Model Selection and Assessment

CS4780/5780 – Machine Learning Fall 2013

Thorsten Joachims Cornell University

Reading:

Mitchell Chapter 5

Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924.

(http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)

Outline

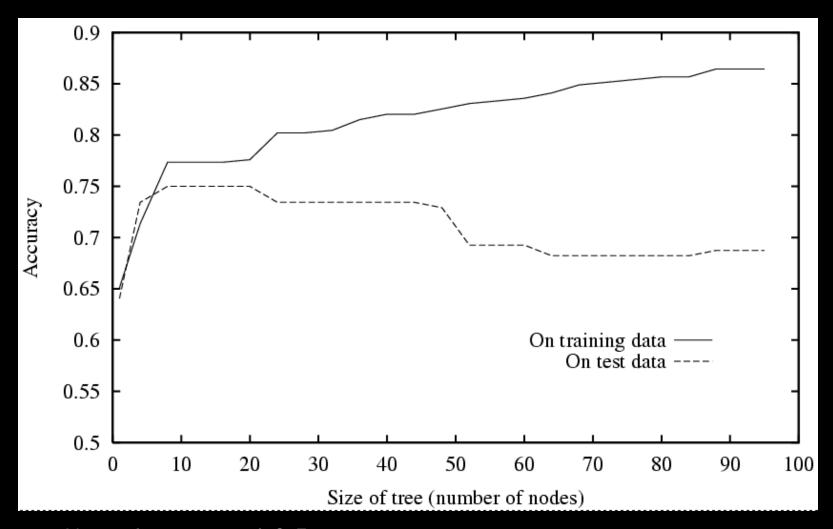
Model Selection

- Controlling overfitting in decision trees
- Train, validation, test
- K-fold cross validation

Evaluation

- What is the true error of classification rule h?
- Is rule h₁ more accurate than h₂?
- Is learning algorithm A1 better than A2?

Overfitting

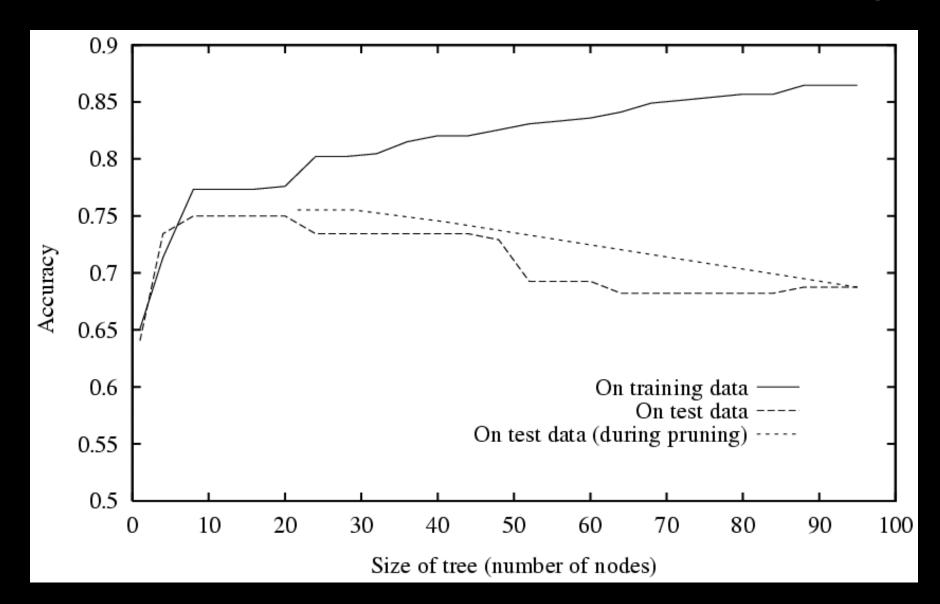


Note: Accuracy = 1.0-Error

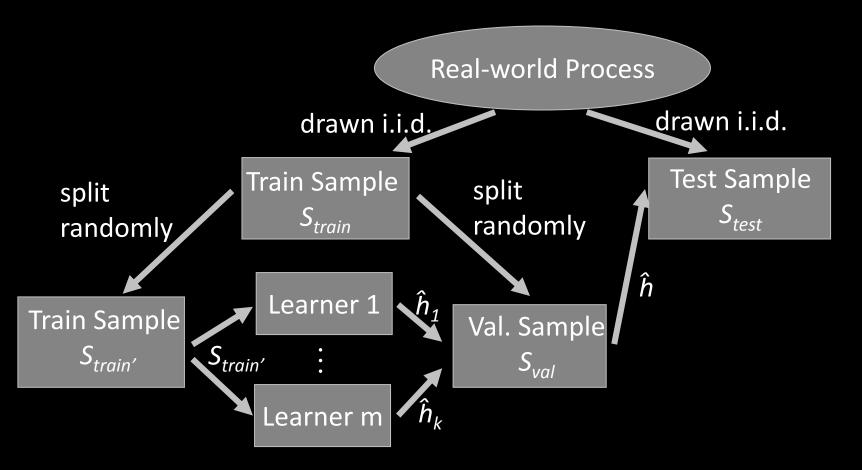
Controlling Overfitting in Decision Trees

- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer "reliable".
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 - Threshold on splitting criterion
- Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning

Reduced-Error Pruning



Model Selection



- Training: Run learning algorithm m times (e.g. different parameters).
- Validation Error: Errors $Err_{S_{val}}(\hat{h}_i)$ is an estimates of $Err_{P}(\hat{h}_i)$ for each h_i .
- **Selection**: Use h_i with min $\tilde{Err}_{S_{v,d}}(\hat{h_i})$ for prediction on test examples.

