
CS 3110 Problem Set 6: Steamcraft

Assigned: November 16, 2008 Final submission due:December 6, 2008, noon
Design meetings: November 18–25, 2008

1 Introduction

In the previous assignment (Problem Set 5), you developed an interpreter for a concurrent programming language.
This part will allow you to put that language to good use, by developing a game called Steamcraft. In this game, two
players each attempt to use solar-powered robots (bots) to capture the opponent’s flag. In your version of the game,
each bot will be controlled by a separate CL thread.

You will implement the mechanics for this game in OCaml, as well as the code for a game player in CL. Your
evaluator from Problem Set 5 will be used to run the programs controlling the two teams. You should be able to reuse
your Problem Set 5 code with only minor modification and bug fixes. As in Problem Set 4, we also have provided
some graphical support that you can use to display the game. Source code for getting started on this project is available
in CMS. You should keep the same partner you had for the previous assignment; consult Professor Myers if this is a
problem.

There are few constraints on how you implement this project. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

You start by carefully designing your system, and presenting this design at adesign meetingpartway through the
assignment where you will meet with a course staff member to discuss your design. You are required to submit a
printed copy of the signatures for each of the modules included in your design at the design meeting. Part of your
score will be based on the design you present at this meeting.

On December 9 during study week there will be a Steamcraft tournament which you are encouraged to submit
your robot team programs to. (We won’t need the rest of your system.) The winner gets bragging rights and has their
name posted on the312/3110 Tournament hall of fame.

1.1 About game constants

This writeup refers to constants written in code font. For example, you may see a constant like 5 (cWINNING SCORE).
This means that the name of the constant as defined inconstants.ml is cWINNING SCORE, and its value is 5. The

1

https://www.cs.cornell.edu/andru/cs312/tournaments.html

same constants are available to CL programs in the fileconstants.cl. You should write OCaml and CL code using
the symbolic names (e.g.,cWINNING SCORE in OCaml andWINNING SCORE in CL), because we may later tweak the
values of the constants to improve gameplay.

1.2 Updates to Problem Set

Any updates other than minor fixes will be recorded here.

• 11/19: Clarified how energy field is measured

• 11/19: Added details of additional features to graphics and image loading, see Section5

• 11/21: Extended due date by 12 hours. The late penalty on this assignment will be 6% per day. It may be turned
in up to 3 days late.

• 11/21,22: Changed the formulas for energy use due to acceleration and braking, see Section2.7

• 11/23: Added documentation for TimeLeft GUI command, see Section5

• 12/1: Corrected the arguments toUpdatePlayer and fixed a typo in the flag position spec.

• 12/5: Increased energy cost of being caught in an explosion. Decreased cost of making a mine.

1.3 Point Breakdown

• Design meeting – 5 pts

• World – 40 pts

• CL team (AI) – 20 pts

• Documentation and design – 10 pts

• Barrier Abstraction – 10 pts

• Complexity – 15 pts

2 Game Rules

Steamcraft is a two-player capture-the-flag game in which each player controls a team of steam-powered bots. The
bots use mirrors to focus solar energy, heating a boiler that then builds up steam pressure. This steam energy allows
bots to apply acceleration (by jetting out steam) and to lay high-pressure proximity mines that damage the bots of the
other team. Points are scored by having a bot pick up the opponent’s flag and bring it back to your own flag area.

2.1 Scoring and Winning

There are two teams, each of which controls a number of bots and has a team flag. Teams score one point for each
time they capture the flag. The game ends once a team gets 5 (cWINNING SCORE) points or after 180000 (cMAX TIME)
milliseconds have passed. If the game ends because time runs out, the team with more points is the winner. If the two
teams have equal points when time runs out, the game is a draw.

2.2 Board

Steamcraft is played on a rectangular board of length 1500 (cBOARD LENGTH) feet and width 1000 (cBOARD HEIGHT)
feet. The board is centered at(0.0, 0.0), as shown in Figure1. Given a coordinate(x, y), x is the horizontal offset
from the center, andy is the vertical offset. Therefore, a coordinate is on the board if|x| ≤cBOARD LENGTH/2
and|y| ≤cBOARD HEIGHT/2. Note that coordinates arefloating-point, so all of the following are valid coordinates:
(1.0, 2.0), (3.0,−2.5), (3.14159, 2.71828), (750.0, 500.0). When floating-point values are reported to bots, they are
rounded to the nearest integer.

