
CS 3110 Problem Set 5 (Project Part I):
Concurrent Language Interpreter

Due date: 11:59 PM, November 13, 2009

Updates

• Nov. 5: clarified what we are expecting for the proof of correctness ofbsearch.

1 Introduction

In this assignment, you will finish the implementation of an interpreter for a concurrent functional
language called CL. The purpose is for you to gain experience understanding, modifying, and op-
timizing a complex piece of code. Your goal is to make the program work correctly and efficiently,
without changing it more than necessary. In addition to the implementation of CL, there are written
problems relating to program verification.

A CL program has multiple, parallel threads of execution. Each thread can communicate with
other threads through message passing. Threads can also start other threads to carry out tasks,
possibly in cooperation with the original thread. CL programs can interact with an external envi-
ronment that provides additional functionality, such as I/O. In the next assignment, you will use
your interpreter to implement a game that uses robots controlled by a program written in CL, with
each robot controlled by a different thread.

We have provided a partial implementation of the CL interpreter. The implementers were
seemingly very lazy and didn’t finish the implementation of all CL expressions. They also didn’t
think about how they could use data structures to accelerate the various operations performed by
the interpreter. As a result, their interpreter is both broken and slow. You will fix this.

The missing piece of CL is the implementation of thematch expression, which is similar to but
different from the OCamlmatch. You will also speed up the interpreter by figuring out where time
goes during execution, and choosing the right data structures. For this assignment, we expect you
to implement yourown data structures rather than using data structures from the OCaml library.
Where appropriate, we expect you to add new modules to the existing program.

We are not expecting you to rewrite the interpreter. In fact, you will be most successful if you
think carefully where the time is currently going, and solve the performance problems by changing
existing code as little as possible, and making additions in a modular way. We expect you to use
profiling to gain an understanding of the program performance and where your changes can have
the biggest impact.

As always, your programs must compile without any warnings. Programs that do not compile
or compile with warnings may receive an automatic zero. Files submitted shouldnot have any
lines longer than 80 characters, and ideally all lines should be less than 78 characters long. We will
evaluate your problem set on several different criteria: the specifications you write, the correctness
of your implementation, code style, efficiency, and your validation strategy. This is a complex

1



problem set, and you will be building on your PS5 solution for PS6, so we strongly recommend
starting early.

2 The CL language

2.1 Overview

The CL language has some interesting features. It is a concurrent language in which multiple
threads can execute simultaneously, and interact with an external environment. Unlike ML, CL is
andynamically typedlanguage. There is no type checker to keep you from writing code that pro-
duces type errors. However, type errors are caught at run time, stopping the thread that encounters
them.

Threads. A running thread can launch another thread using the expressionspawn e. The expres-
sione is the CL expression that the newly created thread will execute independently of its parent
thread.

Any given thread is either ready to take an evaluation step, or blocked, waiting for something
to happen. Threads can block waiting to receive a message from a mailbox, and when interacting
with the external environment.

Threads interact with their external environment using the expression formdo e. This expres-
sion is evaluated by sending the value ofe to the external environment. What happens depends
on the external environment that the CL program is interacting with; the behavior of the exter-
nal environment is not specified by the CL language. Typically, different possible values ofe are
interpreted as requests to perform different actions.

In the external environment provided for PS5, thedo e expression is used for I/O. For example,
the expressiondo 0 causes the external environment to ask the user to input a number, which is
returned as the result of the expression. In the next assignment, you will modify the implementation
of the external environment to allow CL threads to implement robots that sense and interact with
the world around them.

Message Passing. CL manages thread communication and synchronization usingmessage pass-
ing. Threads communicate by sending and receiving messages to and frommailboxes. A mailbox
can be created using the expressionmailbox e. Mailboxes areasynchronous, which means that a
thread sending a message does not wait for a thread to receive it before going on.

