II				
Strategy	"normal"	"swapped"	"reversed"		
Click > Skip Above	88.0 ± 9.5	79.6 ± 8.9	83.0 ± 6.7		
Last Click > Skip Above	89.7 ± 9.8	77.9 ± 9.9	84.6 ± 6.9		
Click > Earlier Click	75.0 ± 25.8	36.8 ± 22.9	28.6 ± 27.5		
Click > Skip Previous	88.9 ± 24.1	80.0 ± 18.0	79.5 ± 15.4		
Click > No Click Next	75.6 ± 14.5	66.7 ± 13.1	70.0 ± 15.7		

⇒Significantly better than random in all conditions, except "Click > Earlier Click"

How Well Do Users Judge Relevance Based on Abstract?

Explicit Feedback	Abstracts	Pages	
Data	Phase II		
Strategy	all	all	
Inter-Judge Agreement	82.5	86.4	
Click > Skip Above	83.1 ± 4.4	78.2 ± 5.6	
Last Click > Skip Above	83.8 ± 4.6	80.9 ± 5.1	
Click > Earlier Click	46.9 ±13.9	64.3 ±15.4	
Click > Skip Previous	81.6 ± 9.5	80.7 ± 9.6	
Click > No Click Next	70.4 ± 8.0	67.4 ± 8.2	

⇒clicks based on abstracts reflect relevance of the page well

Learning Retrieval Functions from Pairwise Preferences

- Idea: Learn a ranking function, so that number of violated pair-wise training preferences is minimized.
- · Form of Ranking Function: sort by

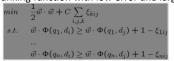
 $U(q,d_i) = w_1 * (\#of query words in title of d_i)$ $+ w_2 * (\#of query words in anchor)$ + ... $+ w_n * (page-rank of d_i)$ $= w * <math>\Phi(q,d_i)$

• Training: Select w so that

 $\label{eq:continuous} \begin{array}{c} \text{if user prefers } d_i \text{ to } d_i \text{ for query } q, \\ \text{then} \\ & U(q,d_i) > U(q,d_i) \end{array}$

Ranking Support Vector Machine

• Find ranking function with low error and large margin



- Properties
 - Convex quadratic program
 - Non-linear functions using Kernels
 - Implemented as part of SVM-light
 - http://svmlight.joachims.org

Experiment

- Meta-Search Engine "Striver"
 - Implemented meta-search engine on top of Google, MSNSearch, Altavista, Hotbot, Excite
 - $-\,$ Retrieve top 100 results from each search engine
 - Re-rank results with learned ranking functions
- Experiment Setup
 - User study on group of ~20 German machine learning researchers and students
 Sharmonnous group of users
 - => homogeneous group of users
 - Asked users to use the system like any other search engine
 - Train ranking SVM on 3 weeks of clickthrough data
 - Test on 2 following weeks

Which Ranking Function is Better? Balanced Interleaving (u=tj, q="svm") $f_1(u,q) \Rightarrow r_1 \qquad \qquad \qquad f_2(u,q) \Rightarrow r_2$ $\frac{1}{2} \quad \frac{1}{2} \quad \frac{$

Results

Ranking A	Ranking B	A better	B better	Tie	Total
Learned	Google	29	13	27	69
Learned	MSNSearch	18	4	7	29
Learned	Toprank	21	9	11	41

Result:

- Learned > Google
- Learned > MSNSearch
- Learned > Toprank

Toprank: rank by increasing minimum rank over all 5 search engines

Learned Weights Weight Feature cosine between query and abstract 0.60 ranked in top 10 from Google cosine between query and the words in the URL doc ranked at rank 1 by exactly one of the 5 engines 0.24 0.24 0.22 host has the name "citeseer" 0.17 country code of URL is ".de" ranked top 1 by HotBot 0.16 -0.15 country code of URL is ".fi" length of URL in characters not ranked in top 10 by any of the 5 search engines -0.17 -0.32 -0.38 not ranked top 1 by any of the 5 search engines

Conclusions

- Clickthrough data can provide accurate feedback
 - Clickthrough provides relative instead of absolute judgments
- Ranking SVM can learn effectively from relative preferences
 - Improved retrieval through personalization in meta search
- Current and future work
- Exploiting query chains
- Other implicit feedback signals
- Adapting intranet search for ArXiv.org
- Recommendation
- Robustness to "click-spam"
- Learning and micro-economic theory for interactive learning with preference
- Further user studies to get better models of user behavior

