
CS 312 Project (Part II): ML-Man

Assigned: November 21, 2005 Final submission due: 9:00AM, December 14, 2005
Checkpoint submission: 11:59PM, November 30, 2005

1 Introduction

In the previous part of the project, you were asked to develop an interpreter for a concurrent programming language.
This part will allow you to put that language to good use: you will develop a game called ML-Man, based on the
arcade game Pac-Man. In terms of programming, you will have to implement the world for this game (in SML), as
well as the code for the characters (in CL). We have provided some graphical support that you can use to display the
progress of the game graphically. You will keep the same partner you had for part I; consult Prof. Pingali if this is
exceptionally problematic.

This part places few constraints on how you implement it. This does not mean you can abandon what you’ve
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code. You have to start by laying out a design of how you want to build your system.

For this part there will be acheckpoint submissionhalfway through the assignment. You are required to submit a
document that describes the design of your system and as much of the remaining code as you have by that point.

1.1 Source code

Source code for this project is available in CMS.

1.2 Use of CL

The game of ML-Man has two kind of characters or players: MLman and the ghosts. These players will be driven by
programs written in the CL language. You will implement not only the game but also at least one MLman and one
ghost program to play the game. Your evaluator from part I will run this program. You will need to copy your part
I code into the part II distribution in order to compile it. You should not have to change your evaluator code except
perhaps to fix bugs.

2 Game Rules

2.1 Players

The game consists of two kind of players:

• MLman: Its goal is to collect as much points as possible. It can collect points by eating dots, power pills, and
ghosts whenever it can.

• The ghosts: Their goal is to intercept and capture MLman. There are four ghosts in the game: Zardoz(red),
Eager (blue), Greedy (pink), Curried (orange)

2.2 The Board

An example of a ML-Man board is depicted below:

1

Any maze contains halls divided by walls. MLman and the ghosts navigate around the the halls, which may contain
dots or power pills in the floor. The maze may contain tunnels. Tunnels are shortcuts that let MLman wrap around the
board. A tunnel entry is an empty space, the exit is another empty space at another point in the maze. In the example
above there is one tunnel in the middle row. A special area called thepen is a box where all ghosts start. Ghosts can
exit the pen at appropriate times, and they come back to it when they are captured by MLman. Neither MLman nor
a live ghost can enter back to the pen. MLman starts directly near the middle of the board, the accurate position is a
parameter in our game.

2.2.1 Specifiying the board and starting points

The board shown above is specified in filesampleboard.sml.

• Size: We will restrict all mazes to have size 28x31.

• Cells: Cells on the board are identified by 2-dimensional coordinates, with (0,0) being in the upper left, and
(27,30) in the lower right corner. The first number identifies the left-right (x) coordinate, and the second number
identifies the up-down (y) coordinate.

• The pen: The pen is defined by a rectangle ((xt,yt),(xb,yb)) and a door (xd,yd) which is part of the border of the
rectangle. The cell (xt,yt) is the top left corner, (xb,yb) is the bottom right corner of the pen, and (xd,yd) is the
door where ghosts can come out from the pen. All cells in the border of the pen (except the door) must be a
wall. In the example above, the pen is defined by the rectangle ((11,13), (16,15)), and door (14,13).

• Tunnels: Tunnels are specified by directed pairs ((xin,yin), (xout,yout)), where (xin,yin) is the entry of the
tunnel, and (xout,yout) is the exit. Since tunnels must be in the border, either xin, yin must be equal to a border
(0 or boardsize - 1). Similarly with xout and yout. In the example above, the horizontal tunnel is specified by two
pairs: one specifying the tunnel from left to right ((0,14),(27,14)), the other from right to left ((27,14),(0,14)).

• Dots, pills, walls: The rest of the maze is specified by a list of coordinates where there are dots on the floor,
power pills and walls. All these sets of coordinates must be disjoint.