2

2.3 Robots

In this game, each bot is controlled by its own CL thread, and each CL thread represents a bot, in a one-to-one
correspondence. The CL threads control bots and interact with the game using the CLdo expression. By performing
the appropriate action withdo, bots can set their acceleration, lay a mine, determine the position of other bots, and get
a variety of other information about the state of the game.

Each bot has the following attributes at any given time: steam energy level, position on the board, velocity, and
desired acceleration. Energy is a floating-point value and can go negative; position, velocity, and acceleration are pairs
(x, y) wherex andy are floating-point values.

Robots control their movement by setting a desired acceleration, which controls the direction and amount of steam
they are jetting. This steam changes the trajectory of the bot over time. As discussed in Section2.7, actual acceleration
achieved may be less than desired acceleration.

Robots can communicate with each other using message passing in CL. Of course, this requires creating mailboxes
before bots are spawned, and that are in scope in the bots’ code.

If a thread terminates, the bot it represents self-destructs and is removed from the game. A good bot generally has
a single infinite loop inside it somewhere, implemented as a tail-recursive function.

2.4 Teams and initial positioning

Each team begins with a single bot (at position (-600, -400), or(−cINIT LOC X,−cINIT LOC Y) for team 1, and posi-
tion (600, 400), or(cINIT LOC X, cINIT LOC Y) for team 2). The first team’s flag rests at (-700, 0), or(−cBOARD LENGTH/2+
cFLAG POSITION OFFSET, 0.0); the second team’s flag rests at (700, 0), or(cBOARD LENGTH/2−cFLAG POSITION OFFSET, 0).

2.5 Spawning New Robots

A new bot is created whenever a new thread is successfully spawned. All newly created bots are placed at same
location as the initial bot was at the start of the game, and begin with 5000 (cINITIAL ENERGY) steam energy. The
new thread created by spawning controls the new bot.

New threads may be spawned by a teamonly if the total number of threads spawned by that team so far—including
the initial thread—islessthan 5 (cBOTS PER TEAM). If the team has already spawned 5 threads, the spawn fails. At all
times, each team will have less than or equal to 5 bots. Further, a bot that terminates is gone forever, and the team will
have to make do with fewer total bots from then on.

(0, 0)

(750, 500)

(-750, -500) (750, -500)

(-750, 500)

(-700, 0) (700, 0)

Figure 1: The board and coordinate system

3

2.6 Scheduling

How much each bot is allowed to evaluate is important to the fairness of the game. You are going to use the evaluator
from PS5 to evaluate the CL code for the bots. In each evaluation cycle, each bot of each team is stepped exactly once.

However, this is a real-time game. TheLoop module (loop.ml) (which you donotneed to modify) will notify the
World module viaWorld.reportStep whenever some time has passed (according toSys.time()). The argument
to reportStep indicates the amount of timet (in seconds) that has passed since the last call toWorld.reportStep.
Note thatreportStep will only be called when time has actually passed, sot > 0.

2.7 Movement

At the end of every tick, all bots move based on their current velocity~v = (vx, vy), desired acceleration~ad = (dx, dy),
and current energy levelE. How much the bots move also depends ont, the length of the tick.

The actual acceleration~a = (ax, ay) applied to the bot is calculated as follows. If the magnitude of the desired

acceleration
(
|ad| =

√
d2

x + d2
y

)
is greater than 150 (cMAX ACCEL) ft/sec2, both components of the bot’s desired

acceleration are scaled down so that the magnitude of the desired acceleration is equal tocMAX ACCEL.
Given the bot’s current position(x, y), the bot’s new position(x′, y′) is calculated as follows:x′ = x+vxt+ 1

2axt2,
y′ = y + vyt + 1

2ayt2.
Moving for time t takes energy0.005|~a · ~v|t (notecENERGY COST PER ACCEL = 0.005). (Recall that~a · ~v =

axvx + ayvy.) The bot’s velocity is also updated, based on the acceleration:~v′ = cFRICTIONt~v + ~at. Note that
before the acceleration is applied, the bot’s velocity is multiplied by the friction constant raised to the powert. This
corresponds to a frictional force proportional to velocity.

