CS 312 Problem Set 6: Abalone

Assigned: April 11, 2008 Final submission due: May 1, 2008, 11:59 PM
Design meetings: April 16—20, 2008

1 Introduction

In the previous assignment (Problem Set 5), you developadtarpreter for a concurrent programming language.
This part will allow you to put that language to good use: ydll eevelop a version of the gam&balone. In this
game, two players each attempt to move their pieces to peshapponent’s pieces off the board. In your version of
the game, each game piece will be controlled by a separatbréad.

You will implement the mechanics for this game in SML, as vadlthe code for a game player, in CL. Your
evaluator from Problem Set 5 will be used to run the programngrolling the two teams. You should be able to reuse
your Problem Set 5 code without changes, except perhaps budis. As in Problem Set 4, we also have provided
some graphical support that you can use to display the gamec&code for getting started on this project is available
in CMS. You will keep the same partner you had for the prevessignment; consult Professor Myers if this is truly
problematic.

There are few constraints on how you implement this projElets does not mean you can abandon what you have
learned about abstraction, style and modularity; rathés,is an opportunity to demonstrate all three in the creatio
of elegant code.

You start by carefully designing your system, and preserttiis design at aesign meeting partway through the
assignment where you will meet with a course staff membeiigouds your design. You are required to submit a
printed copy of the signatures for each of the modules ireduid your design at the design meeting. Part of your
score will be based on the design you present at this meeting.

1.1 Reading this writeup

This writeup refers to constants written in the code fonthsasWINNING_SCORE. The values of these constants
are defined in the source fil&finitions.sml. You should briefly familiarize yourself with those condtto fully
understand this writeup.

1.2 Updates to Problem Set

Any updates other than minor fixes will be recorded here.

e Scoring has been slightly modified: a team now also gets & pdian an opposing piece goes away due to it’s
controlling thread terminating, in addition to getting ipisi for pushing opposing pieces off the board

1.3 Point Breakdown

e Design meeting - 5 pts

World - 45 pts

CL team (Al) - 15 pts

e Documentation and design - 10 pts

Barrier abstraction - 10 pts

Written problem - 15 pts

2 Game Rules

Abalone is a two-player strategy board game that involvagtipning and coordinating pieces to push opposing pieces
off the board. The official rules for Abalone are availablbtgb://uk.abalonegames.com/rules/basites/officialrules.html
A number of helpful diagrams and examples can be founulttat//en.wikipedia.org/wiki/Abalong€boardgame)
However, we will be using a modified version of the rules, so gbould rely on this writeup instead.

2.1 Scoring and Winning

There are two teams, the black team and the white team, nafteedhe color of their pieces. Teams score one point
for each opposing piece that leaves the board, as a resuthef @ushing or the controlling thread terminating. A
team wins the game when they readtNNING_SCORE points. If no team reach&¥INNING_SCORE points by the
time GAME_LENGTH cycles have passed, the team with the highest score winsthfteams have an equal score,
the team with more pieces remaining wins. If both teams havegmal number of pieces remaining, the game is a
draw.

2.2 Board

Abalone is played on a hexagonal board with 61 hexes, arcaimga hexagon with five
hexes to a side. Each hex is addressed by its row letter (Al)ta diagonal number{4
to4). Lettering for rows starts with the bottom row as A, and s upward. Numbering
for diagonals starts with the lower-leftmost diagonal-a and proceeds to the right, so
the bottom left hex as A4. Coordinates will generally be written as integer pairsl),
with each letter A—I assigned a numeric value, starting Witlqual to—4. For example,
we could write hex A2 a$—4,2). For example, on the board pictured in Figure 1, thé
piece marked X is on hex G& (2,0), the piece marked Y is on hex-@ = (-2, -3),
and the piece marked Z is on hex B4(3, 4).

Note that both rows and diagonals vary in length. Lengthstrfive for row A and
diagonal—4, increases by one for each new row or diagonal until reachimgximum of
nine for row E and diagonal 0, and then decreases by one forreag row or diagonal
until reaching five again for row | and diagonal 4.