• Halls: Any other cell not specified in any of the above is considered an empty space.

• Starting point: In the example above, MLman starts in position (14,23), ghosts always start inside the pen
(position (14,15) in this example).

2

2.3 Playing the game

The game starts with one single CL program for MLman, and a single CL program for the ghosts.
After the game start, the ghost program can spawn more ghosts using thespawn command in CL. There is a limit

of 4 ghosts allowed at a time. The game engine is responsible for checking this limit, if a ghost tries to spawn a new
ghost, and there are already 4 ghosts in the game, the game engine will terminate the spawn process, and allow the
parent process to continue running.

All ghosts start in the pen. To give MLman some advantage, The ghosts wait until ML-man makes a certain
numberki of moves (see definitions.sml). The first ghost waits is always free, the second waitsk, the third waits2k,
and the last waits3k. MLman starts with 3 lives, and 0 points.

The goal for MLman is to collect the maximum number of points within his number of lives. MLman can move
around the board and eat dots (10 points each). Whenever he eats a power pill (50 points) he becomes energized for
600000 cycles. During that time, he can chase ghosts and capture them too. The ghosts are worth 700 points.

The goal of the ghosts is to capture MLman as fast as possible, preventing him from collecting points. The ghosts
can wander around and try to find MLman. If MLman is not energized they can capture MLman (making MLman lose
a life, and restarting every player to their original position). When MLman is energized, they try to run away (to avoid
being captured). They run two times slower when MLman is energized. If they are captured they become harmless,
and they need to find their way back to the pen in order to become scary ghosts again.

When MLman is captured and the players are restarted, the board of the game is not changed. When MLman
finishes eating all dots and power pills, the level is completed and a new level is loaded. All levels have the same
configuration, same starting point for all players, same number and location for dots and power pills.

2.4 Actions

MLman and the ghosts interact with the world by using thedo command. Each action takes a certain number of clock
cycles. Aclock cycleis a single evaluate step for all of the characters. In other words, if a ghosts performs an action
that takes 100 clock cycles, it takes the time of that specific ghost performing 100 evaluation steps, not100

No. of players
steps. The amount of time each player is allowed to evaluate is important to the fairness of the game. You are going to
use your single-step evaluator from Project Part I to evaluate the CL code for the players. The order of the evaluation
must be fair so that each ghost and MLman are treated equally. In every clock cycle, every player is stepped exactly
once; the world is then notified that a cycle has ended, so that it may update information.

Here is a description of the possible actions.

move The player moves from one tile to an adjacent tile in the direction it is currently facing. The
player can only move one tile at a time. If any player attempts to move into a wall, the move
fails and the player stays in its current location. Same happens when a ghost tries to enter
a tunnel, or when players try to enter/exit the pen and they are not allowed. When a ghost
and MLman meet in the same tile, either MLman is captured (if he was not “energized”) or
the ghost is captured (if MLman was “energized”).

turn A player turns from the current direction to either the left, the right, or 180o. A turn never
fails; if the direction passed in is invalid, the player turns left.

my status returns the current status for a player. This includes the coordinates of the player, the
direction the player is currently facing, whether the MLman is currently energized, and (if
it is a ghost) whether it has been captured.

3

scan returns the objects next to the player in the four cardinal directions. This can be used for a
player to detect corners and intersections of halls, entrance to a tunnel, door of the pen.

look returns the first object (and the distance to that object) in some direction from the position
of the player.

look no dots returns the first wall, ghost or MLman (and the distance to it) in some direction from the
position of the player.

inspect returns the object at a particular location.

nearest dots (only for MLman) returns the location of the five nearest dots.

find power pills (both MLman and ghosts) returns the location of the remaining power pills.

find ghosts (only for MLman) returns the location of the ghosts.

find pen (only for ghosts) returns the coordinates of the door to the pen.

