
CS 312 Project (Part II): λ-Craft

Assigned: November 16, 2006 Final submission due: 11:00PM, December 10, 2006
Checkpoint meetings: November 27, 28 and 29, 2006

1 Introduction

In the previous part of the project, you were asked to develop an interpreter for a concurrent programming language.
This part will allow you to put that language to good use: you will develop a game called λ-Craft. In terms of pro-
gramming, you will have to implement the world for this game (in SML), as well as the code for the players (in CL).
We have provided some graphical support that you can use to display the progress of the game. You will keep the
same partner you had for part I; consult Prof. Rugina if this is exceptionally problematic.

This project places few constraints on how you implement it. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code. You have to start by laying out a design of how you want to build your system.

For this part there will be a checkpoint meeting halfway through the assignment where you will meet with a course staff
member to discuss your design. You are required to submit a printed copy of the signatures for each of the modules
included in your design.

1.1 Source code

Source code for this project is available in CMS.

1.2 Use of CL

The game of λ-Craft has three kinds of players or units: wizards, archers and knights. (The graphics used for the units
are based on graphics from Blizzard Entertainment’s WarCraft II.) These units will be driven by a program written in
the CL language. You will implement not only the game but also a team to play the game. Your evaluator from part I
will run this program. You will need to copy your part I code into the part II distribution in order to compile it. You
should not have to change your evaluator code except perhaps to fix bugs.

2 Game Rules

λ-Craft is a game played by two teams, the red team and a blue team. The object of the game is to capture the enemy
wizard. The red wizard is named Zardoz and the blue one - Zodraz. Each team will have archers and knights to help
achieve this goal. The first team to capture the enemy wizard wins. If for some reason a wizard program terminates,
that wizard’s team loses.

2.1 The Field

λ-Craft is played on a rectangular field of square cells. Each cell can hold exactly one of the following items: a
mountain, a λ-mine, a wizard, an archer, a knight or an archer’s arrow. The field is initialized with a map that specifies
mountain locations. An example field is given in file samplefield.sml.

1

• Size: We will restrict all fields to be 32x16.

• Cells: Cells on the field are identified by 2-dimensional coordinates, with (0,0) being in the upper left corner
and (31,15) in the lower right corner. The first number identifies the left-right (x) coordinate, and the second
number identifies the up-down (y) coordinate.

• Mountains: mountain are placed at certain location on the field. They are stationary and no character can walk
through or occupy the same cell as a mountain.

• Starting point: Zardoz and Zodraz will start at opposite sides of the field facing each other. Zardoz will be
placed at (0,8) and Zodraz will be at (31,7). The input map will not have mountains on the start locations of the
wizards nor will any start location be completely surrounded by mountains.

2.2 Directions

Each square has 8 neighbors. The units and arrows can move to any of a square’s neighbors. However, a diagonal
move will take longer since it covers more distance. The directions are numbered 0 to 7 as follows:

2.3 Teams

Each team starts a new game with a wizard and enough λs to spawn exactly 5 units. Each team is controlled by one
CL program. The first unit spawned is the team’s wizard. Each unit occupies a location on the field and has a direction
in which it is facing. The units can move around the field, battle each other and try to capture the enemy wizard.

2

2.4 Attacks

2.4.1 Wizard attack

Zardoz and Zodraz are all-powerful wizards who can temporarily freeze any unit (even a teammate) at any location
on the field. If he aims at a location with a knight or an archer, the unit will freeze for 1.5 × number of cycle it takes
to move. If he aims at a location with an arrow, then the arrow is destroyed. This attack drains some of the wizards
mana, so the wizard cannot perform any other action or computation for the number of cycles it takes to move. Both
wizards have a force field that protects them against any freeze attacks.

