
CS 312 Problem Set 6 (Project Part II): Twenty Thousand λs Under the Sea

Assigned: April 12, 2007 Final submission due: 11:59PM, May 3, 2007
Checkpoint meetings: April 19, 20 and 22, 2007

1 Introduction

In the previous part of the project (Problem Set 5), you developed an interpreter for a concurrent programming lan-
guage. This part will allow you to put that language to good use: you will develop a game called Twenty Thousand
λs Under the Sea, in which two underwater forces led by the gods Neptune and Poseidon compete to collect treasure.
You will implement the world for this game (in SML), as well as the code for at least one game player (in RCL). We
have provided some graphical support that you can use to display the progress of the game. You will keep the same
partner you had for part I; consult Professor Myers if this is truly problematic.

This project places few constraints on how you implement it. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

You start by carefully designing your system, and presenting this design at a design review meeting partway through
the assignment where you will meet with a course staff member to discuss your design. You are required to submit
a printed copy of the signatures for each of the modules included in your design at the design review. A substantial
fraction of your score will be based on the design you present at this meeting.

Source code for getting started on this project is available in CMS.

1.1 Updates to problem set

• Treasures spawn uniformly at random in rows 11-15 in an EMPTY cell.

• When a squid or whale is immobilized by ink, that process expression is wrapped in a delay expression. In other
words, the process will not proceed with its computation until after the delay.

• The point break down for ps6 is as follows:

– Design meeting - 5pts

– World - 60 pts

– RCL team (AI) - 15 pts

– Documentation - 5 pts

– Complexity written problem - 13 pts

– CVS log - 2 pts

• For the written problem: m(n) is always the maximum size of the recent list, not the current size. Also, the
resize happens when the recent list hits size m(n), not m(n) + 1.

1.2 Use of RCL

The behavior of each team in the game is driven by a program written in the RCL language. You will implement not
only the game but also a team to play the game. Your evaluator from part I will run this program. You will need to
copy your part I code into the part II distribution in order to compile it. You should not have to change your evaluator
code except perhaps to fix bugs.

1

2 Game rules

Twenty Thousand λs Under the Sea is a game played by two teams, the red team and the blue team. The object of
the game is to maximize your team’s treasure points before the time runs out. There are three kinds of bots on a
team: gods, squids and whales. Each bot is driven by a single RCL thread. Because they are RCL threads, they can
communicate with each other using global memory.

The red god is named Neptune and the blue one, Poseidon. Gods are not physically present in the game, but offer
additional computational power. However, if for some reason a god thread terminates, that god’s team immediately
loses.

Initially the team starts with just a god. However, the team can spend treasure to spawn new squids or whales that
play on the team.

2.1 The ocean

The game is played in a rectangular ocean made of square cells. Each cell can hold exactly one of the following items:
a coral, a treasure, a squid, a whale or ink. The ocean is initialized with a map that specifies coral locations. A sample
ocean is given in file sampleocean.sml.

• Size: We restrict all oceans to be 32x16.

• Cells: Cells on the ocean are identified by 2-dimensional coordinates, with (0,0) being the upper left corner and
(31,15) the lower right corner. The first number identifies the left-right (x) coordinate, and the second number
identifies the up-down (y) coordinate. Each cell is 1,250 λs by 1,250 λs.

2.2 Directions

Each cell has 8 neighbors. A bot occupying a given cell can move to any of the cell’s neighbors. However, a diagonal
move takes proportionally longer since it covers more distance. The directions are numbered 0 to 7 as follows:

2

2.3 Teams

Each team starts a new game with a god and 5 treasure points. Each team is controlled by one RCL program. The
team starts with just the god bot, running this program. However, the god can create other bots by spawning.

Different bots have different abilities. Gods can query the game status, spawn new bots, perform computation and
share information with their teammates. However, the gods are not physically present in the game and thus cannot
move around or interact with the opposing team directly.