3 Implementing actions

The players have a list of actions that they can take via thedo e command. Each action takes a specified amount of
time to execute. Handling the time actions take is done throughdelay e by n expressions, as described in Part I of
the project. A player that calls an action gets returned to it the return value, wrapped in adelay expression which
produces the required delay.

Each action returns anAction-Specific Return(ASR), as described in subsequent sections.
The results of an action should be visible to the world and the other players when the action is performed and

before the player is made to wait.

3.1 Possible actions

The figures on the following pages describe the possible actions in more detail. Here are some of the constants
mentioned in the actions:

T EMPTY Empty spot
T WALL A wall
T TUNNEL A tunnel entrance
T GHOST A ghost
T GHOST V A vulnerable ghost
T MLMAN The only, the greatest, the man, MLman!
T DOT A edible dot piece
T POWERP A chewy and delicious power pill

These and other constants are defined incl/constants.ch.

4

Command Base Args Description ASR
Time

A MOVE AT MOVE None Move forward R SUCCESS if the move was successful
R HITWALL if the player tried to move into

a place where it cannot (e.g. in
front of a wall, or a ghost trying
to get out of the pen too early)

A TURN AT TURN Int i Turn in direc-
tion i, where i =
T LEFT, T RIGHT,
or T BACK.

R SUCCESS in all cases. If the direction
passed in was invalid (neither of
the specified values) the player
will turn left.

A MYSTAT AT MYSTAT None Returns the status of
the player

[(x, y), d, s] where x, y are the player’s co-
ordinates,d is the direction the
player is currently facing,s an in-
teger indicating some state. For
MLman, 1=energized, 0=not en-
ergized. For ghosts, 0=normal,
1=vulnerable,2=harmless.

A SCAN AT SCAN None Returns the objects
(including dots and
power pills) in the
four cells around the
player.

[n,e,s,w] Where n is the object in the north
cell, s in the south cell, w west
cell and e east cell of the player.
Each object can beT WALL,
T EMPTY, T TUNNEL,
T GHOST, T MLMAN,
T DOT or T POWERPILL.

A LOOK AT LOOK Int i Returns the nearest
object in direction i,
where i = T LEFT,
T RIGHT, T BACK,
T FORWARD

[o, d] whereo gives the type of the first
item, andd is the distance to that
item.

A LOOKNODOT AT LOOKNODOT Int i Returns the nearest ob-
ject (excluding dots
and power pills) in di-
rectioni

[o,d] like T LOOK but ignoring dots
and power pills.

A INSPECT AT INSPECT (Int x, Int y) Returns the type of
the object at location
(x, y)

T POWERP, etc. where the return value gives the
type of the object at the specified
location.

A NEAR D AT NEAR D None Find the closest five
dots using Cartesian
distance as the metric.

l l is a list of coordinates of the
five nearest dots (the list can be
smaller if there are less than 5
dots in the board)

R FAIL if current player is a ghost.
A FINDPO AT FIND PO None Find all power pills. l l list of coordinates for each

power pill in the board.l is empty
if there is none.

A FINDGH AT FIND G None Find all ghosts in the
board.

l l list of coordinates for each
ghost in the board and outside the
pen.l is empty if there is none.

R FAIL if current player is a ghost.
A FINDPE AT FIND PE None Find pen door. Returns

its coordinates.
(x,y) coordinates of the pen’s door

R FAIL if current player is MLman.

Figure 1: List of Actions

5

3.2 Examples of actions

What follows are some graphical representations of what would happen and the return values given MLman calling
certain actions.

do (A TURN,T RIGHT) ⇒ R SUCCESS

do A MOVE ⇒ R SUCCESS

do A MOVE ⇒ R HITWALL

do (A LOOKNODOT, T FORWARD) ⇒ (T WALL, 3)

do (A LOOKNODOT, T FORWARD) ⇒ (T GHOST, 2)

4 CL Extensions

We point out that several CL features and patterns that you might find useful when programming your players. Note
thatnoneof these features require you to change your evaluator.