2.4.2 Archer’s attack

An archer can shoot arrows by invoking the shoot action. The arrow travels at a speed four times that of the units. It
can travel a distance of up to eight squares. If the arrow hits a knight or an archer, the unit is destroyed with probability
(0.21 - 0.01x), where x is the number of squares the arrow has traveled. If the arrow hits a mountain, a λ-mine or a
wizard then it is destroyed. If the arrow collides with another arrow, then both arrows are destroyed.

2.4.3 Knight’s attack

A knight attacks if he tries to move onto a square that contains an enemy knight or archer. If the knight’s opponent
has his back to the knight (i.e. facing in the same direction as the knight), he is destroyed with probability 0.7. If the
opponent is facing sideways, he’s destroyed with probability 0.5. If he’s facing towards the knight (i.e. in the opposite
direction as the knight), he is destroyed with probability 0.35.

2.5 Acquiring new units

After the game starts, both teams can spawn more archer or knight units by using the spawn command in CL. The
wizards are the only units that can directly spawn more units. To specify the type of the next unit to be spawn, the
wizard should call the set type action using the do command. A unit spawned appears in a nearest free tile to his
team’s wizard. If an team has not lifted enough λs, then its wizard cannot spawn new units. It is important to note
that a unit does not necessarily know if the team has enough λs and therefore might try to spawn randomly. It is the
responsibility of the world to check if a unit is a wizard and if that wizard’s team has enough λs to spawn an additional
unit. If this check fails, then the unit who attempted the spawn should proceed normally. If a wizard is in an team of
x− 1 units, then the xth unit costs x λs.

2.6 λ lifting

Any unit can lift λs from a λ-mine that is located on the field. At the beginning of the game three λ-mines are placed
randomly on the field. Each mine contains six λs. After the mine is emptied, it disappears and a new λ-mine appears
immediately at a different, randomly generated location such that there is one square between the location of the mine
and any unit.

2.7 Scheduling

The amount of time each team is allowed to evaluate is important to the fairness of the game. Moreover, the arrows
have to be given time to move when required. You are going to use your single-step evaluator from Problem Set 5 to
evaluate the CL code for the units. The order of the evaluation must be fair to both teams.

In every clock cycle, every unit of each team is stepped exactly once; the world is then notified that a cycle has ended
to that it may update information, for instance, move the arrows.

3

2.8 Actions

The units interact with the world by using the do command. Each action takes a certain number of clock cycles. A
clock cycle is a single evaluation step for all of the units. In other words, if a unit performs an action that takes 100
clock cycles, it takes the time of that specific unit performing 100 evaluation steps, not 100

No. of units steps.

Here is a description of the possible actions.

4

move The unit moves from one cell to an adjacent cell in the direction it is currently facing. The
unit can move only one cell at a time. In general, there are many cases when a move might
fail and the unit will stay in the same location.

• None of the units are trained to climb mountains. So if any unit tries to move onto a
mountain, the move fails

• If any unit tries to move onto a λ-mine, he lifts a λ from the mine, but remains in his
original location.

• If an archer or a knight moves onto an arrow, then the arrow hits the unit and he
is destroyed with the probability described above. If a wizard tries to move onto
an arrow the arrow is destroyed. In both cases if the unit survives, then the move
succeeds.

• If an archer tries to move onto a square that is occupied by another archer or knight
then the move fails.

• If a knight tries to move onto a square that is occupied by an archer or knight of the
opposing team, this is considered an attack. (If the unit is on the attacker’s team, the
move fails.) If the knight destroys his opponent, he is moved onto his opponent’s
square.

• If a wizard tries to move onto a square occupied by another unit, the move fails.