Each squid or whale bot occupies a cell in the ocean and faces in some direction. These bots can move around the
ocean, fight each other and try to find treasure. Squids can squirt ink that slows down bots that enter it, and whales can
destroy squids. Whales must periodically come up to the top of the ocean to breathe.

2.4 Attacks

2.4.1 Squid attack

A squid can squirt ink behind it (i.e., in the opposite direction of which it’s facing). The ink temporarily covers 3 cells
behind the squid and stays on the cells for AT INK DURATION clock cycles. After a squid inks, it must go through a
cooldown period of AT COOLDOWN clock cycles (to produce more ink) before it can ink again.

If ink lands on a coral, the ink disappears. If ink lands on a squid or whale, the ink disappears, but the bot is
immobilized for some time (AT SINK DELAY for squids, AT WINK DELAY for whales). Similarly, if a squid or whale
swims into ink, the ink disappears, but the bot is immobilized. The breath count of whales immobilized by ink is
decremented by BREATH CNT PENALTY.

2.4.2 Whale attack

If a whale swims into a squid or a squid into a whale, the squid is destroyed.

2.5 Creating new bots

After the game starts, both teams can spawn squids and whales by using the RCL spawn expression. Gods are the
only bots that can directly spawn more bots. To specify the type of the next bot to be spawned, the god should call the
set type action using the do command.

Newly spawned squids are placed uniformly at random in an empty cell in rows 6 through 10. Newly spawned
whales are placed uniformly at random in an empty cell in rows 0 through 5. Red team bots are placed uniformly at
random in the leftmost four columns of the ocean; blue team bots are placed uniformly at random in the rightmost four
columns.

The input oceans do not have any empty start location completely surrounded by coral. All bots spawn facing
north (i.e. in direction 2).

For a team of n bots (counting squids and whales), spawning a squid costs (n + 3)/3 treasure points (rounded
down) and each additional whale costs 4(n + 3)/3 treasure points. If a team does not have enough treasure to spawn
a bot, the spawn expression will fail as described in the RCL specification, and no bot will be created. It is important
to note that a bot does not necessarily know if the team has enough treasure left and therefore might try to spawn
randomly. It is the responsibility of the world to check that spawn attempts come from gods and that the team has

3

enough treasure to spawn an additional bot of the specified type. Failed spawn attempts do not create a new bot, but
they do not otherwise negatively affect the bot that attempts to spawn.

2.6 Collecting treasure

Any bot, except the god, can capture a treasure point for his team by swimming into a square containing that treasure
in the ocean. Treasures appear only in empty cells in rows 11 through 15. At the beginning of the game 10 treasures
are placed in the ocean uniformly at random. A new treasure appears every AT TREASURE clock cycles, but no more
that 15 treasures can be present in the ocean at any given time.

2.7 Scheduling

When each team is allowed to evaluate is important to the fairness of the game. You are going to use your single-step
evaluator from Problem Set 5 to evaluate the RCL code for the bots. In each clock cycle, every bot of each team is
stepped exactly once. The world is then notified that a cycle has ended to that it can perform any necessary updates,
such as placing new treasures in the ocean.

2.8 Winning

The game continues for GAME LENGTH clock cycles. Once the time runs out, the team with the largest number of
treasure points wins.

3 Implementing actions

The bots have a list of actions that they can take via the do command, as described in Figure 1. Each action takes time
to execute, and the RCL thread is paused while the action executed. This is accomplished by using the expression
(delay e by n), as described in Part I of the project. The expression returned by a do command is a result value
wrapped in a delay expression that causes the required delay.

Each action returns a value, as described in subsequent sections. The effects of an action are visible to the world and
the other bots immediately when the action is performed (and before the bot is made to wait).

3.1 Possible actions

The figures on the following pages describe the possible actions in more detail. Here are some of the constants men-
tioned in the actions:

T EMPTY An empty spot
T CORAL Coral
T SQUID A squid
T OSQUID An opponent squid
T WHALE A whale
T OWHALE An opponent whale
T TREASURE A piece of treasure
T INK Ink

These and other constants are defined in cl/constants.ch and world/definitions.sml.