4.1 Recursive functions

There is no explicit language support for recursive functions. However, these can be easily written using references to
functions, as discussed in class. For instance, consider the factorial function:

let fact x = if x=0 then 1
else x * (fact (x-1))

in fact 3

This function can be implemented in CL as follows:

let fact’ = lref 0
let fact = fact’ := (fn x => if x=0 then 1

else x * ((!fact’) (x-1)))
in fact 3

4.2 Includes

You may wish to write code that multiple CL programs can use. You can now do this using the#include command.
The argument is the name of the file to include. Keep in mind that the path for the file should be relative to the
directory from which you run SML, not the directory in which the CL file is located. If you execute SML from the
project directory and want to include in a player theconstants.ch file we have written–which is in thecl directory, you
would use

#include cl/constants.ch

When this line is read, the filecl/constants.ch is automatically loaded and its contents replace the#include line.
You will most likely use#include to declare a bunch of commonly used functions. For instance, you might include
a file calledfunctions.ch with #include functions.ch, which contains

let trymove = fn x => if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fn x => fn y => fn z => ...
in

The file being included should end within so that any code following the#include declaration is treated as the body
of thelet.

6

4.3 List library

We have provided a useful library for manipulating lists, located in the filecl/lists.ch. The functions in the list library
are similar to those in SML, as shown below. Lists are represented as either 0 (for the empty list) or as a pair containing
an item and the representation of another list. For example, the list[1, 2] is represented as(1,(2,0)). In general, a list
with elementsx1, x2, . . . , xn is represented in CL as(x1, (x2, (. . . (xn, 0) . . .))). The list library defines the following
functions:

cons x y Add the itemx to the head of the listy
nil Return an empty list
length l Return the length of the listl
foldl f acc l Fold the functionf over the listl with the initial accumulatoracc, starting with the

first item
foldr f acc l Fold the functionf, which is a curried function taking an item and the accumulator,

over the listl with the initial accumulatoracc, starting with the last item
map f l Map the functionf, which is a curried function taking an item and the accumulator,

over every item in the listl
append l1 l2 Appendl1 to the front of listl2

Many of these functions are recursive. Their implementation takes advantage of the pattern-matching construct
typecase. For instance, the implementation of functionlength is as follows:

let length’ = lref 0 in
let length = length’ := (fn l =>
typecase l of
(h, t) => 1 + ((!length’) t)

| any x => 0)

4.4 Boolean library

We also provide a few values and functions for representing and manipulating booleans:

true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunction of its arguments
or A curried function that performs the logical disjunction of its arguments
not Logical negation

5 Java GUI

Your world program will talk to a Java program that graphically represents the game. Once the connection to the GUI
is established1, your program will interact with the GUI using one command:

NetGraphics.report(msg)

wheremsg is a message that describes an event on the board. This is a string consisting of an event name, followed by
a number of parameters, separated by spaces. The following events are recognized by the GUI:

• "[CONNECTING]", initializes the connection with the GUI.

• "set <image> <x> <y>", where<image> is a string describing the object image (below is a list of possible
images), and<x>, <y> are two coordinates where the object must be added.

1This is done by invokingNetGraphics.setup, with a list of pairs (host, port) as arguments. For instance,NetGraphics.setup
[("localhost", 2005)] connects to the port 2005 on your machine.

7

• "status <level> <lives> <score> <energizedsec>", where<score> is an integer representing the
current score of MLman,<level> is the number of boards completed by the MLman player,<lives> is the
number of lives remaining, and<energizedsec> is the number of seconds that MLman has left being ener-
gized . (GUI limitations: to display correctly, lives must be less than 99, score less than 99999, and energized
time is between 0-60).

Note: You should send as few messages as possible, otherwise the GUI will be extremely slow. For example, only
send the status message when the score changes, or when the energized time changes (every 10000 steps), and not on
every step.