The coordinate system is more regular than it might appefirsaglance. The legal Figyre 1: The board and
positions on the board are exactly th¢sgl) where|r| < 4, |d| < 4,and|r —d| < 4.Itis ¢qordinate system
also possible to translate and rotate points. In partigylat0° right rotation transforms
(r,d) into (r — d,r), while a60° left rotation transformsr, d) into (d,d — r).

2.3 Directions

Each hex is adjacent to up to six other hexes. This gives eack pp to six possible
directions to move. The coordinates of the hexes adjacengteen hexr, d), and the
direction to move to reach them, are as follows:

e (r+1,d) (up-left, UL)

e (r —1,d) (down-right, DR)

e (r,d+ 1) (right, R)
()
(
(

r,d—1) (left, L)

e (r+1,d+ 1) (up-right, UR)
e (r—1,d—1) (down-left, DL)

Note that the hexe&' + 1,d — 1) and(r — 1,d + 1) arenot adjacent tqr, d), and Figure 2. The adjacent

that just “up” and “down” arenot valid directions. squares for the piece marked
X at (0,0), marked with

their direction from that
piece

http://uk.abalonegames.com/rules/basic_rules/official_rules.html
http://en.wikipedia.org/wiki/Abalone_(board_game)

2.4 Pieces

In this version of Abalone, each piece is actually a robottrdied by its own CL
thread. We refer to these pieces as bots. Pieces are movde droard when the
bot performs an appropriatetion invoked using the Cldo expression. Bots can also
determine the position of pieces on the board and other gafoemation by making
use of actions.
Bots can communicate with each other using the CL shared myerfiloe CL con-
currency mechanisms may be useful in making this work.
Pieces that are pushed off the board are considered deadheride associated
thread is terminated. Conversely, if a thread terminakesptece it represents must be removed from the board.

2.5 Teams and initial positioning

Each team begins with a single piece (at posiBiACK_START for the black team, and positioWNHITE_START
for the white team). Each team may, before its first move agcspawn additional pieces, until it has reached
MAX_PIECES pieces.

2.6 Spawning New Pieces

A new piece is created whenever a new process is successpatlyned. Newly created pieces are placed in one of
the empty hexes adjacent to the bot doing the spawning, ohrasedomly. New processes may be spawned by a team
only under the following conditions:

1. Atleast one of hexes adjacent to the spawning bot is empty.
2. ltis before the end of the team’s first turn.
3. The team controls less thdhAX_PIECES pieces.

If these conditions are not satisfied, the spawn fails. The pr@cess created by the spawning controls the new
piece.

2.7 Scheduling

How much each team is allowed to evaluate is important togiedss of the
game. You are going to use the evaluator from Problem Set\atoae the
CL code for the bots. In eaathock cycle, every bot of each team is stepped
exactly once. The world is then notified that a cycle has endéldat it can
perform any necessary updates.

Every CYCLES_PER_TURN cycles, moves are processed for one of the
two teams, starting with the black team and alternating dftat. A turn
which has the white team’s moves processed at the end igedfer as a
white turn, and similarly for black turns.

2.8 Movement

A bot moves by performing aA_COMMITMOVE action. The movement
does not occur immediately; it occurs on its team'’s next tarmove. The
bot continues to execute after performing the action. Aulagintervals
Figure 3: Chain selection exampleduring execution, the pieces of one team or the other (aitely) move.
Pieces 2 and 6 are selected as the fil8pts that have committed a move get a chance to move whentéaeir's
chain. Pieces 3, 4, and 5 are selected #¥n comes up; other bots do not. Depending on how many baotsnib
the second. moves and how many of those moves are legal, a team may hawheursy

from all to none of its pieces move on a given turn. No bot eveves twice
in a turn, and no moves ever happen except at the specifiedatge

2.9 Movement Order and Chains

Since a team may have multiple moves committed, and thetreftihe
moves may be different depending on what order they are &a@au we must define an ordering for move execution.
We define such an ordering by going by lowest PID first, andgjrapieces into chains, as described in the following
sections.

A chain is defined as a group of one or more pieces that are adjaceatkoather in a straight line, and have
uncommitted, unperformed moves all in the same directibthe chain contains more than one piece, the direction
they are attempting to move in must be parallel to the lineth&tend of each turn, all chains with committed moves
from the appropriate team will attempt to move.