It is possible that the bot does not have enough energy to reach its desired acceleration. If the amount of energy
that acceleration would use up is greater thanE, both components of the actual acceleration~a are scaled down so that
the amount of energy the acceleration uses up is equal toE.

If a bot’s motion would cause the bot to go off the board, the emergency anchor is automatically fired instead. The
emergency anchor sets the bot’s velocity and acceleration instantly to zero, but uses up all the energy that would be
required to stop the normal way:0.005 v2. This can cause the bot’s energy to go negative. The anchor is immediately
retracted after deployment.

When a bot ends a tick within 50 feet (cMINE RADIUS) of an active mine, that mine immediately explodes, knock-
ing the bot over. This stops the bot and jars its valves open, leaking steam (see Section2.9).

When a bot ends a tick within 75 feet (cFLAG PICKUP RADIUS) of the enemy flag (while the enemy flag is not
being carried by any bot) and has positive energy, that bot automatically picks up the enemy flag. Since this check
happens after mine explosions, a bot could enter both the flag radius and a mine radius in the same tick, go below zero
energy, and not be allowed to pick up the flag.

When a bot carrying the enemy flag comes within 75 (cFLAG PICKUP RADIUS) of its own flag, while its own flag
is not being carried by any bot, that bot’s team gains one point. The enemy flag is then removed from the bot and
returned to its initial position.

2.8 Energy

At the end of each tick, after movement and all other updates are resolved, each bot gains energy from the sun.
The amount of energy gained is based on the distance from the sun, which is located above the board at(0.0, 0.0)
(the center of the board). A bot at distanced from the center of the board gainsP0te

−d2/s energy at the end of
a tick of lengtht, whereP0 = 750 is thecPOWER AT CENTER constant, and wheres = 1000000 is the constant
cCENTER ENERGY SCALING. This is aGaussian distribution, resulting in a bell-curve shape for the rate of energy gain
as a function of the distance from the center of the board.

Robots also lose energy based on their distance from the initial position of their flag. A bot at distanced from
the initial position of its flag losesP1e

−d2/st energy at the end of a tick of lengtht, whereP1 = 300 is the constant
cPOWER PENALTY AT FLAG, ands = 10000 is the constantcFLAG ENERGY SCALING.

This means that to calculate the total energy change for a bot, first the gain from the energy source is added, then
the loss based on distance from the flag is subtracted.

4

http://en.wikipedia.org/wiki/Gaussian_function

If a bot is carrying the enemy flag, it loses an additionalP2 t energy, whereP2 = 100 (cFLAG ENERGY PENALTY).
Robot cannot go over 5000 (cMAX ENERGY) energy. Their valves start leaking at that pressure.
Robots at negative energy at the beginning of a tick are in an automatic stationary repair mode in which they absorb

solar radiation and conduct repairs. They are not affected by mine explosions in that state.

2.9 Mines

Robots have the ability to lay mines. Mines are triggered by proximity sensors, so anyone coming near them, even
from the same team, will cause the mine to explode, knocking over nearby bots. Fortunately, bots also have the ability
to scan for nearby mines, and perhaps avoid them.

Mines cost a lot of energy to lay because the explosive power of the mine comes from the bot’s own pressure. A
bot is able to successfully lay a mine only if it has more than 3000 energy (cENERGY COST PER MINE). When a bot
successfully lays a mine, it losescENERGY COST PER MINE energy.

When laid, an inactive mine is created at the bot’s current position. Each bot may only have one mine on the board
at a time. If a bot successfully lays a mine while it already has another mine on the board, the older mine is removed
from the board. A newly placed mine activates after 1000 milliseconds (cMINE ACTIVATION TIME).

When a bot ends a tick within a 50 feet (cMINE RADIUS) of an active mine, that mine explodes, emitting a blast
wave. The mine is removed from the board.

All bots with nonnegative energy within a radius ofcMINE RADIUS are affected by a mine explosion. They are
knocked over temporarily, setting their velocity to zero. They also lose5000energy (cENERGY LOSS EXPLOSION)
because of valve leakage. A bot can be hit by multiple mine explosions and will be affected by all of them; however,
bots that were at negative energy at the beginning of the tick do not lose energy from any mine explosions.