We require<x> and<y> to be valid coordinates and to be a valid image name. The list of possible image
names for are listed below. For ghosts, one can specify a modifierc to denote a color/state (b: blue, r: red, p:
pink, o: orange, w:white (vulnerable), x:eyes only (harmless)). For any player,i is one directions (u: up, d: down, l:
left, r: right):

Image Description
ghostci [p] A ghost of colorc looking in directioni (p is optionally used for ghosts inside the pen)
mlmani MLman looking in directioni
mlmanDead MLman when is captured
dot A dot piece
power A power pill
wall A wall
empty An empty space
pen An empty space inside the pen

A few sample commands that can be passed toNetGraphics.report() are shown below:

"set empty 3 7"
"set mlmanu 4 7"
"set empty 3 2"
"set ghostbl 3 3"

When a player moves, you have to restore the information in the old position (e.g. when a ghost moves over a dot,
the dot must stay there after). Then, set the new position for the player. Is important that you restore the old positions
all at once, and then set the new positions. Otherwise, restoring the old position of a player may erase the image of
another player that just moved.

8

6 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this projectearly. There are many things you will have to take into consideration when designing the
code for each section.

6.1 CL interpreter

For the game to work, the CL interpreter must be correct. We are not asking you to do any new implementation work
on the CL interpreter, but you are expected to fix any bugs in the interpreter that you submitted for PS5.

6.2 Designing the world (70pt)

Your first task is to implement the MLman world in the filesworld/action.sml andworld/game.sml, and any
files you choose to add. Note that you should only add files to theworld andcl directories. You must implement the
actions listed in Section 3. You must also make sure that the actions players take are rendered in the graphic display
using the interface detailed in Section 5. You can use the sample MLman and ghosts we provide to you to test your
world.

6.3 Designing a player (20pt)

Design a MLman in the filecl/mlman.cl, and a group of ghosts in filecl/ghosts.cl. Your players should be able
to perform reasonably good. If your MLman can beat the sampleghosts included in the release, and your ghosts can
capture our samplemlman, you should be able to get most of the credit for this portion of the project.

6.4 Documentation (10pt)

As with all of the assignments up to this point, you should submit some documentation regarding your project. Since
this project is quite open-ended regarding the way one may choose to implement it, documentation becomes even more
important. In your documentation, you should discuss all of the following:

• Implementation decisions: Justify the modules into which you broke down your code, including specific data
structures you chose to use. Much of this information may come from your design document submitted at
checkpoint time. If your strategy changed between the design document and your implementation, explain why.

• Specification changes: If any changes to or refinements of the specifications given in the project are necessary,
described these changes and justify them. With such a complex program to implement, there are some things
that may be somewhat ambiguous. Any such ambiguities brought to the attention of the course staff are clarified
in this writeup and often in the newsgroup. You will be responsible for making sure your program conforms
to these clarifications; resolving these problems in a different way will result in a loss of points. However, any
ambiguities we do not clarify, please implement them as you see fit and document them.

• Validation strategy: Report how you validated your implementation. Explain and justify your testing strategy,
particularly testing the MLman and ghosts, graphics, and world.

6.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the world:

• Think carefully about how to break up your program into loosely coupled modules.The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

9

• Make sure what is going on in the world and what is going on in the graphics match.Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoove you to maintain some sort of invariant between the
status of the world and the status of the graphics.

• Problems in the world may actually be problems with the players.If you are using your own players to test
the actions and something seems wrong, the players could just as easily be at fault.

• It is best to implement and test the actions one at a time.Don’t try to implement all of the actions and test
them with one single player. Start with the easier actions and work up to the harder ones. An actions liketurn
is probably easier to implement relative to the other actions.

There are also many different strategies for building a good ghost team. Consider, for instance, that your ghosts can
communicate. Your ghosts share a global memory that MLman cannot access. Use it to your advantage to coordinate
your ghosts movements.