2.10 Chain Selection

During move processing for a given team, if no moves have lseemmitted by the team, nothing moves, and the
game proceeds to the end of move resolution. Otherwiseasttdme piece has a committed move, and we must select
a chain to move first (since what order chains move can chdrmgyeesult). The chain that will move is selected by
determining the lowest PID piece with a committed move, ateding the largest legal chain that includes that piece.

For a chain to be legal, all the pieces in the chain must beddda a straight, contiguous line. They must all have
committed, still unperformed moves along the directionhaf line.

If the move of the chain is legal as described below, the giétehe chain are moved in the common direction
committed by all the pieces. Then, regardless of whethemitne was legal or not, the committed moves for all the
pieces in the chain are reset, and this process repeatshaeitieit bot with an uncommitted move, if any. Note that
while this gives every piece a chance to move, it does not rtiegrevery pieceavill move, as some pieces may find
that their committed move is illegal. This can happen evéhdfmove appeared to be legal when it was committed.

2.11 Move Legality

Next, it is determined if the move is legal. A chain can pustiapvo of the opponent’s
pieces as long as the chain contains more pieces than ithsngudo be more precise,
call the three hexes in front of the chafifi, H,, and H;. A move is legal if and only
if:

1. H, is empty; or

2. H, contains an enemy piecél, is empty or off the board, and the chain is g
length at least 2; or

3. H; contains an enemy piecél, contains an enemy piecéls is empty or off
the board, and the chain is of length at least 3

2.12 Move resolution

If a move is legal, all pieces in the moving chain are moved lumein the direction Figure 4: No legal move for
of movement, as are all enemy pieces directly in front of theirc (in the direction of black results in a push
movement). This movement of enemy pieces is referred to @asish” or “pushing”.
If a push would cause an enemy piece to go off the board, teateps eliminated and
considered dead, and the thread controlling it is terméhaRushing an enemy piece
off in this manner increases the score of the moving team ky on

At the end of move resolution, the committed moves for altpgeon the processed
team should be nothing. At this time, all processes that areng for the next turn should be woken, and all processes
waiting for the next turn for their team that aret on the team which just moved should be woken. See the spéicifica
for actions for more details on the wait actions.

Figure 5: Various legal moves

2.13 Move Resolution Example

For example, consider the following board during chainct@e for white, with the PID of each piece indicated by the
number and the current committed move of that piece signiifiedn arrow (with no arrow meaning no committed).
Piece 1 does not have a committed move, so piece 2 (the piglegheilowest PID that has a committed move) is
selected as the start of the chain, and the largest chairdhabe made using it consists of itself and piece 6, so the
full chain selected is piece 2 and piece 6. The move is legathat chain is moved, and the committed moves for
those pieces are set to nothing.

As there are still more pieces with committed on the whitenteae now repeat the chain selection process. Piece
3 is now the lowest PID piece with a committed move, so it issteld as the chain start. Its chain is determined to be
3-4-5, so that chain is moved, and all the committed moveifrgs 3, 4, and 5 is set to nothing. Since now all white
pieces have no committed move, move resolution ends.

3 Actions

There are a variety of actions that the bots can perform dadltcommand, as described below. Each action returns
a value. The effects of an action are visible to the world &edother bots immediately after the action is performed.

3.1 Action Quick Reference

A conceptual explanation of the available actions follotstions are specified in full detail below.

A_MYSTAT Returns the position and direction of the piece

A_TEAMSTAT Returns piece count, score, and number of spawns left forteams

A_GAMESTAT Returns the current turn number and the number of cyclekthatbot's team’s moves are processe
A_INSPECT Returns the contents of a specified hex

A_LOOK Returns an array of the contents of all hexes in a straigatftiom the piece