• If a knight or archer moves onto a square with an enemy wizard, the unit captures the
wizard and the game ends. If the wizard is on the unit’s team, then the move fails.

turn A unit turns from his current direction to either the left or the right. A turn never fails; if
the direction passed in is invalid, the unit turns in right or left arbitrarily.

shoot If the unit trying to shoot is not an archer, the shoot fails. When an archer shoots, the arrow
leaves the archer in the direction the archer is currently facing. If the next square in the
direction an archer is facing is occupied, then the result is as described in Archer’s attack
section.

freeze The wizard can freeze a certain location on the field. If the unit trying to freeze is not a
wizard, the freeze fails. If the location is occupied by a unit that’s not the enemy wizard,
the freeze succeeds. If the location has an arrow, the arrow is destroyed. Otherwise, the
freeze fails.

my status returns the current location and direction of the unit.

team status returns the number of λs the unit’s team has, the number of units on his team, the location
of his wizard, the number of units on the enemy team, and the list of the PIDs (process IDs)
of all units currently alive on his team.

scan returns the objects next to the unit in each of the eight directions.

look returns the first object and the distance to that object in some direction from the position of
the unit.

inspect returns the object at a particular location.

set type sets the type of the next unit to be spawned.

5

3 Implementing actions

The units have a list of actions that they can take via the do e command. Each action takes a specified amount of time
to execute. Handling the time actions take is done through delay e by n expressions, as described in Part I of the
project. A unit that calls an action gets returned a value wrapped in a delay expression, which produces the required
delay.

Each action returns an Action-Specific Return (ASR), as described in subsequent sections. The results of an action
should be visible to the world and the other units when the action is performed and before the unit is made to wait.

3.1 Possible actions

The figures on the following pages describe the possible actions in more detail. Here are some of the constants
mentioned in the actions:

T EMPTY Empty spot
T MOUNTAIN A mountain
T WIZARD The one (of two), the (almost) only, the most powerful Zardoz! (or Zodraz)
T OWIZARD The enemy wizard
T ARCHER An archer
T OARCHER An enemy archer
T KNIGHT A knight
T OKNIGHT An enemy knight
T LAMBDAMINE A λ-mine
T ARROW An arrow

These and other constants are defined in cl/constants.ch and world/definitions.sml.

6

Command Base Args Description ASR
Time

A MOVE AT MOVE None Move forward R SUCCESS if the move was successful
R LIFTED if the unit tried to move into a λ-

mine
R WON if a knight tried to move onto

an enemy archer or knight and
won the fight, then the knight
is moved onto the enemy unit’s
square

R LOST if a knight tried to move onto an
enemy archer or knight and lost
the fight, then the knight is not
moved

R FAIL otherwise
A TURN AT TURN Int i Turn in direction i,

where i = T LEFT or
T RIGHT.

R SUCCESS in all cases. If the direction
passed in was invalid the unit will
turn left.

A SHOOT AT SHOOT None Shoot an arrow for-
ward

R SUCCESS if the unit is an archer

R FAIL if the unit is not an archer
A FREEZE AT WIZ FREEZE (x,y) Freeze location (x,y) R SUCCESS if the unit is a wizard and location

(x,y) contains an archer or knight
R DESTROYED if the unit is a wizard and location

(x,y) contains an arrow
R FAIL if the unit is not a wizard or the

location (x,y) contains another
item

A MYSTAT AT MYSTAT None Returns the status of
the unit

[(x, y), d] where (x, y) is the unit’s loca-
tion, d is the direction the unit is
currently facing

A TEAMSTAT AT TEAMSTAT None Returns the status of
the unit’s team and the
number of units on the
enemy team

list where list is
[l, n, no, pidw, (x, y), pidsa, pidsk]
and l is the number of λs the
team has, n and no is the number
of units on the player’s and the
enemy’s team respectively, pidw

and (x, y) are the wizard’s pid
and position, pidsa is a list of
archer pids, pidsk is a list of
knight pids

A SCAN AT SCAN None Returns the items in
the eight cells around
the unit.

l Where l is of the form
[n,ne,e,se,s,sw,w,nw]. n is
the object in the north cell, ne is
the object in the northeast cell,
etc.

A LOOK AT LOOK Int i Returns the nearest
object in direction
i, where i = DIR N,
DIR NE, DIR E, etc.

[o, d] where o gives the type of the first
object, and d is the distance to
that object.