If a bot carrying a flag is knocked over by an explosion, the flag is removed from the bot and returned to its initial
position.

2.10 Flags

Points are scored by capturing the opposing team’s flag. Robots can pick up the enemy flag by coming near the
position of the enemy flag, and can score by bringing it close to their own flag.

When a bot comes within 75 feet (cFLAG PICKUP RADIUS) of the enemy flag, while the enemy flag is not being
carried by any bot, and it has energy greater than zero, that bot automatically picks up the enemy flag.

When a bot carrying the enemy flag comes withincFLAG PICKUP RADIUS of its own flag, while its own flag is not
being carried by any bot, that bot’s team gains one point. The enemy flag is then removed from the bot and returned
to its initial position.

When a bot carrying the enemy flag drops to zero or less energy, the enemy flag is removed from the bot and
returned to its initial position.

If a bot has been carrying the enemy flag for more than 30000 milliseconds (cFLAG HOLD LIMIT), the enemy flag
is removed from the bot and returned to its initial position.

3 Actions

Several available actions can be invoked usingdo. Each action returns a value. Some actions have effects on the game
world.

5

3.1 Action Quick Reference

A BRAKE Fires the anchor, setting velocity to zero but using energy (possibly going to negative energy).
A SET ACCEL Sets desired acceleration.
A LAY MINE Lays a mine at the current position, using up energy.
A GET POS Returns the bot’s current position.
A GET VEL Returns the bot’s current velocity.
A GET ENERGY Returns the bot’s current energy.
A GET IS CARRYING FLAG Returns whether the bot is carrying the enemy flag.
A GET ENERGY FIELD Returns the current power at a point.
A GET FLAG POS Returns the position of your own flag or the enemy flag.
A GET BASE COOR Returns the initial position of your team’s flag.
A SCAN MINES Returns the positions of all mines within a radius of the bot.
A SCAN UNITS Returns the positions of all units on the board.
A GAME STATUS Returns the current score and other data about the game.
A TALK Outputs a string to the chat area.

3.2 Action Specification

The following pages describe the actions in greater detail. Recall from PS 5 that(v0, ..., vn−1) represents an array
literal, which evaluate to an array with the value at indexith index (fori = 0, ..., n− 1) equal tovi, and all other array
components equal to zero.

All numerical values returned by actions are returned asintegers, even though some things (such as position,
velocity, and energy level) are actually real-valued. Theint of float function should be used to do conversion
between game values and values to return to CL. The loss of precision is minor in most cases.

Some of the actions return lists to CL. Lists are represented in CL as arrays, with the lengthn of the list at index
−1 of the array, and the elements of the list at indices0, ..., n− 1. The value at all other indices should be 0.

6

Command Args Effects Returns
A BRAKE None The bot fires its emer-

gency anchor on the
next tick, as described
in Section 2.7. This
always succeeds, but
may result in negative
bot energy

0

A SET ACCEL (dx, dy) Sets bot’s desired ac-
celeration to(dx, dy)

0

A LAY MINE None Attempts to place a
mine at the bot’s cur-
rent location. Energy
is used if mine place-
ment succeeds.

(b, x, y) where b is 1 if placing the mine
was a success and 0 otherwise,
andx andy are the coordinates
the mine was placed at.

A GET POS None (x, y)
A GET VEL None (vx, vy)
A GET IS CARRYING FLAG None n wheren is 1 if the bot is carrying

the enemy flag, and 0 otherwise
A GET ENERGY None E whereE is the bot’s current en-

ergy level
A GET ENERGY FIELD (x,y) r wherer is the rate of energy gain

(per second) at(x, y). This in-
cludes both the solar power and
the energy drain from the flag.

A GET FLAG POS b (x, y, f) wherex andy are the coordinates
of the bot’s team’s flag ifb is 0,
and the coordinates of the enemy
flag otherwise;f is 1 if the flag
in question is currently being car-
ried, and 0 otherwise

A GET BASE COOR None (x, y) where x and y are the coordi-
nates of the initial position of the
team’s flag

A SCAN MINES None l where l is a list of the posi-
tions of all mines within 250 feet
(cSCAN RADIUS) of the bot.

