
CS 312 Problem Set 6: Abalone

Assigned: April 11, 2008 Final submission due: May 1, 2008, 11:59 PM
Design meetings: April 16–20, 2008

1 Introduction

In the previous assignment (Problem Set 5), you developed aninterpreter for a concurrent programming language.
This part will allow you to put that language to good use: you will develop a version of the gameAbalone. In this
game, two players each attempt to move their pieces to push their opponent’s pieces off the board. In your version of
the game, each game piece will be controlled by a separate CL thread.

You will implement the mechanics for this game in SML, as wellas the code for a game player, in CL. Your
evaluator from Problem Set 5 will be used to run the programs controlling the two teams. You should be able to reuse
your Problem Set 5 code without changes, except perhaps to fixbugs. As in Problem Set 4, we also have provided
some graphical support that you can use to display the game. Source code for getting started on this project is available
in CMS. You will keep the same partner you had for the previousassignment; consult Professor Myers if this is truly
problematic.

There are few constraints on how you implement this project.This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

You start by carefully designing your system, and presenting this design at adesign meeting partway through the
assignment where you will meet with a course staff member to discuss your design. You are required to submit a
printed copy of the signatures for each of the modules included in your design at the design meeting. Part of your
score will be based on the design you present at this meeting.

1.1 Reading this writeup

This writeup refers to constants written in the code font, such asWINNING SCORE. The values of these constants
are defined in the source filedefinitions.sml. You should briefly familiarize yourself with those constants to fully
understand this writeup.

1.2 Updates to Problem Set

Any updates other than minor fixes will be recorded here.

• Scoring has been slightly modified: a team now also gets a point when an opposing piece goes away due to it’s
controlling thread terminating, in addition to getting points for pushing opposing pieces off the board

1.3 Point Breakdown

• Design meeting - 5 pts

• World - 45 pts

• CL team (AI) - 15 pts

• Documentation and design - 10 pts

• Barrier abstraction - 10 pts

• Written problem - 15 pts

1

2 Game Rules

Abalone is a two-player strategy board game that involves positioning and coordinating pieces to push opposing pieces
off the board. The official rules for Abalone are available athttp://uk.abalonegames.com/rules/basicrules/official rules.html.
A number of helpful diagrams and examples can be found athttp://en.wikipedia.org/wiki/Abalone(boardgame).
However, we will be using a modified version of the rules, so you should rely on this writeup instead.

2.1 Scoring and Winning

There are two teams, the black team and the white team, named after the color of their pieces. Teams score one point
for each opposing piece that leaves the board, as a result of either pushing or the controlling thread terminating. A
team wins the game when they reachWINNING SCORE points. If no team reachesWINNING SCORE points by the
time GAME LENGTH cycles have passed, the team with the highest score wins. If both teams have an equal score,
the team with more pieces remaining wins. If both teams have an equal number of pieces remaining, the game is a
draw.

2.2 Board

Figure 1: The board and
coordinate system

Abalone is played on a hexagonal board with 61 hexes, arranged in a hexagon with five
hexes to a side. Each hex is addressed by its row letter (A–I) and its diagonal number (−4
to 4). Lettering for rows starts with the bottom row as A, and proceeds upward. Numbering
for diagonals starts with the lower-leftmost diagonal as−4, and proceeds to the right, so
the bottom left hex as A−4. Coordinates will generally be written as integer pairs(r, d),
with each letter A–I assigned a numeric value, starting withA equal to−4. For example,
we could write hex A2 as(−4, 2). For example, on the board pictured in Figure 1, the
piece marked X is on hex G0= (2, 0), the piece marked Y is on hex C−3 = (−2,−3),
and the piece marked Z is on hex H4= (3, 4).

Note that both rows and diagonals vary in length. Length starts at five for row A and
diagonal−4, increases by one for each new row or diagonal until reachinga maximum of
nine for row E and diagonal 0, and then decreases by one for each new row or diagonal
until reaching five again for row I and diagonal 4.