A_SCAN Returns an array of the contents of all hexes adjacent toidoe p

A_COMMITMOVE Commits a move for the piece

A_WAITTURN Waits until the start of the next turn

A_WAITMYTURN Waits until after the next enemy turn

A_TALK Outputs a string to the chat area

3.2 Action Specification

The figures on the following pages describe the possibler&in greater detail. Recall from PS5 tltag, ..., v,—1)
represents an array literal, which will evaluate to an awily theith index fori = 0, ..., n—1 equal tov;, and all other
indicies equal to zero. Also, in these specifications, wetioeivarious constants, which are definedéfinitions.sml
andconstants.ch. Here are some of the constants that the actions refer to:

T_EMPTY An empty hex

Object constantsT’PIECE A piece
T_OPIECE An enemy piece
T_OFFBOARD A hex off the board
Command Args Effects Returns
A_MYSTAT None None ((r,d), dir) where(r, d) is the bot’s position
anddir is the bot’s direction
A_TEAMSTAT None None (pc, s,ms, pco, so,nso) wherepc is the piece count of
the bot’'s teams is the score of
the bot's teamps is the number
of spawns remaining for the bot’s
team, ancpco,so,andnso are the
corresponding quantities for the
opponent
A_GAMESTAT None None (t, ttm) wheret is the current turn num-
ber andttm is the time until the
bot’'s team’s next move
A_INSPECT (r,d) None) whereo is the constant represent-
ing the object at positiofr, d)
A_LOOK dir None l where [is a array of constants
representing objects between the
bot and the edge of the board in
the given direction, with the clos-
est object first, terminated by the
constant representing an offboard
hex
A_SCAN None None (ryur,ul,l,dl,dr) wherer is the constant represent-
ing the object in the hex to the
right of the bot,ur is the upper
right, etc.
A_COMMITMOVE dir Changes the commit- 0
ted move for the bot to
dir
A_WAITTURN None Blocks until the start of 0
the next turn
A_WAITMYTURN None Blocks until the cycle 0
after the opponent’s
next move resolution
A_TALK s Outputs the string to 0 This action has been partially im-
the chat area plemented for you for debugging
purposes

4 CL Features and Interpreter Updates

We make note of some CL features that you may not have used murRSB5, but will be very useful for testing the
game and implementing your bot. Further, to aid in your desig have added a few useful features to CL, none of
which should require any modifications to your current ipteter. We have also made some slight modifications to
the structure of the interpreter, to aid in implementing s@spects of the game.

4.1 Recursive Functions

The support for recursive function already present in ClL lglextremely helpful for this assignment. To review, you
can define recursive functions by using the keywexd as in the example below:

let fact =
rec f in
fn n => if n=0 then 1 else n * f(n-1)
in fact 3

4.2 Includes

You may wish to write code that multiple CL programs can useu ¥an do this using th#include command. The
argument is the name of the file to include. Keep in mind thatghth for the file should be relative to the directory
from which you run SML, not the directory in which the CL filelscated. If you execute SML from the project
directory and want to include in a unit the constants.chlfi¢ée tve have written, which is in the cl directory, you would
use:

#include cl/constants.ch

When this line is read, the file cl/constants.ch is automififit@aded and its contents replace tfénclude line.
You will most likely use#tinclude to declare a bunch of commonly used functions. For instaymemight include a
file called functions.ch withtinclude functions.ch, which contains

let trymove = fn x => if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fnx =>fny =>fnz => ...

in

The file being included should end with so that any code following th#include declaration is treated as the
body of thelet.

4.3 Array Library

We have provided a useful library for manipulating arragsakted in the file cl/arrays.ch. The functions in the array
library are similar to those in SML, as shown below. The afibsary defines the following functions, all of which
are implemented using the “rec” construct. All of these tiorts consider an array entry of zero to represent the end
of the array.

foldl faccls Fold the function f over the array | with the initial accumtagiaacc,
starting with the index 0 and ending with tkth element.

foldr facc|'s Fold the function f over the array | with the initial accumtalaacc,
starting with thesth element and proceeding to index 0.

map fls Map over the first s elements in list | with function f to rettamew
array.

append I1 12 s1 s2 Puts the first s2 elements of 12 into 11, replacing the elesafter the
first s1 elements of 11

4.4 Other Libraries

An abstraction for representing and manipulating booléapsovided in booleans.ch:
true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunctionitsfarguments
or A curried function that performs the logical disjunctionitsfarguments
not Logical negation
xor A curried function that performs the logical exclusive digjtion of its arguments