A INSPECT AT INSPECT (Int x, Int y) Returns the type of
the object at location
(x, y)

o where o gives the type of the ob-
ject at the specified location.

A TALK AT TALK String s Prints s in the text win-
dow

R SUCCESS

A SET TYPE AT SET TYPE Int i Set the type of the next
unit to be spawned
to knight if i =
T KNIGHT, otherwise
archer

R SUCCESS if the unit is a wizard. If the unit
type input was invalid the next
unit spawned should be an archer.

R FAIL if the unit is not a wizard

Figure 1: List of Actions

7

4 CL Extensions

We point out that several CL features and patterns that you might find useful when programming your units. Note that
none of these features require you to change your evaluator.

4.1 Recursive functions

We have added support in the CL language for recursive functions. You can define recursive functions by using the
keyword “rec”, as in the example below:

rec fact(n) = if n=0 then 1
else n * (fact (n-1))

in fact 3

The parser automatically expands recursive function definitions into an equivalent piece of code that implements
recursion using references. For the above program, the parser automatically generates an AST that corresponds to the
following program:

let fact = lref 0
let fact = fact := (fn n => = if n=0 then 1

else n * ((! fact) (n-1))
in fact 3

The above translation requires no new AST nodes, so the resulting code requires no changes in the evaluator. Note,
however, that a new variable fact is being introduced. Make sure that your code does not use variable names that
begin with double underscores, as they might conflict with the variables automatically generated by the parser.

4.2 Includes

You may wish to write code that multiple CL programs can use. You can now do this using the #include command.
The argument is the name of the file to include. Keep in mind that the path for the file should be relative to the
directory from which you run SML, not the directory in which the CL file is located. If you execute SML from the
project directory and want to include in a unit the constants.ch file that we have written, which is in the cl directory,
you would use

#include cl/constants.ch

When this line is read, the file cl/constants.ch is automatically loaded and its contents replace the #include line.
You will most likely use #include to declare a bunch of commonly used functions. For instance, you might include
a file called functions.ch with #include functions.ch, which contains

let trymove = fn x => if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fn x => fn y => fn z => ...
in

The file being included should end with in so that any code following the #include declaration is treated as the body
of the let.

4.3 List library

We have provided a useful library for manipulating lists, located in the file cl/lists.ch. The functions in the list library
are similar to those in SML, as shown below. Lists are represented as either 0 (for the empty list) or as a pair containing
an item and the representation of another list. For example, the list [1, 2] is represented as (1,(2,0)). In general, a list
with elements x1, x2, . . . , xn is represented in CL as (x1, (x2, (. . . (xn, 0) . . .))). The list library defines the following

8

functions:

cons x y Add the item x to the head of the list y
nil Return an empty list
length l Return the length of the list l
nth l n Return the n-th list l
foldl f acc l Fold the function f over the list l with the initial accumulator acc, starting with the

first item
foldr f acc l Fold the function f, which is a curried function taking an item and the accumulator,

over the list l with the initial accumulator acc, starting with the last item
map f l Map the function f, which is a curried function taking an item and the accumulator,

over every item in the list l
append l1 l2 Append l1 to the front of list l2

All of the above functions are implemented using the rec construct.

4.4 Other libraries

An abstraction for representing and manipulating booleans is provided in “booleans.ch”:

true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunction of its arguments
or A curried function that performs the logical disjunction of its arguments
not Logical negation

Finally, a simple random number generator is provided in “rand.ch”:
seed s initializes the generator with seed s
rand n Returns a random number between 0 and n

5 Java GUI

Your world program will talk to a Java program that graphically represents the game. Once the connection to the GUI
is established 1, your program will interact with the GUI using one command:

NetGraphics.report(msg)

where msg is a message that describes an event on the field. This is a string consisting of an event name, followed by
a number of parameters, separated by spaces. The following events are recognized by the GUI:

• "[CONNECTING]", initializes the connection with the GUI.