The coordinate system is more regular than it might appear atfirst glance. The legal
positions on the board are exactly those(r, d) where|r| ≤ 4, |d| ≤ 4, and|r− d| ≤ 4. It is
also possible to translate and rotate points. In particularly, a 60◦ right rotation transforms
(r, d) into (r − d, r), while a60◦ left rotation transforms(r, d) into (d, d − r).

2.3 Directions

Figure 2: The adjacent
squares for the piece marked
X at (0, 0), marked with
their direction from that
piece

Each hex is adjacent to up to six other hexes. This gives each piece up to six possible
directions to move. The coordinates of the hexes adjacent toa given hex(r, d), and the
direction to move to reach them, are as follows:

• (r + 1, d) (up-left, UL)

• (r − 1, d) (down-right, DR)

• (r, d + 1) (right, R)

• (r, d − 1) (left, L)

• (r + 1, d + 1) (up-right, UR)

• (r − 1, d − 1) (down-left, DL)

Note that the hexes(r + 1, d − 1) and(r − 1, d + 1) arenot adjacent to(r, d), and
that just “up” and “down” arenot valid directions.

2

http://uk.abalonegames.com/rules/basic_rules/official_rules.html
http://en.wikipedia.org/wiki/Abalone_(board_game)

2.4 Pieces

In this version of Abalone, each piece is actually a robot controlled by its own CL
thread. We refer to these pieces as bots. Pieces are moved on the board when the
bot performs an appropriateaction invoked using the CLdo expression. Bots can also
determine the position of pieces on the board and other game information by making
use of actions.

Bots can communicate with each other using the CL shared memory. The CL con-
currency mechanisms may be useful in making this work.

Pieces that are pushed off the board are considered dead, andthe the associated
thread is terminated. Conversely, if a thread terminates, the piece it represents must be removed from the board.

2.5 Teams and initial positioning

Each team begins with a single piece (at positionBLACK START for the black team, and positionWHITE START
for the white team). Each team may, before its first move occurs, spawn additional pieces, until it has reached
MAX PIECES pieces.

2.6 Spawning New Pieces

A new piece is created whenever a new process is successfullyspawned. Newly created pieces are placed in one of
the empty hexes adjacent to the bot doing the spawning, chosen randomly. New processes may be spawned by a team
only under the following conditions:

1. At least one of hexes adjacent to the spawning bot is empty.

2. It is before the end of the team’s first turn.

3. The team controls less thanMAX PIECES pieces.

If these conditions are not satisfied, the spawn fails. The new process created by the spawning controls the new
piece.

2.7 Scheduling

Figure 3: Chain selection example.
Pieces 2 and 6 are selected as the first
chain. Pieces 3, 4, and 5 are selected as
the second.

How much each team is allowed to evaluate is important to the fairness of the
game. You are going to use the evaluator from Problem Set 5 to evaluate the
CL code for the bots. In eachclock cycle, every bot of each team is stepped
exactly once. The world is then notified that a cycle has endedto that it can
perform any necessary updates.

EveryCYCLES PER TURN cycles, moves are processed for one of the
two teams, starting with the black team and alternating after that. A turn
which has the white team’s moves processed at the end is referred to as a
white turn, and similarly for black turns.

2.8 Movement

A bot moves by performing anA COMMITMOVE action. The movement
does not occur immediately; it occurs on its team’s next turnto move. The
bot continues to execute after performing the action. At regular intervals
during execution, the pieces of one team or the other (alternately) move.
Bots that have committed a move get a chance to move when theirteam’s
turn comes up; other bots do not. Depending on how many bots commit
moves and how many of those moves are legal, a team may have anywhere

3

from all to none of its pieces move on a given turn. No bot ever moves twice
in a turn, and no moves ever happen except at the specified intervals.

2.9 Movement Order and Chains

Since a team may have multiple moves committed, and the result of the
moves may be different depending on what order they are executed in, we must define an ordering for move execution.
We define such an ordering by going by lowest PID first, and grouping pieces into chains, as described in the following
sections.