A SCAN UNITS None (l1, l2) wherel1 andl2 are lists of the po-
sitions of all bots on your team
and the enemy’s team, respec-
tively

A GAME STATUS None (s, so, t) wheres is the bot’s team’s score,
so is the enemy’s score, andt is
the amount of time left before the
end of the game (in milliseconds)

A TALK s Outputs the strings to
the chat area

0 This action has been partially im-
plemented for you for debugging
purposes

4 CL Features and Interpreter Updates

Some CL features might not have used much in PS 5, but will be very useful for testing the game and implementing
your bot. Further, to aid in your design we have added a few useful features to CL, none of which should require
any modifications to your current interpreter. We have also made some slight modifications to the structure of the
interpreter, to aid in implementing some aspects of the game.

7

4.1 Recursive Functions

The support for recursive function already present in CL will be extremely helpful for this assignment. To review, you
can define recursive functions by using the keywordrec, as in the example below:

let fact =
rec f in
fun n -> if n=0 then 1 else n * f(n-1)

in fact 3

4.2 Includes

You may wish to write code that multiple CL programs can use. You can do this using the#include command. The
argument is the name of the file to include. Keep in mind that the path for the file should be relative to the directory
from which you run SML, not the directory in which the CL file is located. If you execute SML from the project
directory and want to include in a unit the constants.ch file that we have written, which is in the cl directory, you would
use:

#include "cl/constants.cl"
When this line is read, the filecl/constants.cl is automatically loaded and its contents replace the#include

line. You will most likely use#include to declare a bunch of commonly used functions. For instance, you might
include a file calledfunctions.ch with #include "functions.ch", containing:

let trydo = fun x -> if x = 0 then (do x)
else trymove (x - 1)

in let calcpos = fun x -> fun y -> fun z -> ...
in

The file being included should end within so that any code following the#include declaration is treated as the
body of thelet.

4.3 Other Libraries

An abstraction for representing and manipulating booleans is provided incl/bool.cl:
true Boolean constant true
false Boolean constant false
and A curried function that performs the logical conjunction of its arguments
or A curried function that performs the logical disjunction of its arguments
xor A curried function that performs the logical exclusive disjunction of its arguments

We have also provided some array manipulation functions you may find useful incl/arrays.cl, and some
functions for robots incl/botFun.cl.

4.4 Interpreter Updates

We have updated the PS 5 interpreter by removing the oldworld.mli and world.ml. Further,debug.ml and
runcl.ml are no longer used.

5 GUI

We have provided a module calledGraph that handles the graphical aspects of the game by rendering using OpenGL.
This module should be sufficient for simple rendering of the game, though you are welcome enhance it for karma if
you wish (with the full power of OpenGL available to you, a much fancier interface is possible). To use theGraph
module, you must install a library called lablGL, which provides OpenGL bindings for OCaml. Installation of this
library is fairly simple, and we have provided instructions independencies.zip.

8

To initialize the GUI, you must callGraph.init graphics. This opens the GUI and begins the main graphics
event loop on a new thread. To communicate with this thread, we have provided two methods:queue event, and
send events.

The GUI must be updated when the game state changes, which includes changes in score, bot movement, flag
captures, etc. To update the GUI, you must queue draw events by callingGraph.queue event. At the end of each
tick, you must callGraph.send events to send the list of queued draw events to the gui. The list of possible draw
commands is included below. For all the commands, the team field is a boolean: true stands for the first team, and
false for the second team. The GUI commands are as follows:

Name Args Effect
DrawPlayer int * float *

(float * float)
* (float *
float) * bool
* bool

Draws a player to the screen. This should be called when spawning new
processes. The arguments are as follows: bot id, bot energy, (x and y
coordinates), (x and y velocities), team, holding flag. The id must be a
unique identifier for the bot.

DrawMine int * (float *
float) * int

Draws a mine to the screen. The arguments are as follows: mine id, (x
and y coordinates), milliseconds to activation. The id must be a unique
identifier for the mine.