• "set <image> <x> <y>", where <image> is a string describing the object image (below is a list of possible
images), and <x>, <y> are two coordinates where the object must be added.

• "lambdas <red lambdas> <blue lambdas>", where <red lambdas> is an integer representing the num-
ber of λs the red team has and <blue lambdas> is an integer representing the number of λs the blue team
has.

We require <x> and <y> to be valid coordinates and to be a valid image name. The list of possible image names
for are listed below, where color is either "R", "B" or "F" if the unit is on the red team, the blue team or frozen
respectively. Remember only archers and knight may be frozen so there is no graphics support for frozen wizards!

1This is done by invoking NetGraphics.setup, with a list of pairs (host, port) as arguments. For instance, NetGraphics.setup

[("localhost", 2005)] connects to the port 2005 on your machine.

9

Image Description
wizardcd A wizard of color c and d is the integer direction the wizard is facing
archercd An archer of color c and d is the integer direction the archer is facing
knightcd A knight of color c and d is the integer direction the knight is facing
mountain A mountain
lambdamine A λ-mine
arrow An arrow

A few sample commands that can be passed to NetGraphics.report() are shown below:

"set empty 3 7"
"set wizardR0 4 7"
"set archerB4 3 3"
"set knightF4 19 3"

When a unit moves, you have to restore the information in the old position. Then, set the new position for the unit. It
is important that you restore the old positions all at once, and then set the new positions. Otherwise, restoring the old
position of a unit may erase the image of another unit that just moved.

10

6 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this project early. There are many things you will have to take into consideration when designing the
code for each section.

6.1 CL interpreter

For the game to work, the CL interpreter must be correct. We are not asking you to do any new implementation work
on the CL interpreter, but you are expected to fix any bugs in the interpreter that you submitted for Project I.

6.2 Designing the world

Your first task is to implement the λ-Craft world in the files world/action.sml and world/game.sml, and any files
you choose to add. Note that you should add files only to the world and cl directories. You must implement the
actions listed in Section 3. You must also make sure that the actions units take are rendered in the graphic display
using the interface detailed in Section 5. You can use the sample unit program we provide to test your world.

6.3 Designing an team

Design a CL team in a file cl/team.cl. Your team should be able to consistently beat the team provided by the course
staff. You will be graded on the number of times your team beats ours and the strategy which you use.

6.4 Documentation

As with all of the assignments up to this point, you should submit some documentation regarding your project. Since
this project is quite open-ended regarding the way one may choose to implement it, documentation becomes even more
important. In your documentation, you should discuss all of the following:

• Implementation decisions: Justify the modules into which you broke down your code, including specific data
structures you chose to use. Much of this information may come from your design document submitted at
checkpoint time. If your strategy changed between the design document and your implementation, explain why.

• Specification changes: If refinements of the specifications given in the project are necessary, described these
changes and justify them. With such a complex program to implement, there are some things that may be some-
what ambiguous. Any such ambiguities brought to the attention of the course staff are clarified in this writeup
and often in the newsgroup. You will be responsible for making sure your program conforms to these clarifica-
tions; resolving these problems in a different way will result in a loss of points. However, any ambiguities we
do not clarify, please implement them as you see fit and document them.

• Validation strategy: Report how you validated your implementation. Explain and justify your testing strategy,
particularly testing the wizard, archer, knight, graphics and world.

6.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the world:

• Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

11

• Make sure what is going on in the world and what is going on in the graphics match. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoove you to maintain some sort of invariant between the
status of the world and the status of the graphics.

• Problems in the world may actually be problems with the units. If you are using your own units to test the
actions and something seems wrong, the units could just as easily be at fault.

• It is best to implement and test the actions one at a time. Don’t try to implement all of the actions and test
them with one single team. Start with the easier actions and work up to the harder ones. An actions like turn is
probably easier to implement relative to the other actions.

There are also many different strategies for building a good team. Consider, for instance, that your units can commu-
nicate and share memory that the enemy team cannot access. Use it to your advantage to coordinate your maneuvers.