A chain is defined as a group of one or more pieces that are adjacent to each other in a straight line, and have
uncommitted, unperformed moves all in the same direction. If the chain contains more than one piece, the direction
they are attempting to move in must be parallel to the line. Atthe end of each turn, all chains with committed moves
from the appropriate team will attempt to move.

2.10 Chain Selection

During move processing for a given team, if no moves have beencommitted by the team, nothing moves, and the
game proceeds to the end of move resolution. Otherwise, at least one piece has a committed move, and we must select
a chain to move first (since what order chains move can change the result). The chain that will move is selected by
determining the lowest PID piece with a committed move, and selecting the largest legal chain that includes that piece.

For a chain to be legal, all the pieces in the chain must be located in a straight, contiguous line. They must all have
committed, still unperformed moves along the direction of the line.

If the move of the chain is legal as described below, the pieces in the chain are moved in the common direction
committed by all the pieces. Then, regardless of whether themove was legal or not, the committed moves for all the
pieces in the chain are reset, and this process repeats with the next bot with an uncommitted move, if any. Note that
while this gives every piece a chance to move, it does not meanthat every piecewill move, as some pieces may find
that their committed move is illegal. This can happen even ifthe move appeared to be legal when it was committed.

2.11 Move Legality

Figure 4: No legal move for
black results in a push

Next, it is determined if the move is legal. A chain can push upto two of the opponent’s
pieces as long as the chain contains more pieces than it is pushing. To be more precise,
call the three hexes in front of the chainH1, H2, andH3. A move is legal if and only
if:

1. H1 is empty; or

2. H1 contains an enemy piece,H2 is empty or off the board, and the chain is of
length at least 2; or

3. H1 contains an enemy piece,H2 contains an enemy piece,H3 is empty or off
the board, and the chain is of length at least 3

2.12 Move resolution

If a move is legal, all pieces in the moving chain are moved onehex in the direction
of movement, as are all enemy pieces directly in front of the chain (in the direction of
movement). This movement of enemy pieces is referred to as “apush” or “pushing”.
If a push would cause an enemy piece to go off the board, that piece is eliminated and
considered dead, and the thread controlling it is terminated. Pushing an enemy piece
off in this manner increases the score of the moving team by one.

At the end of move resolution, the committed moves for all pieces on the processed
team should be nothing. At this time, all processes that are waiting for the next turn should be woken, and all processes
waiting for the next turn for their team that arenot on the team which just moved should be woken. See the specification
for actions for more details on the wait actions.

4

Figure 5: Various legal moves

2.13 Move Resolution Example

For example, consider the following board during chain selection for white, with the PID of each piece indicated by the
number and the current committed move of that piece signifiedby an arrow (with no arrow meaning no committed).
Piece 1 does not have a committed move, so piece 2 (the piece with the lowest PID that has a committed move) is
selected as the start of the chain, and the largest chain thatcan be made using it consists of itself and piece 6, so the
full chain selected is piece 2 and piece 6. The move is legal, so that chain is moved, and the committed moves for
those pieces are set to nothing.

As there are still more pieces with committed on the white team, we now repeat the chain selection process. Piece
3 is now the lowest PID piece with a committed move, so it is selected as the chain start. Its chain is determined to be
3-4-5, so that chain is moved, and all the committed move for pieces 3, 4, and 5 is set to nothing. Since now all white
pieces have no committed move, move resolution ends.

3 Actions

There are a variety of actions that the bots can perform via the do command, as described below. Each action returns
a value. The effects of an action are visible to the world and the other bots immediately after the action is performed.