Arrays. Unlike in OCaml, the arrays in CL are immutable. Update to an array is nondestructive,
producing a new array that differs only in the one index updated. Both updating and reading from
an array are expected to be fairly efficient.

Any integer is a valid index into CL arrays, including negative integers and indices never before
used. Arrays do not have a length, so it is not possible to have an out-of-range index. Any type of
value, including other arrays, can be stored as array elements. The entries in an array need not be
of the same type.

2



An array is really a (total) function from integers to CL values. We use mathematical notation
to describe the functions corresponding to CL arrays. Ifa is an array, we writea(n) to mean the
value ina at indexn. We write{n 7→ 0}n to represent the array that maps all integersn to 0. We
write a[n 7→ v] to represent the array that mapsn to v, but that maps every other indexn′ 6= n to
a(n′). None of this notation is allowed in CL programs; we just use it to describe how CL arrays
work.

Values. There are only four types of values in CL:

• Integer constantsn

• Functionsfun id->e.

• Arraysa. These are functions from integers to CL values. They can’t be written directly in
a CL program, but they can appear during evaluation using the substitution model.

• Mailboxesmailbox . These are identifiers that are global to all threads in the program. Like
arrays, they can’t be used in a CL program, but appear during evaluation.

2.2 Expressions

A CL program can consist of the following expressions:

n An integer constant, as in OCaml. Examples:−3, 0, 2.
unope Returnsunop applied to the result of evaluation ofe. unop is one of

following unary operators:− (negates an integer),not (logical operator)
andrand (returns a random number between 0 andn− 1 wheren is the
value ofe).

e1 binope2 Applies binary operatorbinop to the results of evaluations of the two
expressions. Bothe1 ande2 must evaluate to an integer.binop is one of
the following operators:+,−, ∗, /, mod, <, >,≤,≥, =. For the last five
operators the result will be 1 if the OCaml result is true, and 0 otherwise.

e1 ; e2 A sequence of expressions. It is evaluated similarly to an ML sequence.
First expressione1 is evaluated, possibly causing side effects. After that
the result ofe1 is thrown away and expressione2 is evaluated.

let id = e1 in e2 Binds the result of evaluatinge1 to the identifierid and uses the bind-
ing to evaluatee2. Identifiers start with a letter and consist of letters,
underscores, and primes.

fun id->e An anonymous function with argumentid and bodye. The body is not
evaluated until an argument is supplied to the function.

id Identifier. Must be contained inside alet or fun expression with the
same identifier name. Otherwise, an unbound identifier error occurs
when the identifier is used.

e0 e1 Function application. Evaluates expressione0 to a function valuefun id -> e,
evaluates expressione1 to a valuev1, bindsv1 to the identifierid and uses
the binding to evaluatee.

3



rec id in e Introduces a recursive term namedid. id is in scope ine, and id is
bound toe. This expression can be used to implement recursive func-
tions, e.g.let fact = rec f in fun -> if n = 0 then 1 else n∗f(n−
1) in fact(3)

if e0 then e1 else e2 Similar to the MLif/then/else expression except that the result of
expressione0 is tested to see if it is positive. Examples:if 1 then 1

else 2 evaluates to1; if 4<3 then 1 else 2 evaluates to2; if -1

then 2 else 3 evaluates to 3.

match e with
(p10, . . . , p1(n1−1)) -> e1

| . . .
| (pm0, . . . , pm(nm−1)) -> em

Evaluates expressione to a value that must be an arraya. Then it com-
pares the arraya against the patterns in them arms following. It evaluates
the first arm whose pattern matches the array.
The mechanics of pattern matching are a bit different from in OCaml.
Each pattern in the list looks like an array constructor. Theith pattern
has the form(pi0, . . . , pi(ni−1)), whereni is the number of elements in
the ith pattern. Each of the pattern componentspij is eitherval id for
some identifierid, or else it is an arbitrary expressione. If the compo-
nentpij has the formval id, it causes the variableid to be bound to the
corresponding valuea(j). By contrast, a componentpij that is an ex-
pressione is evaluated to a valuev, and the whole pattern matches only
if v = a(j) for all such components. Expressions in patterns are only
evaluated when the arm containing the pattern is being considered for
matching, and not before.
For example, the following code evaluates to 1:

let x = 3 in

match (1,2,3,4) with

(x, 2, x, 2+2) -> 0

| (val one, 2, x) -> one

| (1, 2, val y, 3+1) -> 2

The first pattern is not matched becausex=3, which doesn’t match the
array element 1. The second patternis matched, because the pattern only
checks array indices 0, 1, and 2. The third pattern would match, but the
second pattern wins because it is earlier. The expression2+2 is evaluated,
but the expression4+5 is not, because its arm is never reached.

array e Evaluatese to a valuev, then creates a new arraya that containsv in
every element; that is,{n 7→ v}n. The value of the expression is this
arraya.

(e0, e1, . . . , en−1) Evaluatesei to vi, then creates a new arraya that containsvi at theith

index fori = 0, 1, . . . , n− 1 and 0 at every other index. The value is this

4



arraya.
String literals are syntactic sugar for arrays of integers, in which each
index of the array gives the ASCII code for the corresponding character.
For example,‘‘hello’’ is sugar for(104, 101, 108, 108, 111).

a An array, which is actually a total map from integers to values. This kind
of expression never appears in CL source code, but can occur during
evaluation, according to the semantics given in Section 2.4.

e1[e2] Evaluates expressione1 to an arraya ande2 to an integern. Returns
a(n), the value in the array at indexn.

e1[e2 := e3] Evaluates expressione1 to an arraya, and expressione2 to an integern,
ande3 to a valuev3. Returns a new arraya[n 7→ v3]: just like a, except
that the element at indexn is changed tov3. Arrays are immutable, soa
remains unmodified. The indexn can be any integer; both positive and
negative array indices are allowed.

mailbox e The result of this expression is a newly created mailbox. However, this
expression first evaluatese to a valuev. When this mailbox is empty and
the operationrecv is used on it, it returnsv.

send e1 <- e2 This expression first evaluatese1 to a mailboxmailbox ande2 to v2. The
valuev2 is inserted inmailbox , and the expression returnsmailbox .

recv e This expression first evaluatese to a mailboxmailbox . A valuev from
mailbox is removed, and the expression returnsv. If the mailbox does
not contain any values, the expression returns the value that was provided
while creating the mailbox.

wait e This expression evaluatese to a mailboxmailbox . If no values are in
mailbox , the thread blocks until a value is sent tomailbox . The result of
this expression is alwaysmailbox , which makes it convenient to dorecv
(wait m).
There is no guarantee that there will be a message available in the mail-
box whenwait unblocks, because another thread could have usedrecv

to read the message first.
do e This allows a thread to interact with the external world. First, expression

e is evaluated to a valuev which is then sent to the external world. The
thread blocks waiting for the external world to provide a result. The
return result of this expression can be any CL expression (it is specified
by the external world, and need not be a value). The list of requests
currently recognized by the external world is given in section 2.5.

spawn e This creates a new thread that evaluates the expressione concurrently
with the existing threads.

We have provided for you a representation for expressions as the typeAst.exp in the file
eval/ast.ml. Note that these expressions are often contained within values of the typeAst.line.
Ast.line is a type that simply pairs an expression with the filename and line number at which it
appeared. The evaluator uses these line numbers and filenames to give error messages that tell you

5



exactly where errors occurred.

2.3 Evaluation

A thread is represented by a unique thread identifierpid and expressione. The current state of the
CL interpreter is a queue of threads. The interpreter repeatedly performs the following operation:
it takes the thread at the head of the queue, performs a single evaluation step on its expression,
and places the modified thread at the end of the queue. It is important that threads execute one
step at time. If the interpreter evaluated a program down to a value all at once, the system would
not be concurrent because only the thread being evaluated would be able to run. Therefore, the
interpreter evaluates threads in single steps. Given an expression, the evaluator finds the leftmost
subexpression that can be reduced, and reduces this subexpression.