4

move The bot moves from one cell to an adjacent cell in the direction he is currently facing. The
bot can move only one cell at a time. Diagonal moves take proportionally larger number of
evaluation steps to complete. In general, there are many cases when a move might fail and
the bot stays in the same location.

• If a god tries to move, the move fails.

• If any bot tries to move onto a coral, the move fails.

• If any bot tries to move into a treasure, his team’s treasure count is incremented, the
treasure disappears and the move succeeds.

• If a squid tries to move into a square occupied by another squid, the move fails. If
the squid tries to move into a square occupied by a whale, the squid is destroyed.

• If a whale tries to move onto a square that is occupied by a squid, the move succeeds
and the squid is destroyed. If the whale tries to move into a square that is occupied
by another whale, the move fails.

• If a squid or a whale move into ink, the ink disappears and they become stuck in the
ink for the amount of time described before.

• Each time a whale moves, its breath count is decremented (even if the move fails). If
the breath count reaches zero, the whale is destroyed. On any step when the whale is
at the top row of the ocean, it refills his lungs with air, so its breath count is reset to
the maximum value.

turn A bot turns from his current direction to either the left or the right. A turn never fails for a
squid or whale. A turn always fails for a god.

ink If the bot trying to ink is not a squid, the action fails. When a squid inks, ink covers 3
squares directly behind the squid.

my status returns the current location, direction and status of the bot. If the bot is a squid, the status
is the remaining cooldown clock cycles; and if the bot is a whale, the status is the breath
count. If the bot is a god, the action fails.

team status returns the number of treasures, the number of squids and the number of whales for both
teams.

scan returns the objects next to the bot in each of the eight directions.

look returns the first item and the distance to that item in some direction from the position of the
bot.

inspect returns the object at a particular location.

set type sets the type of the next bot to be spawned (used by gods).

get time queries the number of clock cycles remaining in the game.

Figure 1: Overview of bot actions

5

Command Time Args Description Returns
A MOVE AT SMOVE for squid None Move forward R SUCCESS if the move was successful

AT WMOVE for whale R TREASURE if a treasure was collected
AT GOD for god R WON if a whale destroyed a squid

R FAIL otherwise
A TURN AT TURN int i Turn in direction i,

where i = T LEFT or
T RIGHT.

R SUCCESS for a squid or whale. If the direc-
tion input is invalid, the bot turns
left.

AT GOD for god R FAIL for a god.
A INK AT INK None Squirt ink backwards R SUCCESS if the bot is a squid and his

cooldown time period has ex-
pired.

R FAIL otherwise.
A MYSTAT AT MYSTAT None Returns the status of

the squid or whale
((x, y), d, s) where (x, y) is the bot’s location,

d is the bot’s direction. s is the re-
maining number of clock cycles
in the cooldown period for squid
or the number of moves remain-
ing until a whale runs out of air.

AT GOD for god R FAIL for a god.
A TEAMSTAT AT TEAMSTAT None Returns the status of

the bot’s team and the
number of bots and
treasures of the oppos-
ing team

t where t is (c, co, ns, nw, nso,
nwo). c and co are the number of
treasures the bot’s and opposing
teams have respectively, ns, nw,
nso, and nwo are the number of
squid and whales on the bot’s and
the opposing team respectively.

A SCAN AT SCAN None Returns the items in
the eight cells around
the squid/whale.

t Where t is of the form
(n,ne,e,se,s,sw,w,nw). n is
the item in the north cell, ne is

(int x, int y) Same action for a god. t the item in the northeast cell, etc.
R FAIL otherwise.

A LOOK AT LOOK int i Returns the nearest
object in direction i,
where i is 0 through 7
for a squid/whale.

(o, d) where o gives the type of the first
object, and d is the distance to
that object.