3.1 Action Quick Reference

A conceptual explanation of the available actions follows.Actions are specified in full detail below.
A MYSTAT Returns the position and direction of the piece
A TEAMSTAT Returns piece count, score, and number of spawns left for both teams
A GAMESTAT Returns the current turn number and the number of cycles until the bot’s team’s moves are processed
A INSPECT Returns the contents of a specified hex
A LOOK Returns an array of the contents of all hexes in a straight line from the piece
A SCAN Returns an array of the contents of all hexes adjacent to the piece
A COMMITMOVE Commits a move for the piece
A WAITTURN Waits until the start of the next turn
A WAITMYTURN Waits until after the next enemy turn
A TALK Outputs a string to the chat area

3.2 Action Specification

The figures on the following pages describe the possible actions in greater detail. Recall from PS5 that(v0, ..., vn−1)
represents an array literal, which will evaluate to an arraywith theith index fori = 0, ..., n−1 equal tovi, and all other
indicies equal to zero. Also, in these specifications, we mention various constants, which are defined indefinitions.sml
andconstants.ch. Here are some of the constants that the actions refer to:

5

Object constants

T EMPTY An empty hex
T PIECE A piece
T OPIECE An enemy piece
T OFFBOARD A hex off the board

Command Args Effects Returns
A MYSTAT None None ((r, d), dir) where(r, d) is the bot’s position

anddir is the bot’s direction
A TEAMSTAT None None (pc, s, ns, pco, so, nso) where pc is the piece count of

the bot’s team,s is the score of
the bot’s team,ns is the number
of spawns remaining for the bot’s
team, andpco,so,andnso are the
corresponding quantities for the
opponent

A GAMESTAT None None (t, ttm) wheret is the current turn num-
ber andttm is the time until the
bot’s team’s next move

A INSPECT (r, d) None o whereo is the constant represent-
ing the object at position(r, d)

A LOOK dir None l where l is a array of constants
representing objects between the
bot and the edge of the board in
the given direction, with the clos-
est object first, terminated by the
constant representing an offboard
hex

A SCAN None None (r, ur, ul, l, dl, dr) wherer is the constant represent-
ing the object in the hex to the
right of the bot,ur is the upper
right, etc.

A COMMITMOVE dir Changes the commit-
ted move for the bot to
dir

0

A WAITTURN None Blocks until the start of
the next turn

0

A WAITMYTURN None Blocks until the cycle
after the opponent’s
next move resolution

0

A TALK s Outputs the strings to
the chat area

0 This action has been partially im-
plemented for you for debugging
purposes

4 CL Features and Interpreter Updates

We make note of some CL features that you may not have used muchin PS5, but will be very useful for testing the
game and implementing your bot. Further, to aid in your design we have added a few useful features to CL, none of
which should require any modifications to your current interpreter. We have also made some slight modifications to
the structure of the interpreter, to aid in implementing some aspects of the game.

4.1 Recursive Functions

The support for recursive function already present in CL will be extremely helpful for this assignment. To review, you
can define recursive functions by using the keywordrec, as in the example below:

6

let fact =
rec f in

fn n => if n=0 then 1 else n * f(n-1)
in fact 3

4.2 Includes

You may wish to write code that multiple CL programs can use. You can do this using the#include command. The
argument is the name of the file to include. Keep in mind that the path for the file should be relative to the directory
from which you run SML, not the directory in which the CL file islocated. If you execute SML from the project
directory and want to include in a unit the constants.ch file that we have written, which is in the cl directory, you would
use:

#include cl/constants.ch

When this line is read, the file cl/constants.ch is automatically loaded and its contents replace the#include line.
You will most likely use#include to declare a bunch of commonly used functions. For instance,you might include a
file called functions.ch with#include functions.ch, which contains

let trymove = fn x => if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fn x => fn y => fn z => ...
in

The file being included should end within so that any code following the#include declaration is treated as the
body of thelet.

4.3 Array Library

We have provided a useful library for manipulating arrays, located in the file cl/arrays.ch. The functions in the array
library are similar to those in SML, as shown below. The arraylibrary defines the following functions, all of which
are implemented using the “rec” construct. All of these functions consider an array entry of zero to represent the end
of the array.

foldl f acc l s Fold the function f over the array l with the initial accumulator acc,
starting with the index 0 and ending with thesth element.

foldr f acc l s Fold the function f over the array l with the initial accumulator acc,
starting with thesth element and proceeding to index 0.

map f l s Map over the first s elements in list l with function f to returna new
array.

append l1 l2 s1 s2 Puts the first s2 elements of l2 into l1, replacing the elements after the
first s1 elements of l1

4.4 Other Libraries

An abstraction for representing and manipulating booleansis provided in booleans.ch:
true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunction ofits arguments
or A curried function that performs the logical disjunction ofits arguments
not Logical negation
xor A curried function that performs the logical exclusive disjunction of its arguments

4.5 Interpreter Updates

We have updated the interpreter in the following ways. You will find these updates helpful for implementing certain
actions. Note also that bothworld.sig andworld.sml are completely different.