If a thread expression is not a value but there is no legal reduction to be performed, evaluation of
that thread isstuck. This is a run-time error that terminates the thread. For example, an expression
like 1/0 is stuck because it has a division by zero; the expression5[0] is stuck because there is a
type error:5 is not an array.

2.4 Reductions

The list of possible reductions that can be performed during evaluation is given below. These
reductions are similar to the reductions you have learned for OCaml. Lettersv stand for values,
and letterse for expressions which may or may not be values. The notatione·{v/x} is an explicit
substitution term (see Section 2.9).

There are several expressions in which reductions occur before the evaluation of their subex-
pressions. These expressions are the following:let id = v in e, if v then e1 else e2, fun id -> e,
rec id in e, match v with (p10, id1, . . . , idn−1) -> e1 | . . . , spawn e, andv ; e. Thev’s indicate
subexpressions that must be fully evaluated before the expression can be reduced, and thee’s in-
dicate subexpressions that are not evaluated until after the reduction of the whole expression. In a
match expression, the subexpressions of the first arm

unopv −→ v′ wherev′ = unopv mathematically.
v1 binopv2 −→ v′ wherev′ = v1 binopv2 in OCaml, for oper-

ators+, *, /, mod. For operators<, >, ≤,
≥, and=, the result is 1 where it would be
true in OCaml, and 0 if it would befalse.

v; e −→ e
let id = v in e −→ e·{v/id}

rec id in e −→ e·{rec id in e/id}
(fun id -> e) v −→ e·{v/id}

if n then e1 else e2 −→ e1 wheren > 0
if n then e1 else e2 −→ e2 wheren ≤ 0

match a with (p10, p11, . . . , p1(n1−1)) -> e1 | rest −→ e1 · {vj/idj}
where the indicesj are those with the prop-
erty thatpj has the formval idj. The pat-
tern must match: that is, for allk wherepk

6



has the formvk instead,a(k) = vk. The
metavariablerest stands for the rest of the
arms of thematch, if any.

match a with (p10, p11, . . . , p1(n1−1)) -> e1 | rest −→ match a with rest
where the pattern does not match: for some
k wherepk has the formvk, a(k) 6= vk. It
is a run-time error if the pattern does not
match andrest is empty.

The rules for the array operations are as follows:

a [v1] −→ v2

wherea is an array. The valuev2 is a(v1), the value at thevth
1

index ofa.

array v −→ a
wherea is a new array that containsv in every element. That is,
a = {n 7→ v}n

(v0, v1, . . . , vn−1) −→ a
wherea is a new array with its contents initialized to an array that
containsvi at theith index for i = 0, 1, . . . , n− 1 and 0 at every
other index. That is,a = {n 7→ 0}n[0 7→ v0, . . . , n− 1 7→ vn−1]

a[v1 := v2] −→ a′

wherea is an array. The return value is a new arraya′ which isa
with thevth

1 index containing the valuev2

Finally, the reductions for concurrent constructs are:

mailbox v −→ mailbox
The result is a new mailboxmailbox that returnsv on a recv

operation when the mailbox is empty.
send mailbox <- v −→ mailbox

Effects: valuev is inserted in the mailboxmailbox . The result is
mailbox .

recv mailbox −→ v
Retrieves a valuev from the mailboxmailbox . Two messages sent
by the same thread will be received in the order in which they were
sent. No other guarantees are placed on the order of delivery. If
the mailbox is empty, the value that was provided while creating
the mailbox is returned. Effects: the valuev is removed from the
mailbox.

wait mailbox −→ mailbox
Blocks the current thread until a message has been sent to the
mailboxmailbox .