4.5 Interpreter Updates

We have updated the interpreter in the following ways. Yollifinid these updates helpful for implementing certain
actions. Note also that bottorld.sig andworld.sml are completely different.

e We have added BlockedByWorld constructor to th@rocess_status datatype in Concurrency
e We have changestepAndUpdate in Evaluation to account fdBlockedByWorld

e \We have exposed theleaseAndWake function in Evaluation, so that the game loop can use it

5 GUI

To display your game, we have provided a program that carhgrally present a hexagonal board, with an area for
score for each team, and the current turn number. There &ndaices for updating all the numerical fields, and for
setting hexes to display either nothing or a piece trying tvenn a direction.

The GUI must be updated when the game state changes, whiddesachanges in score, turn number, or piece
positioning or direction. Note that as pieces are displayih their direction, this requires an update after a piece
commits a move. GUI updates do not need to be instantaneousiust be fairly prompt.

A GUI command is just a string, starting with the command nafobowed by arguments depending on the
particular command. Commands can be sent to the GUI usingdt@raphics.report function. The GUI commands
are as follows:

Command Result

bsay(string) has the black team saying something (ebgpy I'm the black team)
wsay (string) has the white team saying something (eagay I'm the white team)
bscore(n) sets the black team’s score to be n

wscore(n) sets the white team’s score to be n

turns(n) sets the turn number to be n

set(pos e sets the hex given by pos to be empty

set(pos (w|b)(d) sets the hex given by pos to be a (whilack) piece facing in direction d

For specifying positions, the GUI understands the row asterlfom A to I, and the diagonal as a number from
"4 to 4. Either ™ or - will work for negatives.
For specifying directions, the GUI understands integeasf to 6, with zero representing no direction and 1 to 6
representing the other directions, start with 1 repreegnight and going counterclockwise.
Number Direction
No direction
Right
Up Right
Up Left
Left
Down Left
Down Right

For example, to set the hex at positioB, —2) to a white piece facing left, you would send the commagad
B~2 w4. Note that there is no space betweengtend the™2, and no space between thand thes.

OO~ WNEFEO

6 Your tasks

There are several parts to the implementation of this ptolake sure you spend time thinking about each part before
starting. Start on this projeetrly. There are many things you will have to take into consideratihen designing the
code for each section.

6.1 CL interpreter

For the game to work, the CL interpreter must be correct. Rergame to work well, the CL interpreter must be
reasonably efficient. We are not asking you to do any new imefgation work on the CL interpreter, but you are
expected to fix any bugs in the interpreter that you submftie@roject I, and make it run at a reasonable speed.

We have added new functions to some of the interpreter fileage implementation of certain aspects of the game.
For the updated interpreter files that are included in thed®@load, you should merge any changes you made into
the files. For the other interpreter files, you should simplgycover your files from PS5.

6.2 Designing the world

Your first task is to create a design for your Abalone impletagon and meet with the course staff to review it. Your
second task is to implement tiAdalone world in the filesworld/world. sml andworld/game.sml, and any files
you choose to add. Note that you should add files only tosthed andcl directories. You must implement the
actions listed in SectioB. You must also make sure that the actions bots take are exhofethe graphic display using
the interface detailed in Sectidn You can use the sample bot program we provide to test youldwout for full
testing coverage you will need to write your own tests.

6.3 Designing a team

Your third task is to design a CL team in a fitd/team.cl. To receive any credit, your team must be able to
consistently beat the team provided by the course staff;lwisia very weak team. You will be graded on your bot’s
general strategy and how it does against a number of testibolisding the one provided.

6.4 Documentation

You should submit @esign overview documefr this project, just like the ones for the previous assignta. Since
this project is both large and quite open-ended regardiagiitly one may choose to implement it, documentation
becomes even more important. Your design overview showldgloly be as long or longer than your design overviews
for the previous assignments.