((int x, int y),int i) Same action for a god. (o, d)
R FAIL otherwise.

A INSPECT AT INSPECT (int x, int y) Returns the type of
the object at location
(x, y)

o where o gives the type of the ob-
ject at the specified location.

A SET TYPE AT SET TYPE int i Set the type of the next
bot to be spawned to
whale if i = T WHALE,

R SUCCESS if the bot is a god. If the bot
type input was invalid the next
bot spawned should be a squid.

otherwise squid R FAIL if the bot is not a god.
A GET TIME AT GET TIME Get the number of

clock cycles remaining
in the game

t where t is the number of clock
cycles remaining in the game.

A TALK AT TALK string s Prints s in the text win-
dow

R SUCCESS This action has been mostly im-
plemented for you for debugging
purposes.

Figure 2: Details of actions

6

4 RCL extensions

We have provided several RCL features and patterns that you might find useful when programming your bots. Note
that none of these features require you to change your evaluator.

4.1 Recursive functions

We have added support in the RCL language for recursive functions. You can define recursive functions by using the
keyword “rec”, as in the example below:

rec fact(n) = if n=0 then 1
else n * (fact (n-1))

in fact 3

The parser automatically expands recursive function definitions into an equivalent piece of code that implements
recursion using references. For the above program, the parser automatically generates an AST that corresponds to the
following program:

let fact = lref 0
let fact = fact := (fn n => = if n=0 then 1

else n * ((! fact) (n-1))
in fact 3

This translation requires no new AST nodes, so the resulting code requires no changes in the evaluator. Note, however,
that a new variable fact is being introduced. Make sure that your code does not use variable names that begin with
double underscores, as they might conflict with the variables automatically generated by the parser.

4.2 Includes

You may wish to write code that multiple RCL programs can use. You can now do this using the #include command.
The argument is the name of the file to include. Keep in mind that the path for the file should be relative to the directory
from which you run SML, not the directory in which the RCL file is located. If you execute SML from the project
directory and want to include in a bot the constants.ch file that we have written, which is in the cl directory, you
would use

#include cl/constants.ch

When this line is read, the file cl/constants.ch is automatically loaded and its contents replace the #include line.
You will most likely use #include to declare a bunch of commonly used functions. For instance, you might include
a file called functions.ch with #include functions.ch, which contains

let trymove = fn x => if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fn x => fn y => fn z => ...
in

The file being included should end with in so that any code following the #include declaration is treated as the body
of the let.

4.3 List library

We have provided a useful library for manipulating lists, located in the file cl/lists.ch. The functions in the list
library are similar to those in SML, as shown below. Lists are represented as either 0 (for the empty list) or as a pair
containing an item and the representation of another list. For example, the list [1, 2] is represented as (1,(2,0)).
In general, a list [x1, x2, . . . , xn] is represented in RCL as (x1, (x2, (. . . (xn, 0) . . .))). The list library defines the

7

following functions:

cons x y Add the item x to the head of the list y
nil Return an empty list
length l Return the length of the list l
nth l n Return the n-th list l
foldl f acc l Fold the function f over the list l with the initial accumulator acc, starting with the

first item
foldr f acc l Fold the function f, which is a curried function taking an item and the accumulator,

over the list l with the initial accumulator acc, starting with the last item
map f l Map the function f, which is a curried function taking an item and the accumulator,

over every item in the list l
append l1 l2 Append l1 to the front of list l2

All of the above functions are implemented using the rec construct.

4.4 Booleans

An abstraction for representing and manipulating booleans is provided in “booleans.ch”:

true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunction of its arguments
or A curried function that performs the logical disjunction of its arguments
not Logical negation

4.5 Random number generator

A simple random number generator is provided in rand.ch:
seed s initializes the generator with seed s
rand n Returns a random number between 0 and n

4.6 Splay trees

The library splay.ch implements a mutable ordered set abstraction, based on splay trees. It has good amortized
performance and exploits locality. It uses the lists library, so you need to include lists.ch before splay.ch.