K-fold Cross Validation

Given

- Sample of labeled instances S
- Learning Algorithms A

Compute

- Randomly partition S into k equally sized subsets $S_1 \dots S_k$
- For *i* from 1 to *k*
 - Train A on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h} .
 - Apply \hat{h} to S_i and compute $Err_{S_i}(\hat{h})$.

Estimate

– Average $Err_{S_i}(\hat{h})$ is estimate of average prediction error of rules produced by A_i , namely $E_S(Err_P(A(S_{train})))$

Text Classification Example: "Corporate Acquisitions" Results

- Unpruned Tree (ID3 Algorithm):
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree (ID3 Algorithm):
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Reduced-Error Tree Pruning (C4.5 Algorithm):
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning (C4.5 Algorithm):
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 - Examples of rules
 - IF vs = 1 THEN [99.4%]
 - IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]

Evaluating Learned

- Goal: Find h with small prediction error $Err_p(h)$ over P(X,Y).
- Question: How good is $\overline{Err_p(\hat{h})}$ of \hat{h} found on training sample S_{train} .
- Training Error: Error $Err_{S_{train}}(\hat{h})$ on training sample.
- **Test Error:** Error $Err_{S_{test}}(\hat{h})$ is an estimate of $Err_{p}(\hat{h})$.

What is the True Error of a Hypothesis?

Given

- Sample of labeled instances S
- Learning Algorithm A

Setup

- Partition S randomly into S_{train} (70%) and S_{test} (30%)
- Train learning algorithm A on Strain, result is \hat{h} .
- Apply \hat{h} to S_{test} and compare predictions against true labels.

- Error on test sample $Err_{S_{test}}(\hat{h})$ is estimate of true error $Err_{P}(\hat{h})$.
- Compute confidence interval.

Training Sample
$$S_{train}$$
 $(x_1, y_1), ..., (x_n, y_n)$

Learner

 \hat{h}

Test Sample S_{test} $(x_1, y_1), ..., (x_k, y_k)$

Binomial Distribution

The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x|p,n) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$

- Normal approximation: For np(1-p)>=5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X)=np(1-p)
 - With probability δ , the observation x falls in the interval

$$E(X) \pm z_{\delta} \sqrt{Var(X)}$$

δ	50%	68%	80%	90%	95%	98%	99%
z_δ	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Text Classification Example: Results

- Data
 - Training Sample: 2000 examples
 - Test Sample: 600 examples
- Unpruned Tree:
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree:
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Post-Pruned Tree:
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning:
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%

Is Rule h₁ More Accurate than h₂? (Same Test Sample)

Given

- Sample of labeled instances S
- Learning Algorithms A₁ and A₂

Setup

- Partition S randomly into S_{train} (70%) and S_{test} (30%)
- Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
- Apply \hat{h}_1 and $\overline{\hat{h}}_2$ to S_{val} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.

- Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h₁ More Accurate than h₂? (Different Test Samples)

Given

- Samples of labeled instances S_1 and S_2
- Learning Algorithms A_1 and A_2

Setup

- Partition S_1 randomly into S_{train1} (70%) and S_{test1} (30%) Partition S_2 randomly into S_{train2} (70%) and S_{test2} (30%)
- Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2} , result are \hat{h}_1 and \hat{h}_2 .
- Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{S_{test2}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$.

- Decide, if $Err_p(\hat{h}_1) \neq Err_p(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{test1}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → t-Test (z-Test) [→ see Mitchell book]

Is Learning Algorithm A_1 better than A_2 ?

Given

- k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y).
- Learning Algorithms A_1 and A_2

Setup

- For *i* from 1 to *k*
 - Partition S_i randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.

- Decide, if $E_S(Err_P(A_1(S_{train}))) \neq E_S(Err_P(A_2(S_{train})))$?
- Null Hypothesis: $Err_{S_{test}}(A_1(S_{train}))$ and $Err_{S_{test}}(A_2(S_{train}))$ come from same distribution over samples S.
 - → t-Test (z-Test) or Wilcoxon Signed-Rank Test
 [→ see Mitchell book]

Approximation via K-fold Cross Validation

Given

- Sample of labeled instances S
- Learning Algorithms A_1 and A_2

Compute

- Randomly partition S into k equally sized subsets $S_1 \dots S_k$
- For *i* from 1 to *k*
 - Train A_1 and A_2 on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.

Estimate

- Average $Err_{S_i}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{train})))$
- Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
- Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$