7

• We have added aBlockedByWorld constructor to theprocess status datatype in Concurrency

• We have changedstepAndUpdate in Evaluation to account forBlockedByWorld

• We have exposed thereleaseAndWake function in Evaluation, so that the game loop can use it

5 GUI

To display your game, we have provided a program that can graphically present a hexagonal board, with an area for
score for each team, and the current turn number. There are interfaces for updating all the numerical fields, and for
setting hexes to display either nothing or a piece trying to move in a direction.

The GUI must be updated when the game state changes, which includes changes in score, turn number, or piece
positioning or direction. Note that as pieces are displayedwith their direction, this requires an update after a piece
commits a move. GUI updates do not need to be instantaneous, but must be fairly prompt.

A GUI command is just a string, starting with the command name, followed by arguments depending on the
particular command. Commands can be sent to the GUI using theNetGraphics.report function. The GUI commands
are as follows:

Command Result
bsay〈string〉 has the black team saying something (e.g.,bsay I’m the black team)
wsay〈string〉 has the white team saying something (e.g.,wsay I’m the white team)
bscore〈n〉 sets the black team’s score to be n
wscore〈n〉 sets the white team’s score to be n
turns〈n〉 sets the turn number to be n
set〈pos〉 e sets the hex given by pos to be empty
set〈pos〉 〈w|b〉〈d〉 sets the hex given by pos to be a (white|black) piece facing in direction d

For specifying positions, the GUI understands the row as a letter from A to I, and the diagonal as a number from
˜4 to 4. Either ˜ or - will work for negatives.

For specifying directions, the GUI understands integers from 0 to 6, with zero representing no direction and 1 to 6
representing the other directions, start with 1 representing right and going counterclockwise.

Number Direction
0 No direction
1 Right
2 Up Right
3 Up Left
4 Left
5 Down Left
6 Down Right

For example, to set the hex at position(B,−2) to a white piece facing left, you would send the commandset

B~2 w4. Note that there is no space between theB and the~2, and no space between thew and the4.

6 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this projectearly. There are many things you will have to take into consideration when designing the
code for each section.

6.1 CL interpreter

For the game to work, the CL interpreter must be correct. For the game to work well, the CL interpreter must be
reasonably efficient. We are not asking you to do any new implementation work on the CL interpreter, but you are
expected to fix any bugs in the interpreter that you submittedfor Project I, and make it run at a reasonable speed.

8

We have added new functions to some of the interpreter files toease implementation of certain aspects of the game.
For the updated interpreter files that are included in the PS6download, you should merge any changes you made into
the files. For the other interpreter files, you should simply copy over your files from PS5.

6.2 Designing the world

Your first task is to create a design for your Abalone implementation and meet with the course staff to review it. Your
second task is to implement theAbalone world in the filesworld/world.sml andworld/game.sml, and any files
you choose to add. Note that you should add files only to theworld andcl directories. You must implement the
actions listed in Section3. You must also make sure that the actions bots take are rendered in the graphic display using
the interface detailed in Section5. You can use the sample bot program we provide to test your world, but for full
testing coverage you will need to write your own tests.

6.3 Designing a team

Your third task is to design a CL team in a filecl/team.cl. To receive any credit, your team must be able to
consistently beat the team provided by the course staff, which is a very weak team. You will be graded on your bot’s
general strategy and how it does against a number of test bots, including the one provided.

6.4 Documentation

You should submit adesign overview documentfor this project, just like the ones for the previous assignments. Since
this project is both large and quite open-ended regarding the way one may choose to implement it, documentation
becomes even more important. Your design overview should probably be as long or longer than your design overviews
for the previous assignments.