6.6 Checkpoint meeting

For this assignment, there will be a checkpoint meeting halfway through the assignment. These meetings will be
held on November 27, 28, and 29. You are expected to 1) explain the design of your system and give a brief descrip-
tion of the design of your CL units and 2) hand in a printed copy of a signatures for each of the modules in your design.

Moreover, we strongly encourage that you to come discuss your design with the course staff during consulting/office
hours before and after the meetings.

6.7 Final submission

You will submit: 1) a zip file project.zip of all files in your project directory, including those you did not edit;
and 2) your documentation file doc.txt (or doc.pdf). Although you will submit the entire /project directory, you
should only add new files to the world and cl folders; the other folder must remain unchanged. If you add new sml
or sig files, be sure to modify sources.cm.

Your submission should unzip a /project folder, which contains your sources.cm and all of the other directories.
We expect to be able to unzip your submission, and run CM.make() in the newly created project directory to compile
your code without errors or warnings. Note: Submissions that do not meet this criterion will be docked points.

7 Tournament

Sometime during finals week, most likely on December 12, 2006, we will hold a competition between the CL players
of the students who wish to compete. Each group may submit a CL team that will play against other students teams.
Details on the tournament time and location and the submission procedure will be available later.

8 Given Files

Many files are provided for this assignment. Most of them, you will not need to edit at all. In fact, you should only
edit and/or create new files in the /world and /cl directories. Here is a list of all the files and their functions.

12

gfx/* Graphics files for the GUI
world/samplefield.sml Defines a sample field
world/action.sig Signature file for handling an action
world/action.sml Functions for handling an action from a unit and implementing all local

actions for locking memory
world/game.sml Handles the game state
world/game.sig Signature file for the functions contained in the game
world/loop.sml Starts and continues the main game loop
net/*.sml Network SML code for communicating with the GUI
gui/*.class The GUI class files
cl/*.ch Libraries for lists and booleans
cl/sampleunit.cl Sample team program

9 Running the game

You will need Java version 1.5 in order to run the graphics of the game. Although you could run the game without the
graphics, it is not recommended, since it would be nearly impossible to tell what is going on.

These are the steps you’d take to run a game on the local machine.

1. Start the GUI. Start a command prompt (in Windows) or a terminal (in *nix). To start a command prompt
in Windows, click on the Start menu, go to Run and type in command. At the command prompt, go the the
project/gui directory and run "java Gui <host> <port>". This tells the graphics program to start up and
connect to the SML world running on <host> at port <port>. The <host> and <port> parts are optional. The
default (if you run "java Gui") is localhost:2005. Once the GUI is started, a field will pop up on your
screen. The field will remain dark until the SML program has connected to it.

2. Start your SML program. After you started the GUI, run your SML program (that includes the evaluator, the
world, and the networking code that talks to the GUI). Go to the project directory and run CM.make() to
compile the program. Then run "Game.start(<host-list>, <red team-job>, <blue team-job>)",
where <host-list> is a list of hosts (represented as hostname and port pairs), and <red team-job> and
<blue team-job> are strings representing file names you want to use as red and blue teams. Alternatively, you
can run T.test(), which starts up a game on localhost:2005.

The game should now begin. If at any point you need to recompile and start the game over, you will also need to
restart the graphics program.

13

	Introduction
	Source code
	Use of CL

	Game Rules
	The Field
	Directions
	Teams
	Attacks
	Wizard attack
	Archer's attack
	Knight's attack

	Acquiring new units
	 lifting
	Scheduling
	Actions

	Implementing actions
	Possible actions

	CL Extensions
	Recursive functions
	Includes
	List library
	Other libraries

	Java GUI
	Your tasks
	CL interpreter
	Designing the world
	Designing an team
	Documentation
	Things to keep in mind
	Checkpoint meeting
	Final submission

	Tournament
	Given Files
	Running the game

