Support Vector Machines: Kernels

CS4780/5780 – Machine Learning Fall 2012

> Thorsten Joachims Cornell University

Reading: Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Cristianini/Shawe-Taylor 3.1, 3.2, 3.3.2, 3.4

Outline

- Transform a linear learner into a non-linear learner
- Kernels can make high-dimensional spaces tractable
- Kernels can make non-vectorial data tractable

Non-Linear Problems

Problem:

- · some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

Example

- Input Space: $\vec{x} = (x_1, x_2)$ (2 attributes)
- Feature Space: $\Phi(\vec{x}) = (x_1^2, x_2^2, x_1, x_2, x_1x_2, 1)$ (6 attributes)

Dual SVM Optimization Problem

• Primal Optimization Problem

• Dual Optimization Problem

• Theorem: If w^* is the solution of the Primal and α^* is the solution of the Dual, then

$$* = \sum_{i=1}^{n} \alpha_i^* y_i \vec{x}$$

Kernels

- Problem:
 - Very many Parameters! Polynomials of degree p over N attributes in input space lead to O(Np) attributes in feature space!
- · Solution:
 - The dual OP depends only on inner products
 - \rightarrow Kernel Functions $K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$
- Example:
 - For $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.
- → no need to represent feature space explicitly.

SVM with Kernel

• Training: $D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$ subject to: $\sum_i^n y_i \alpha_i = 0$

 $\sum \alpha_i y_i K(\vec{x}_i, \vec{x}) + b$

$$\frac{i=1}{\forall_{i=1}^{n}} : 0 \leq \alpha_{i} \leq C$$
 Classification:
$$h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_{i} y_{i} \Phi(\vec{x}_{i})\right] \cdot \Phi(\vec{x}) + \right)$$

- New hypotheses spaces through new Kernels:
 - Linear: $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$
 - Polynomial: $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$
 - Radial Basis Function: $K(\vec{a}, \vec{b}) = \exp(-\gamma [\vec{a} \vec{b}]^2)$
 - Sigmoid: $K(\vec{a}, \vec{b}) = \tanh(\gamma [\vec{a} \cdot \vec{b}] + c)$

Polynomial Radial Basis Function $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ $K(\vec{a}, \vec{b}) = \exp\left(-\gamma [\vec{a} - \vec{b}]^2\right)$

What is a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, ..., x_n \in X$ it produces a Gram matrix

$$G_{ii} = K(x_i, x_i)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

 $\forall \vec{\alpha} : \vec{\alpha}^T G \vec{\alpha} \geq 0$

How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $\alpha \ge 0$, $0 \le \lambda \le 1$, f a real-valued function on X, $\phi: X \to \Re^m$ with a kernel K_3 over $\Re^m \times \Re^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

$$\begin{split} K(x,z) &= \lambda \ K_1(x,z) + (1-\lambda) \ K_2(x,z) \\ K(x,z) &= \alpha \ K_1(x,z) \\ K(x,z) &= K_1(x,z) \ K_2(x,z) \\ K(x,z) &= f(x) \ f(z) \\ K(x,z) &= K_3(\varphi(x), \varphi(z)) \\ K(x,z) &= x^T \ K \ z \end{split}$$

Kernels for Discrete and Structured Data

Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequences. Example [Lodhi et al., 2000]: For $0 \le \lambda \le 1$ consider the following features space

	c-a	c-t	a-t	b-a	b-t	c-r	a-r	b-r
φ(cat)	λ²	λ^3	λ²	0	0	0	0	0
φ(car)	λ²	0	0	0	0	λ^3	λ²	0
φ(bat)	0	0	λ²	λ²	λ^3	0	0	0
φ(bar)	0	0	0	λ²	0	0	λ²	λ^3

=> K(car,cat) = λ^4 , efficient computation via dynamic programming

Kernels for Non-Vectorial Data

- Applications with Non-Vectorial Input Data
 - → classify non-vectorial objects
 - Protein classification (x is string of amino acids)
 - Drug activity prediction (x is molecule structure)
 - Information extraction (x is sentence of words)
 - Ftc
- Applications with Non-Vectorial Output Data
 → predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)
- → Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

- Expressiveness
 - SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
 - SVMs with Kernel can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)
- Computational
 - Objective function has no local optima (only one global)
 - Independent of dimensionality of feature space
- · Design decisions
 - Kernel type and parameters
 - Value of C

SVMs for other Problems

- Multi-class Classification
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression
 - [Schoelkopf/Smola Book, Section 1.6]
- Outlier Detection
 - D.M.J. Tax and R.P.W. Duin, "Support vector domain description", Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999b. 26
- Structured Output Prediction
 - B. Taskar, C. Guestrin, D. Koller Advances in Neural Information Processing Systems, 2003.
 - I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and Structured Output Spaces, Proceedings of the International Conference on Machine Learning (ICML), 2004.