6.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the world:

• Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modulesthat encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that youcan work effectively with your partner and can do
unit testing of the modules as you implement.

• Make sure that what is going on in the world matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoove you to maintain some sort of invariant between the
status of the world and the status of the graphics.

• Problems in the world might actually be problems with the bots. If you are using your own bots to test the
actions and something seems wrong, the bots could just as easily be at fault.

• Implement and test the actions one at a time. Don’t try to implement all of the actions and test them with one
single team. Start with easier actions and work up to the harder ones. For example, start with a simple action
like mystat.

There are also many different strategies for building a goodteam. Consider, for instance, that your bots can communi-
cate and share memory that the opposing team cannot access. Use it to your advantage to coordinate your maneuvers.

9

https://www.cs.cornell.edu/courses/cs312/2008sp/hw/overview-requirements.html

6.6 Design meeting

For this assignment, there will be adesign meeting partway through the assignment. Each group will use CMS to sign
up for a meeting, which will take place between Wednesday, April 16 and Sunday, April 20. If you are unable to sign
up for any of the available time slots on CMS, contact the course staff, and we will try to acommadate you.

At the meeting, you are expected to explain the design of yoursystem, give a brief description of the design of
your CL bots, and hand in a printed copy of the signatures for each of the modules in your design. In designing module
interfaces, think about what functionality needs to go intoeach module, how the interfaces can be made as simple and
narrow as possible, and what information needs to be kept track of by each module. Everyone in the group should be
prepared to discuss the design and explain why the module signatures are the way they are. We will give you feedback
on your design.

We strongly encourage that you come discuss your design withthe course staff during consulting and office hours,
both before and after the meetings.

6.7 Final submission

You will submit:

1. A zip file of all files in yourproject directory, including those you did not edit. We should be able to unzip this
and runCM.make(“sources.cm”) to compile your code (i.e., you should include yoursources.cm file). This
should include:

• your world implementation

• your bot, with the bot namedteam.cl in thecl directory along with all the custom libraries it uses (if any)

It is very important that you organize your files in this manner, as it greatly simplifies grading.

2. Your documentation file, in.txt, .pdf, or .doc format.

Although you will submit the entireproject directory, you should only add new files to theworld andcl folders; the
other folder must remain unchanged. If you add new sml or sig files, be sure to modifysources.cm to include them.
Note again that we expect to be able to unzip your submission and runCM.make(“sources.cm”) in the newly created
directory to compile your code without errors or warnings.Submissions that do not meet this criterion will be
docked points.

7 Tournament

Sometime during finals period, most likely on Tuesday, May 6,we will hold a competition for students who wish to
compete. Each group may submit a CL team that will play against other students’ teams. Details on the tournament
time, location, and the submission procedure will be available later.

8 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, other than merging
your changes from PS5 into the updated interpreter files in theeval directory, you should only edit and/or create new
files in theworld andcl directories. Here is a list of all the files and their contents.

10

gfx/* Graphics files for the GUI
eval/* Updated versions of some interpreter files (you should mergeyour

changes from PS5 as necessary)
world/definitions.sml Definitions of a wide variety of constants
world/world.sig Signature file for handling actions and world state
world/world.sml Functions for handling actions and world state
world/game.sig Signature file for the functions contained in the game
world/game.sml Handles the game state
world/loop.sml Starts and continues the main game loop
world/* Other utility files for the world
net/*.sml Network SML code for communicating with the GUI
gui/* The GUI files
cl/*.ch CL libraries
cl/simple bot.cl Sample team program that you need to beat

9 Running the game

The GUI is written in C++, and there are builds available for both Linux and Windows. Although you could run the
game without the graphics, it is not recommended, since it would be nearly impossible to tell what is going on.
These are the steps you take to run a game on the local machine.

1. Start the GUI. The executable for the GUI is namedps6gui.exe for Windows, andps6gui for Linux. It can be
run either from the command line or by double-clicking theps6gui.exe file. Once the GUI is started, a blank
field with the words “waiting for connection” will appear on your screen. By default, it will listen on port 3126
for a connection. It will remain blank until a SML program hasconnected to it.