RemovePlayer int Removes the player with the given id from the display.
RemoveMine int Removes the mine with the given id from the display.
UpdatePlayer int * float *

(float * float)
* (float *
float) * bool
* bool

Updates an existing player. The arguments are the same as Draw-
Player: bot id, bot energy, (x and y coordinates), (x and y velocities),
team, holding flag. The player should have already been initialized with
DrawPlayer. If only one field is being updated, you may use the more
specific commands listed below.

UpdatePlayerPos int * (float *
float)

Updates an existing player’s position, given a bot id.

UpdatePlayerEnergy int * float Updates an existing bot’s energy level, given a bot id.
UpdatePlayerFlag int * bool Updates an existing bot’s flag field, given a bot id. True means the

player has the flag, false means the player does not.
UpdatePlayerVel int * (float *

float)
Updates an existing bot’s velocity field, given a bot id.

UpdateMineTime int * int Updates the time until activation for a mine, given a mine id. The argu-
ments are: mine id, milliseconds to activation.

DrawFlag (float * float)
* bool

Draws a flag to the screen. The arguments are (x and y coordinates) and
team.

RemoveFlag bool Removes a flag from the screen. This should be called when a bot picks
up a flag.

SetScore int * bool Updates the score of the game. The score begins at (0,0), so this should
be called when bots score. The arguments are: score and team.

TimeLeft string Updates the amount of time left to play. The argument is the string to
display for how much time is left.

GameOver bool option Has the GUI display the game end picture. If the argument is None the
game is considered a draw. Otherwise, true indicates a win for the first
team and false indicates a win for the second team.

Talk string * bool Sends talk commands to the GUI. The string represents the sentence
that the bot utters, and the boolean is the team of the bot.

5.1 Robot Images

We have also provided support for displaying images for bots. The graphics module looks for filesbmp/team1*.bmp
andbmp/team2*.bmp and draws those images to represent bots of the first and second team, respectively. If there
are multiple images with file name starting withteam1 or team2 in thebmp directory, the graphics will use different
images for different bots. We have provided default images in thebmp directory with the proper names.

9

If a bot has no energy, the graphics module will look for a file with the same name but withtired before the
.bmp, and display that instead. (So if you had one image namedteam1a.bmp, and also hadteam1a tired.bmp,
when the bots using theteam1a.bmp image went to negative energy, the graphics would displayteam1a tired.bmp
for those bots). If notired image is found for a given image, the normal image will be used throughout.

Images are rotated based on the velocity of the bot. For the rotation to accurately reflect the direction of the robot,
images should be “facing” to the right.

Images for use by the game:

1. Must be bitmaps (.bmp). Several programs can save in this format, including MS Paint.

2. Must be2k by 2k pixels in size, for somek. It is probably best to keep things below256× 256.

3. Treat black (i.e., RGB value0, 0, 0) as transparent. If you want to make a bot image that uses black, instead use
something very close to black (like RGB value0, 0, 1).

If you want to switch images, just move the old images elsewhere and put the new images in their place.

6 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this projectearly. There are many things you will have to take into consideration when designing the
code for each section.

6.1 CL interpreter

For the game to work, the CL interpreter must be correct. For the game to work well, the CL interpreter must be
reasonably efficient. We are not asking you to do any new implementation work on the CL interpreter, but you are
expected to fix any bugs in the interpreter that you submitted for Problem Set 5, and make it run at a reasonable speed.

We have added new functions to some of the interpreter files to ease implementation of certain aspects of the game.
For the updated interpreter files that are included in the PS6 download, you should merge any changes you made into
the files. For the other interpreter files, you should simply copy over your files from PS5.

6.2 Designing the world

Your first task is to create a design for yourSteamcraftimplementation and meet with the course staff to review it.
Your second task is to implement theSteamcraftworld in the filesworld/world.ml andworld/game.ml, and any
files you choose to add. Note that you should add files only to theworld andcl directories. You must implement
the actions listed in Section3. You must also make sure that the actions bots take are rendered in the graphic display
using the interface detailed in Section5. You can use the sample bot program we provide to test your world, but for
full testing coverage you will need to write your own tests.

6.3 Designing a team

Your third task is to design a CL team in a filecl/team.cl. To receive any credit, your team must be able to
consistently beat the team provided by the course staff, which is a very weak team. You will be graded based on
how well your team performs and how effective its strategy is against a number of test teams, not just the one team
provided.