Each element in the set is identified by a unique key, which may be the same as the element itself. Two elements
are considered distinct if they have different keys. Keys are a totally ordered set.

This abstraction can be used to represent an ordinary mutable set if an element is the same as its key. It can
represent a mutable map if an element is a pair of its key and a value.

splay create order keyOf an empty splay tree with key ordering defined by order and where the key of element
e is keyOf e.

splay add tree elem alt adds the element elem to the tree tree. If there is an element already with the same
key, it is replaced by the new element and the old element is returned (otherwise alt).

splay get tree key alt is the element in tree whose key is equal to key, or else alt if there is no such
element.

splay copy tree creates a new tree with the same contents as tree. This is a fast, constant-time oper-
ation that can be used to program in a functional style (if that is desired).

splay foldl body init tree folds over tree applying the function (body elem curr) to the elements in ascend-
ing order (similar to SML foldl).

splay print tree prints out the splay tree.

8

5 Java GUI

Your world program will talk to a Java program that graphically represents the game. Once the connection to the GUI
is established 1, your program will interact with the GUI using one command:

NetGraphics.report(msg)

where msg is a message that describes an event in the ocean. This is a string consisting of an event name, followed by
a number of parameters, separated by spaces. The following events are recognized by the GUI:

• "[CONNECTING]", initializes the connection with the GUI.

• "set <image> <x> <y>", where <image> is a string describing the object image (below is a list of possible
images), and <x>, <y> are two coordinates where the object must be added.

• "treasures <red treasures> <blue treasures>", where <red treasures> is an integer representing
the number of treasures the red team has and <blue treasures> is an integer representing the number of
treasures the blue team has.

• "time <t>", where <t> is an integer representing the number of clock cycles left in the game.

• "name <c> <n>", where <c> is "red" or "blue" and <n> is the name of the team.

• "chat <c> <message>", where <c> is "red" or "blue" and <msg> is the message to be printed on the screen.

We require <x> and <y> to be valid coordinates and to be a valid image name. The list of possible image names
for are listed below, where color is either "R" or "B" if the bot is on the red team or the blue team respectively.
Remember only squids and whales exist in the physical world, so no graphics support for gods!

Image Description
squidcd A squid of color c and facing in direction d
whalecd A whale of color c and facing in direction d
coral A coral
treasure A treasure
ink Ink
empty Empty square

A few sample commands that can be passed to NetGraphics.report() are shown below:

"set empty 3 7"
"set squidR0 4 7"
"set whaleB4 3 3"
"set coral 19 3"

When a bot moves, you have to restore the information in the old position. Then, set the new position for the bot. It
is important that you restore the old positions all at once, and then set the new positions. Otherwise, restoring the old
position of a bot may erase the image of another bot that just moved.

1This is done by invoking NetGraphics.setup, with a list of pairs (host, port) as arguments. For instance, NetGraphics.setup

[("localhost", 2005)] connects to the port 2005 on your machine.

9

6 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this project early. There are many things you will have to take into consideration when designing the
code for each section.

6.1 RCL interpreter

For the game to work, the RCL interpreter must be correct. We are not asking you to do any new implementation work
on the RCL interpreter, but you are expected to fix any bugs in the interpreter that you submitted for Project I.

6.2 Designing the world

Your first task is to implement the Twenty Thousand λs Under the Sea world in the files world/world.sml and
world/game.sml, and any files you choose to add. Note that you should add files only to the world and cl directories.
You must implement the actions listed in Section 3. You must also make sure that the actions bots take are rendered in
the graphic display using the interface detailed in Section 5. You can use the sample bot program we provide to test
your world.

6.3 Designing a team

Design a RCL team in a file cl/team.cl. Your team should be able to consistently beat the team provided by the
course staff. You will be graded on the number of times your team beats ours and the strategy which you use.