2. Start your SML program. After you start the GUI, run your SML program (that includesthe evaluator, the world,
and the networking code that talks to the GUI). Go to your project directory and runCM.make(‘‘sources.cm’’)
to compile the program. Then run‘‘GameLoop.start(〈host-list〉, 〈black team-job〉, 〈white team-job〉)’’,
where〈host-list〉 is a list of hosts (represented as hostname and port pairs), and 〈black team-job〉 and〈white
team-job〉 are strings representing file names you want to use as black and white teams. Alternatively, you can
runT.test(), which starts up a game onlocalhost:3126.

10 Implementing a barrier abstraction in CL

Your third task is to use CL to implement a standard synchronization primitive called abarrier, corresponding to this
SML specification:

(* A barrier is synchronization primitive for a group of n threads. Any thread from the group that reaches the bar-
rier must block until all n threads have reached the barrier. Then all threads in the group may proceed. *)
type barrier
(* makeBarrier(n) creates a barrier for n threads. *)
val makeBarrier: int -> barrier
(* waitB(b) causes the current thread to block until the required number of threads have all called waitB(b). *)
val waitB : barrier -> unit

Your barrier implementation should be submitted to CMS asbarrier.ch. Your file must be a CL header file that
works with#include; if you put#include barrier.ch at the top of another CL file and run it, it should work and have
access to all the barrier functions.

11 Written Problem

In addition to the game and bot implementation tasks described above, this project also includes a written problem on
amortized complexity. This written question should be submitted to CMS, in.txt, .pdf, or .doc format.

11

A sorted array (or vector) is an appealing data structure forstoring ordered data, because it offers the sameO(lg n)
lookup time as a balanced binary tree but has a compact representation and a good asymptotic constant factor. Unfor-
tunately it doesn’t support fast insertion.

A programmer named Mort has an idea for a fast mutable orderedset abstraction. Instead of storing all the elements
in the sorted array, he will maintain a separate short linkedlist of up tof(n) elements, wheref(n) is some function
yet to be determined.

type set = {sorted: element array ref, recent: element list ref}
When the data structure is searched, both the listrecent and the arraysorted (of lengthn) are traversed. When an

element is added to the data structure, it is appended to the list in constant time. If therecent list becomes longer than
or equal tof(n) elements, thef(n) elements are sorted using mergesort and then merged in linear time with then

elements, which are already in order.

a. What is the complexity of a single lookup on this data structure, expressed as a function off(n) andn? To
achieve complexityO(lg n), as with a balanced binary tree, what should Mort setf(n) to?

b. The goal with this structure was to make inserts cheaper. As a function off(n) andn, what is the complexity
of f(n) inserts into this structure, starting from an emptyrecent list? (This should cause exactly one sort and
merge)

c. We can reduce both insert and lookup to an amortized complexity of O(
√

n). Your goal is to prove this bound
using potential functions. Recall that the amortized complexity of an operation changing structures to s′ is
defined as the actual cost of operation plusΦ(s′) − Φ(s).

Provide aΦ and a definition off , and use them to show that the complexity of one lookup isO(
√

n) and the
amortized complexity of one insert isO(

√
n).

12

	Introduction
	Reading this writeup
	Updates to Problem Set
	Point Breakdown

	Game Rules
	Scoring and Winning
	Board
	Directions
	Pieces
	Teams and initial positioning
	Spawning New Pieces
	Scheduling
	Movement
	Movement Order and Chains
	Chain Selection
	Move Legality
	Move resolution
	Move Resolution Example

	Actions
	Action Quick Reference
	Action Specification

	CL Features and Interpreter Updates
	Recursive Functions
	Includes
	Array Library
	Other Libraries
	Interpreter Updates

	GUI
	Your tasks
	CL interpreter
	Designing the world
	Designing a team
	Documentation
	Things to keep in mind
	Design meeting
	Final submission

	Tournament
	Provided source code
	Running the game
	Implementing a barrier abstraction in CL
	Written Problem