6.5 Things to keep in mind
Here are some issues to keep in mind when designing and ireptérg the world:

e Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modtigsencapsulate important aspects of the game.
Design the interfaces to these modules carefully so thatgouvork effectively with your partner and can do
unit testing of the modules as you implement.

e Makesurethat what isgoing on in the world matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching tmeg and something seems to go wrong, remember,
it could just be the code controlling the output to the scrédoreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoowa to maintain some sort of invariant between the
status of the world and the status of the graphics.

e Problemsin theworld might actually be problems with the bots. If you are using your own bots to test the
actions and something seems wrong, the bots could just g leasit fault.

e Implement and test the actionsoneat atime. Don't try to implement all of the actions and test them witleon
single team. Start with easier actions and work up to thedraodes. For example, start with a simple action
like mystat.

There are also many different strategies for building a geath. Consider, for instance, that your bots can communi-
cate and share memory that the opposing team cannot acasg.ttyour advantage to coordinate your maneuvers.

https://www.cs.cornell.edu/courses/cs312/2008sp/hw/overview-requirements.html

6.6 Design meeting

For this assignment, there will bedasign meeting partway through the assignment. Each group will use CMSgto si
up for a meeting, which will take place between Wednesdayil Ap and Sunday, April 20. If you are unable to sign
up for any of the available time slots on CMS, contact the sewstaff, and we will try to acommadate you.

At the meeting, you are expected to explain the design of ggstem, give a brief description of the design of
your CL bots, and hand in a printed copy of the signaturesdoh@f the modules in your design. In designing module
interfaces, think about what functionality needs to go gd&ch module, how the interfaces can be made as simple and
narrow as possible, and what information needs to be kegk thby each module. Everyone in the group should be
prepared to discuss the design and explain why the moduiatsiges are the way they are. We will give you feedback
on your design.

We strongly encourage that you come discuss your desigrnthéthourse staff during consulting and office hours,
both before and after the meetings.

6.7 Final submission

You will submit:

1. A zip file of all files in yourproject directory, including those you did not edit. We should beedblunzip this
and runCM.make(“sources.cm”) to compile your code (i.e., you should include yauirces . cm file). This
should include:

e your world implementation
e your bot, with the bot namedam.cl in thecl directory along with all the custom libraries it uses (if any

It is very important that you organize your files in this manas it greatly simplifies grading.
2. Your documentation file, irtxt, .pdf, or .doc format.

Although you will submit the entirgroject directory, you should only add new files to therld andcl folders; the
other folder must remain unchanged. If you add new sml or kEg,fbe sure to modifyources.cm to include them.
Note again that we expect to be able to unzip your submissidman CM.make(“sources.cm”) in the newly created
directory to compile your code without errors or warningdibmissions that do not meet this criterion will be
docked points.

7 Tournament

Sometime during finals period, most likely on Tuesday, Mawé will hold a competition for students who wish to
compete. Each group may submit a CL team that will play agaither students’ teams. Details on the tournament
time, location, and the submission procedure will be atigldater.

8 Provided source code

Many files are provided for this assignment. Most of them ydunet need to edit at all. In fact, other than merging
your changes from PS5 into the updated interpreter filesdethl directory, you should only edit and/or create new
files in theworld andcl directories. Here is a list of all the files and their contents

10

gfx/*
eval/x*

world/definitions.sml
world/world.sig
world/world.sml
world/game.sig
world/game.sml
world/loop.sml
world/*
net/*.sml

gui/*

cl/*.ch
cl/simple_bot.cl

Graphics files for the GUI

Updated versions of some interpreter files (you should mgme
changes from PS5 as necessary)

Definitions of a wide variety of constants

Signature file for handling actions and world state
Functions for handling actions and world state
Signature file for the functions contained in the game
Handles the game state

Starts and continues the main game loop

Other utility files for the world

Network SML code for communicating with the GUI
The GUI files

CL libraries

Sample team program that you need to beat

9 Running the game

The GUI is written in C++, and there are builds available fothbLinux and Windows. Although you could run the
game without the graphics, it is not recommended, since utldvbe nearly impossible to tell what is going on.
These are the steps you take to run a game on the local machine.