6.4 Documentation

You should submit some documentation regarding your project. Since this project is quite open-ended regarding the
way one may choose to implement it, documentation becomes even more important. In your documentation, you
should discuss all of the following:

• Implementation decisions: Justify the modules into which you broke down your code, including specific data
structures you chose to use. Much of this information may come from your design document submitted at
checkpoint time. If your strategy changed between the design document and your implementation, explain why.

• Specification changes: If refinements of the specifications given in the project are necessary, described these
changes and justify them. With such a complex program to implement, there are some things that may be some-
what ambiguous. Any such ambiguities brought to the attention of the course staff are clarified in this writeup
and often in the newsgroup. You will be responsible for making sure your program conforms to these clarifica-
tions; resolving these problems in a different way will result in a loss of points. However, any ambiguities we
do not clarify, please implement them as you see fit and document them.

• Validation strategy: Report how you validated your implementation. Explain and justify your testing strategy,
particularly testing the god, whales, squids, graphics and world.

6.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the world:

• Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
bot testing of the modules as you implement.

10

• Make sure that what is going on in the world matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoove you to maintain some sort of invariant between the
status of the world and the status of the graphics.

• Problems in the world might actually be problems with the bots. If you are using your own bots to test the
actions and something seems wrong, the bots could just as easily be at fault.

• Implement and test the actions one at a time. Don’t try to implement all of the actions and test them with one
single team. Start with easier actions and work up to the harder ones. For example, start with a simple action
like turn.

There are also many different strategies for building a good team. Consider, for instance, that your bots can communi-
cate and share memory that the opposing team cannot access. Use it to your advantage to coordinate your maneuvers.

6.6 Design review meeting

For this assignment, there will be a design review meeting halfway through the assignment. Each group will use CMS
to sign up for a meeting, on either April 19, 20, or 22. In the meeting, you are expected to 1) explain the design of
your system and give a brief description of the design of your RCL bots and 2) hand in a printed copy of a signatures
for each of the modules in your design. Everyone in the group should be prepared to discuss the design and explain
why the module signatures are the way they are. We will give you feedback on your design.

In designing module interfaces, think about what functionality needs to go into each module, how the interfaces
can be made as simple and narrow as possible, and what information needs to be kept track of by each module.

We strongly encourage that you come discuss your design with the course staff during consulting/office hours
before and after the meetings.

6.7 Final submission

You will submit: 1) a zip file project.zip of all files in your project directory, including those you did not edit;
and 2) your documentation file doc.txt (or doc.pdf). Although you will submit the entire project directory, you
should only add new files to the world and cl folders; the other folder must remain unchanged. If you add new sml
or sig files, be sure to modify sources.cm.

Your submission should unzip a project folder, which contains your sources.cm and all of the other directories.
We expect to be able to unzip your submission, and run CM.make() in the newly created directory to compile your
code without errors or warnings. Submissions that do not meet this criterion will be docked points.

7 Tournament

The CS312 Spring 2007 tournament will be held of May 8, 2007 in Upson B17 from 7:30 to 9:30pm. The tournament
is a competition between the RCL bots of the students who wish to compete. Each group may use CMS to submit
a RCL team to the tournament. Members of the winning student team will receive a prize and bragging rights. All
students are expected to attend the tournament even if they do not submit a team. Members of the course staff may
also bring their own teams for post-tournament grudge matches. There will be free food. Not to be missed!

8 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, you should only edit
and/or create new files in the world and cl directories. Here is a list of all the files and their functions.

11

gfx/* Graphics files for the GUI
world/sampleocean.sml Defines a sample ocean
world/world.sig Signature file for handling an action
world/world.sml Functions for handling an action from a bot and implementing all local

actions for locking memory
world/game.sig Signature file for the functions contained in the game
world/game.sml Handles the game state
world/loop.sml Starts and continues the main game loop
net/*.sml Network SML code for communicating with the GUI
gui/*.class The GUI class files
cl/*.ch RCL libraries
cl/random team.cl Sample team program

9 Running the game

You will need Java version 1.5 in order to run the graphics of the game. Although you could run the game without the
graphics, it is not recommended, since it is difficult to tell what is going on.

