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Non-Linear Problems

Problem:
¢ some tasks have non-linear structure
* no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules?

Outline

* Transform a linear learner into a non-linear
learner

* Kernels can make high-dimensional spaces
tractable

* Kernels can make non-vectorial data tractable

Extending the Hypothesis Space

Idea: add more features
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Feature Space
=> Learn linear rule in feature space.
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=> The separating hyperplane in feature space is degree
two polynomial in input space.

Example
* InputSpace: X = (x1,%;) (2 attributes)
* Feature Space: ®(¥) = (x2,x3,x,%,,%1%,,1) (6 attributes)

Dual SVM Optimization Problem

Primal Optimization Problem

.

* Dual Optimization Problem

¢ Theorem: If w* is the solution of the Pri

al and a* is the
solution of the Dual, then




Kernels

* Problem:

— Very many Parameters! Polynomials of degree p over N attributes in
input space lead to O(Np) attributes in feature space!
* Solution:

— The dual OP depends only on inner products
- Kernel Functions K (@, b) = ®(&) - ®(b)
¢ Example:
— For tl)()?) 5 (x%,x%,ﬁxl,ﬁxz,ﬁxlxz, 1) calculating K(d, E) =
[é b+ 1] computes inner product in feature space.

=> no need to represent feature space explicitly.

SVM with Kernel

Training:

Classification:

New hypotheses spaces through new Kernels:
— Linear: K(&,b) = d-b

. - d
— Polynomial: K(d,b) = [d- b + 1]
— Radial Basis Function: K(E, B) = exp (—y[ﬁ - B]Z)
— Sigmoid: K(d, E) = tanh(y[d - B] +c)

Examples of Kernels

Polynomial Radial Basis Function

K(@B)=a b+1] K(@,5) = exp ([~ 5]")

What is a Valid Kernel?

Definition: Let X be a nonempty set. A function
is a valid kernel in X if for all n and all x,,..., x,,
€ X it produces a Gram matrix

G;= K(x, x]-)
that is symmetric
G=G"
and positive semi-definite

va:aTGa =0

How to Construct Valid Kernels

Theorem: Let K, and K, be valid Kernels over X x X, o 20,
0 <A <1, fareal-valued function on X, ¢:X— ™ with a
kernel K; over ™ x ™, and K a symmetric positive

semi-definite matrix. Then the following functions are
valid Kernels

K(x,z) = L Ky(x,z) + (1-1) Ky(x,2)
K(x,z) = o Ky(x,2)
K(x,z) = K;(x,2) K,(x,2)
K(x,z) = f(x) f(z)
K(x,z) = K3(¢(x),(z))
K(x,z) =x" Kz

Kernels for Discrete
and Structured Data

Kernels for Sequences: Two sequences are similar, if the
have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For 0 < A < 1 consider the
following features space

c-a ct a-t b-a b-t cr a-r b-r
d(cat) A2 A3 A2 0 0 0 0 0
d(car) A2 0 0 0 0 A3 N2 0
(bat) 0 0 22 22 23 0 0 0
¢(bar) 0 0 0 A2 0 0 A2 A3

=> K(car,cat) = A4, efficient computation via dynamic programming




Kernels for Non-Vectorial Data

¢ Applications with Non-Vectorial Input Data
- classify non-vectorial objects
— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.
* Applications with Non-Vectorial Output Data
-> predict non-vectorial objects
— Natural Language Parsing (y is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)
=>» Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

Expressiveness

— SVMs with Kernel can represent any boolean function (for
appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently “smooth”
function to arbitrary accuracy (for appropriate choice of
kernel)

Computational

— Objective function has no local optima (only one global)
— Independent of dimensionality of feature space

Design decisions

— Kernel type and parameters

— Value of C

SVMs for other Problems

* Multi-class Classification

— [Schoelkopf/Smola Book, Section 7.6]
* Regression

— [Schoelkopf/Smola Book, Section 1.6]
* Outlier Detection

— D.M.J. Tax and R.PW. Duin, "Support vector domain description",
Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999b. 26

¢ Structured Output Prediction

— B. Taskar, C. Guestrin, D. Koller - Advances in Neural Information
Processing Systems, 2003.

— |. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector

Machine Learning for Interdependent and Structured Output Spaces,
Proceedings of the International Conference on Machine Learning
(ICML), 2004.




