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Ensemble Learning

A class of “meta” learning algorithms

Combining multiple classifiers to increase
performance

Very effective in practice
Good theoretical guarantees

Easy to implement!

Teaser

Criteria Description

Diversity of opinion Each person should have private information
even if it's just an eccentric interpretation of
the known facts.

Independence People's opinions aren't determined by the
opinions of those around them.

Decentralization People are able to specialize and draw on local
knowledge.

Aggregation Some mechanism exists for turning private
Jjudgments into a collective decision.

Ensemble

: given T binary classification
hypotheses (h;,..., hy), find a combined
classifier:

T
hs(x) = sign Z arhy(x)
t=1

with better performance.
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Why do Ensembles work?
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Mumber of classifiers in error

Why do Ensembles work?

sl Po— BAGGING
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Bagging

Bagging (Boostrap aggregating). (Besiriani;| 396}

BAGGING(S =((21,41)s -+ -+ (TmsYm)))
1 fort« 1to T do
2 S; — BoOOTSTRAP(S) > i.i.d. sampling with replacement from S.
3 hy «— TRAINCLASSIFIER(S;)
4 return hg = r — MAJORITYVOTE((h) (2),. .. hr(z)))

Generalization Error

1 n
est = — ) Zero-One-Loss(y;, h(z;
Etest nz; ero-One-Loss(y;, h(x;))

Bagging

T
hs(z) = sign Z ahy(x)
t=1

: Special case where we fix:
ay = 1

*

]L is some learning algorithm

St is a training set drawn from distribution P(<z,y >)

Bias-Variance Tradeoff

/\ S P(<z,y>)
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Erest (1) = jiz(% e ))2

OR, as an expectation:

Es [(yi — hs(xi))?]

For the entire test set:

ExyEs [(yi — hS(CEi))Q]




10/1/2013




10/1/2013

y € {+1,-1}




Consider: h,(.Tr)

Consider: h,(.’],’) = WX + b

Consider: h (l’) = WX + b
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Consider: h (.‘T,)

y € {+1,-1}

Consider: h(,‘T,) = WX + b

y € {+1,-1}



Label Noise
yi = f(x;)

yi = f(2:) + noise
yi = flw:) + N(0,0?)

yi = noisy(f(x;))

( noisy() switches label with probability p )

Consider: h(;l') - f(lf)

y € {+1,-1}
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y == HOIS\ (flip sign with probability 0.25)

y € {+1,-1}

y = noisy(

Consider:

y € {+1,-1}

y = noisy(f(x))
Example
( kNN )



Democrat vs Republican party association

10/1/2013

10



10/1/2013

0000000040
T ] L LY L
Ty LT IT ii% HHW .L,}p&

900000880 % 380000
hﬂ T

100080000000

80000002504

56605609

; \,%.H.HH HJwa,s_
8eC 00000

I,
,H._\HWH.&,H@,
1 s
CoeceNsecs
o P A A
POOSIIBO 0T
L .\@,\NWH\A,?\H ’e
A LN
I I
mx% T
10000000
T IT I
e
900080488000
seevsseee
200C 400008
o _m Y m\w.{, L0
SS9 6000 0eees

A A A A

-
—
—
I
.
',

20606000
) | )|
,\ % ﬂv\ SO 0%

T
A
SOSe 000000
O th)

TIIT T
1004 V808

T
LIS LT

11



10/1/2013

+ Es[(hs(zi) — Es[(hs(x:))])?]




Bagging

Bagging (Boostrap aggregating). (Breiman, 1996)

BAGGING(S=((z1,%1):-. .. (

Why does it work?

BAGGING

revisited

Bagging

. T
hs(z) = sign (Z CMH@))

: Special case where we fix:

at = 1 and h’t = ]L!(Sf)*

]L is some learning algorithm

St is a training set drawn from distribution  P(< z,y >)
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Bagging

Bagging Bagging

Bias(hs, ;) =

Var(hs, ;) =~

Bagging as a “Training set manipulator” Bagging as a “Training set manipulator”




Bagging as a “Training set manipulator”

Bagging as a “Training set manipulator”

Bagging as a “Training set manipulator”

Bagging as a “Training set manipulator”

Bagging as a “Training set manipulator”

‘ "WHAT IFI[TOLD YOU

\

YOU CAN CHANGE THESE
NUMBERS .

Ensemble

: given T binary classification
hypotheses (h;,..., h;), find a combined
classifier:

T
hs(x) = sign Zatht(x)
t=1

with better performance.
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