These are the steps you take to run a game on the local machine.

1. Start the GUI. Start a command prompt (in Windows) or a terminal (in *nix). To start a command prompt
in Windows, click on the Start menu, go to Run and type in command. At the command prompt, go the the
project/gui directory and run "java Gui <host> <port>". This tells the graphics program to start up and
connect to the SML world running on <host> at port <port>. The <host> and <port> parts are optional. The
default (if you run "java Gui") is localhost:2005. Once the GUI is started, an ocean will pop up on your
screen. The ocean will remain dark until the SML program has connected to it.

2. Start your SML program. After you start the GUI, run your SML program (that includes the evaluator, the
world, and the networking code that talks to the GUI). Go to the project directory and run CM.make() to com-
pile the program. Then run "GameLoop.start(<host-list>, <red team-job>, <blue team-job>)",
where <host-list> is a list of hosts (represented as hostname and port pairs), and <red team-job> and
<blue team-job> are strings representing file names you want to use as red and blue teams. Alternatively, you
can run T.test(), which starts up a game on localhost:2005.

The game should now begin. If at any point you need to recompile and start the game over, you also need to restart
the graphics program.

12

10 Written problem: Complexity analysis (10 pts)

A sorted array (or vector) is an appealing data structure for storing ordered data, because it offers the same O(lg n)
lookup time as a balanced binary tree but has a compact representation and a good constant factor in front of lg n.
Unfortunately it doesn’t support fast insertion.

Elmer Tyes has a idea for how to build a faster mutable ordered set abstraction. Instead of storing all the elements
in the sorted array, he will maintain a separate short linked list of up to m(n) elements, where m(n) is some function
yet to be determined.

type set = { sorted: element array ref,
recent: element list ref }

When the data structure is searched, both the list recent and the array sorted (of length n) are traversed. When
an element is added to the data structure, it is appended to the list in constant time. If the recent list becomes longer
than or equal to m(n) elements, the m(n) elements are sorted using a mergesort and then merged in linear time with
the n elements, which are already in order.

a. What is the complexity of a single lookup on this data structure, expressed as a function of m(n) and n? To
achieve the complexity O(lg n) as with a balanced binary tree, what should Elmer set m(n) to?

b. The goal with this structure was to make inserts cheaper. As a function of m(n) and n, what is the complexity
of m(n) inserts into this structure, starting from an empty recent list? (this should trigger exactly one sort of
recent and merge into sorted)

c. Elmer wants to make inserts and lookups as cheap as possible. We can actually bring both down to an amortized
complexity of O(

√
n). Your goal is to prove this complexity using potential functions. Recall that the amortized

complexity of an operation changing the structure s to s′ is defined as actual cost of operation + Φ(s′)− Φ(s).

Provide a Φ(s) and a definition of m(n), and use them to show that the complexity of 1 lookup is O(
√

n) and
amortized complexity of 1 insert is O(

√
n).

To submit: Turn in a file complexity.txt in simple ASCII format containing the solution to this problem.

13

	Introduction
	Updates to problem set
	Use of RCL

	Game rules
	The ocean
	Directions
	Teams
	Attacks
	Squid attack
	Whale attack

	Creating new bots
	Collecting treasure
	Scheduling
	Winning

	Implementing actions
	Possible actions

	RCL extensions
	Recursive functions
	Includes
	List library
	Booleans
	Random number generator
	Splay trees

	Java GUI
	Your tasks
	RCL interpreter
	Designing the world
	Designing a team
	Documentation
	Things to keep in mind
	Design review meeting
	Final submission

	Tournament
	Provided source code
	Running the game
	Written problem: Complexity analysis (10 pts)