1. Sart the GUI. The executable for the GUI is namesbgui.exe for Windows, andpbsbgui for Linux. It can be
run either from the command line or by double-clicking #ségui.exe file. Once the GUI is started, a blank
field with the words “waiting for connection” will appear oloyr screen. By default, it will listen on port 3126
for a connection. It will remain blank until a SML program hamnected to it.

2. Sartyour SML program. After you start the GUI, run your SML program (that includles evaluator, the world,
and the networking code that talks to the GUI). Go to yourgebglirectory and ruaM.make (¢ ‘sources.cm’’)
to compile the program. Then ririGameLoop.start ((host-1ist), (black team-job), (white team-job))’’,
where (host-list) is a list of hosts (represented as hostname and port paig)béack team-job) and (white
team-job) are strings representing file names you want to use as blatkhite teams. Alternatively, you can
runT.test (), which starts up a game decalhost:3126.

10 Implementing a barrier abstraction in CL

Your third task is to use CL to implement a standard synclzation primitive called darrier, corresponding to this
SML specification:

(* A barrier is synchronization primitive for a group of n threads. Any thread from the group that reaches the bar-
rier must block until all n threads have reached the barrier. Then all threads in the group may proceed. *)

type barrier

(* makeBarrier(n) creates a barrier for n threads. *)

val makeBarrier: int -> barrier

(* waitB(b) causes the current thread to block until the required number of threads have all called waitB(b). *)
val waitB : barrier -> unit

Your barrier implementation should be submitted to CM®asier.ch. Your file must be a CL header file that
works with#include; if you put #include barrier.ch at the top of another CL file and run it, it should work and have
access to all the barrier functions.

11 Written Problem

In addition to the game and bot implementation tasks desgritbove, this project also includes a written problem on
amortized complexity. This written question should be siftet to CMS, in.txt, .pdf, or .doc format.

11

A sorted array (or vector) is an appealing data structurstfming ordered data, because it offers the s@tig n)
lookup time as a balanced binary tree but has a compact egedion and a good asymptotic constant factor. Unfor-

tunately it doesn’t support fast insertion.
A programmer named Mort has an idea for a fast mutable ordetesbstraction. Instead of storing all the elements

in the sorted array, he will maintain a separate short liflstaf up to f(n) elements, wherg(n) is some function
yet to be determined.
type set = {sorted: element array ref, recent: element list ref}

When the data structure is searched, both thedisint and the arragorted (of lengthn) are traversed. When an
element is added to the data structure, it is appended tésthe tonstant time. If theecent list becomes longer than
or equal tof(n) elements, thef(n) elements are sorted using mergesort and then merged im tim@with then
elements, which are already in order.

a. What is the complexity of a single lookup on this data stmgtexpressed as a function pfrn) andn? To
achieve complexity)(lgn), as with a balanced binary tree, what should Mortfget) to?

b. The goal with this structure was to make inserts cheapgia function off (n) andn, what is the complexity
of f(n) inserts into this structure, starting from an emptyent list? (This should cause exactly one sort and
merge)

c. We can reduce both insert and lookup to an amortized codtyplef O(,/n). Your goal is to prove this bound
using potential functions. Recall that the amortized caxipy of an operation changing structuseo s’ is
defined as the actual cost of operation plys’) — ®(s).

Provide a® and a definition off, and use them to show that the complexity of one looku@(i§/n) and the
amortized complexity of one insertd3(y/n).

12

	Introduction
	Reading this writeup
	Updates to Problem Set
	Point Breakdown

	Game Rules
	Scoring and Winning
	Board
	Directions
	Pieces
	Teams and initial positioning
	Spawning New Pieces
	Scheduling
	Movement
	Movement Order and Chains
	Chain Selection
	Move Legality
	Move resolution
	Move Resolution Example

	Actions
	Action Quick Reference
	Action Specification

	CL Features and Interpreter Updates
	Recursive Functions
	Includes
	Array Library
	Other Libraries
	Interpreter Updates

	GUI
	Your tasks
	CL interpreter
	Designing the world
	Designing a team
	Documentation
	Things to keep in mind
	Design meeting
	Final submission

	Tournament
	Provided source code
	Running the game
	Implementing a barrier abstraction in CL
	Written Problem