Your bot should be namedteam.cl and should be in thecl directory of the project zip file you submit (see Section
6.7).

There are advantages to coordination between your bots. Think about how to use the message-passing features of
CL to make your bots more effective.

10

6.4 Documentation

You should submit adesign overview documentfor this project, just like the ones for the previous assignments. Since
this project is both large and quite open-ended regarding the way one may choose to implement it, documentation
becomes even more important. Your design overview should probably be as long or longer than your design overviews
for the previous assignments.

6.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the world:

• Think carefully about how to break up your program into loosely coupled modules.The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

• Make sure that what is going on in the world matches what is going on in the graphics.Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the world is acting properly. It would behoove you to maintain some sort of invariant between the
status of the world and the status of the graphics.

• Problems in the world might actually be problems with the teams.If you are using your own teams to test
the actions and something seems wrong, the teams could just as easily be at fault.

• Implement and test the actions one at a time.Don’t try to implement all of the actions and test them with one
single team. Start with easier actions and work up to the harder ones. For example, start with a simple action
like A GET ENERGY.

There are also many different strategies for building a good team. Consider, for instance, that your bots can communi-
cate and share memory that the opposing team cannot access. Use it to your advantage to coordinate your maneuvers.

6.6 Design meeting

For this assignment, there will be adesign meetingpartway through the assignment. Each group will use CMS to sign
up for a meeting, which will take place between November 18 and November 25. If you are unable to sign up for any
of the available time slots on CMS, contact the course staff, and we will try to accommodate you.

At the meeting, you are expected to explain the design of your system, and hand in a printed copy of the signatures
for each of the modules in your design, in addition to giving a brief description of the design of your CL bots. In
designing module interfaces, think about what functionality needs to go into each module, how the interfaces can be
made as simple and narrow as possible, and what information needs to be kept track of by each module. Everyone in
the group should be prepared to discuss the design and explain why the module signatures are the way they are. We
will give you feedback on your design.

We strongly encourage that you come discuss your design with the course staff during consulting and office hours,
both before and after the meetings.

6.7 Final submission

You will submit:

1. A zip file of all files in yourproject directory, including those you did not edit. We should be able to unzip
this and run thebuildToplevel.bat script to compile your code (i.e., you should modify it to include all the
files necessary file). This should include:

• your world implementation

11

https://www.cs.cornell.edu/courses/cs3110/2008fa/hw/overview-requirements.html

• your bot, with the bot namedteam.cl in thecl directory along with all the custom libraries it uses (if
any)

It is very important that you organize your files in this manner, as it greatly simplifies grading.

2. Your documentation file, in.txt, .pdf, or .doc format.

Although you will submit the entireproject directory, you should only add new files to theworld andcl folders;
the other folders should remain unchanged. If you add new.ml or .mli files, you should add them to the compilation
scripts. Note again that we expect to be able to unzip your submission and run thebuildToplevel.bat script in
the newly created directory to compile your code without errors or warnings.Submissions that do not meet this
criterion will be docked points.

7 Tournament

Sometime during finals period, most likely on Tuesday, December 9, we will hold a competition for students who wish
to compete. Each group may submit a CL team that will play against other students’ teams. Details on the tournament
time, location, and the submission procedure will be available later.

8 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, other than merging
your evaluator from PS5 into theeval directory, you should only edit and/or create new files in theworld andcl
directories (plus any edits you need to make to the compilation scripts). Here is a list of all the files included in the
release and their contents.

bmp/* Support for bot images
bmp/team1.bmp Image loaded for the first team
bmp/team2.bmp Image loaded for the second team
parser/* Updated versions of the lexer and parser for CL
eval/* Where you should put your evaluator from PS5
world/constants.ml Definitions of game constants
world/world.mli Signature file for handling actions and world state
world/world.ml Functions for handling actions and world state
world/game.mli Signature file for the functions contained in the game
world/game.ml Handles the game state
world/graph.mli Signature file for the graphics functions
world/graph.ml Handles graphics
world/loop.ml Starts and continues the main game loop
world/* Other utility files for the world
cl/simple bot.cl Sample team program that you need to beat
cl/*.cl CL libraries and other files

9 Running the game

To run the game, you will need to download the release files from CMS and copy your evaluator from PS5 into the
eval directory. You will also need to install the GUI dependencies fromdependencies.zip in CMS.
Once you have that, these are the steps you take to run a game on the local machine.