6.6 Checkpoint submission

For this assignment, there will be acheckpoint submissionhalfway through the assignment. You are expected to submit
a 1-2 page documentdesign.txt (or design.pdf) that explains the design of your system. You should decide all
additional files you will need, and the signature for each of these new files. You will submit your design by November
30, at 11:59pm.

We strongly encourage that you to come discuss your design with the course staff during consulting/office hours.

6.7 Final submission

You will submit: 1) a zip fileworld.zip of all files in yourworld directory, including those you did not edit; 2) a
zip file cl.zip of all files in yourcl directory; 3) your documentation filedoc.txt (or doc.pdf); and 4) the file
sources.cm in case you have additional sig and sml files to include.

We should be able to unzip your code, copy your sources.cm file and runCM.make(), and be able to use your
implementation with no compilation errors.

7 Tournament

At the end of the semester, there will be a competition between the programs of students who wish to compete. Each
student project group may submit a MLman and a ghosts program that will play against other student projects. Details
on the tournament time and location and the submission procedure will be available later.

8 Given Files

Many files are provided for this assignment. Most of them, you will not need to edit at all. In fact, you should only
edit and/or create new files in the/world and/cl directories. Here is a list of all the files and their functions.

10

gfx/* Graphics files for the GUI
world/sampleboard.sig Signature file for specifying a board
world/sampleboard.sml Defines a sample board
world/action.sig Signature file for handling an action
world/action.sml Functions for handling an action from a player and implementing all

local actions for locking memory
world/game.sml Handles the game state
world/game.sig Signature file for the functions contained in the game
world/loop.sml Starts and continues the main game loop
net/*.sml Network SML code for communicating with the GUI
gui/*.java The java files that implement the GUI
gui/*.class The GUI class files
cl/*.ch Libraries for lists and booleans
cl/sampleMlman.cl Sample MLman
cl/sampleGhosts.cl Sample ghosts

9 Running the game

You will need Java version 1.4.2 or later in order to run the graphics of the game. Although you could run the game
without the graphics, it is not recommended, since it would be nearly impossible to tell what is going on.

These are the steps you’d take to run a game on the local machine.

1. Start the GUI. Start a command prompt (in Windows) or a terminal (in *nix). To start a command prompt
in Windows, click on the Start menu, go to Run and type incommand. At the command prompt, go the the
project/gui directory and run"java Gui <host> <port>". This tells the graphics program to start up and
connect to the SML world running on<host> at port<port>. The<host> and<port> parts are optional. The
default (if you run"java Gui") is localhost:2005. Once the GUI is started, a board will pop up on your
screen. The board will remain dark until the SML program has connected to it.

2. Start your SML program. After you started the GUI, run your SML program (that includes the evaluator,
the world, and the networking code that talks to the GUI). Go to theproject directory and runCM.make()
to compile the program. Then run"Game.start(<host-list>, <MLman-job>, <ghosts-job>)", where
<host-list> is a list of hosts (represented as hostname and port pairs), and<MLman-job> and<ghosts-job>
are strings representing file names you want to use as MLman and the ghosts. Alternatively, you can run
T.test(), which starts up a game onlocalhost:2005.

The game should now begin. When the SML program connects to the GUI, the playing board will light up. If at
any point you need to recompile and start the game over, you will also need to restart the graphics program.

11

	Introduction
	Source code
	Use of CL

	Game Rules
	Players
	The Board
	Specifiying the board and starting points

	Playing the game
	Actions

	Implementing actions
	Possible actions
	Examples of actions

	CL Extensions
	Recursive functions
	Includes
	List library
	Boolean library

	Java GUI
	Your tasks
	CL interpreter
	Designing the world (70pt)
	Designing a player (20pt)
	Documentation (10pt)
	Things to keep in mind
	Checkpoint submission
	Final submission

	Tournament
	Given Files
	Running the game