1. Compile the game. We have provided abuildTopLevel.bat script (which can be run on both Windows and
Linux) that creates a toplevel environment that includes the game code, which you can then run using the script
runTopLevel.bat. If you create new files that your implementation uses, you will need to add them to these
scripts. If you added files to the PS5 evaluator, you will need to add them to these scripts.

12

2. Start the game. After you have built and started the toplevel, you can start a game between two teams by running
Loop.start "team1.cl" "team2.cl", whereteam1.cl andteam2.cl are files containing the CL code for
the two teams you want to play. This will initialize the GUI and immediately run the game.

10 Implementing a barrier abstraction in CL

Your third task is to use CL to implement a standard synchronization primitive called abarrier, corresponding to this
OCaml specification:

(* A barrier is a synchronization primitive for a group of n threads.
* Any thread from the group that reaches the barrier must block
* until all n threads have reached the barrier. Then all threads in the group may proceed. *)
type barrier
(* makeBarrier(n) creates a barrier for n threads. *)
val makeBarrier: int -> barrier
(* waitB(b) causes the current thread to block
* until the required number of threads have all called waitB(b). *)
val waitB : barrier -> unit

Your barrier implementation should be submitted to CMS asbarrier.cl. Your file must be a CL header file that
works with#include; if you put#include barrier.ch at the top of another CL file and run it, it should work and
have access to all the barrier functions.

11 Written Problem

In addition to the game and bot implementation tasks described above, this project also includes a written problem on
amortized complexity. This written question should be submitted to CMS, in.txt, .pdf, or .doc format.

A sorted array (or vector) is an appealing data structure for storing ordered data, because it offers the sameO(lg n)
lookup time as a balanced binary tree but has a compact representation and a good asymptotic constant factor. Unfor-
tunately it doesn’t support fast insertion.

Überhacker Zoe Marti has an idea for a mutable ordered set abstraction that will be fast for smalln. Instead of
storing all the elements in the sorted array, Zoe will maintain a separate short linked list of up tof(n) elements, where
f(n) is some function yet to be determined.

type set = {sorted: element array ref, recent: element list ref}
When the data structure is searched, both the listrecent and the arraysorted (of lengthn) are traversed. When

an element is added to the data structure, it is appended to the list in constant time. If therecent list becomes longer
than or equal tof(n) elements, thef(n) elements are sorted using mergesort and then merged in linear time with the
n elements, which are already in order.

1. What is the complexity of a single lookup on this data structure, expressed as a function off(n) andn? To
achieve complexityO(lg n), as with a balanced binary tree, what should Zoe setf(n) to?

2. The goal with this structure was to make inserts cheaper. As a function off(n) andn, what is the complexity
of f(n) inserts into this structure, starting from an emptyrecent list? (This should cause exactly one sort and
merge)

3. We can reduce both insert and lookup to an amortized complexity ofO(
√

n). Your goal is to prove this bound
using potential functions. Recall that the amortized complexityTA of an operation changing structures to s′ is
defined as the actual cost of operationT plus∆Φ = Φ(s′)− Φ(s).

Provide aΦ and a definition off , and use them to show that the complexity of one lookup isO(
√

n) and
the amortized complexity of one insert isO(

√
n). (Hint: ChooseΦ carefully, keeping in mind that amortized

complexity is closely related to∆Φ.)

13

	Introduction
	About game constants
	Updates to Problem Set
	Point Breakdown

	Game Rules
	Scoring and Winning
	Board
	Robots
	Teams and initial positioning
	Spawning New Robots
	Scheduling
	Movement
	Energy
	Mines
	Flags

	Actions
	Action Quick Reference
	Action Specification

	CL Features and Interpreter Updates
	Recursive Functions
	Includes
	Other Libraries
	Interpreter Updates

	GUI
	Robot Images

	Your tasks
	CL interpreter
	Designing the world
	Designing a team
	Documentation
	Things to keep in mind
	Design meeting
	Final submission

	Tournament
	Provided source code
	Running the game
	Implementing a barrier abstraction in CL
	Written Problem