7



do v −→ e
wheree is the expression returned by the external world
Effects: senddoAction(pid, v) to the external world wherepid
is the thread identifier. The external world provides the expression
e.

spawn e −→ n
Effects: ask the external world for a fresh thread identifierpid′.
If this succeeds, launch a new thread with the identifierpid′ ex-
pressione, and a copy of the environment of the current thread;
the result is 1. If the world does not permit a new thread to be
spawned, the result is 0

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example,e1 binope2 must be evaluated as

e1 binope2 −→ v1 binope2 −→ v1 binopv2 −→ v

2.5 The external environment

Currently thedo action performs simple I/O operations, though in PS6 it will be a general mecha-
nism for interacting with the world. The following actions are currently provided:

• do 0 : read a number from the input and return it to the interpreter

• do (1, v) : print v and returnsv. Any value may be printed. Functions will result in
printing 〈function〉, and mailboxes will print〈mailbox〉.

• do (2, a) : print the arraya as a string. Returns 1 if the array obeys the string rep invariant
(i.e., length at index -1). Thus,do (2, "hi") will print out the string “hi”.

• do 4 : reads a string from the input, and returns it to the interpreter as an array.

2.6 Configurations

A configurationis the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of threads, each of which has a currently executing expression and a
thread id.

We can describe a single thread as a tuple〈pid, e〉. The entire interpreter configuration is the
current queue of threads:

〈〈pid1, e1〉, . . . , 〈pidn, en〉〉

The thread at the head of the queue, thread 1, is the one that will take the next evaluation step
and be pushed to the end of the queue. Suppose that this thread takes the evaluation stepe1 −→ e′1.
Then the effect of this step on the configuration as a whole is this:

8



〈〈pid1, e1〉, 〈pid2, e2〉, . . . , 〈pidn, en〉〉 −→ 〈〈pid2, e2〉, . . . , 〈pidn, en〉, 〈pid1, e
′
1〉〉

The type for configurations,Configuration.configuration, is defined in the source file
eval/configuration.ml. A single step of the interpreter is performed by the function
Evaluation.stepConfig in eval/evaluation.ml.

2.7 Creating threads

Threads can create other threads by callingspawn e. As a result, a new thread will be added to
the list of threads. The two threads are able to communicate with each other through mailboxes
created before evaluatingspawn.

2.8 Errors and termination

If a thread has evaluated to a value, itterminatesand is deleted from the list of threads. Thus, we
have the following evaluation rule:

〈〈pid1, v1〉, 〈pid2, e2〉, . . . , 〈pidn, en〉〉
−→ 〈〈pid2, e2〉, . . . , 〈pidn, en〉〉

In incorrect programs, expressions can encounter run-time errors, such as run-time type errors.
Run-time type errors are expressions that are not value but for which there is no legal reduction. If
a thread in a CL program encounters a run-time error, that single thread immediately terminates.
Other threads are not directly affected, however. Errors should terminate the thread encountering
them, but do not affect other running threads.

2.9 Substitutions

To speed up evaluation, the interpreter does not eagerly substitute for all unbound occurrences
when a variable is bound in a function call or alet. Instead, the interpreter uses anexplicit
substitution model, in which the substitutione{v/x} is represented by a explicit substitution term
written here ase·{v/x}. For example,2·{} (that is,2 with an empty substitution) is equivalent to
x·{2/x}; they both evaluate in a single step to2. During evaluation, substitutions are delayed till
variables need to be evaluated. This means the interpreter avoids doing substitution work that is
not needed.

The substitution rules are given below. The notation{~v/~x} is shorthand for a substitution for
multiple variablesxi at once:{v1/x1, . . . , vn/xn}. The notation{~v/~x} − x represents set{~v/~x}
with the binding forx (if any) removed, and{~v/~x}+ {~v′/~x′} represents the union of substitutions
in {~v/~x} and{~v′/~x′}, except that{~v′/~x′} overrides{~v/~x} on any variable that both substitute for.

xi · {~v/~x} −→ vi

(unope) · {~v/~x} −→ unop(e · {~v/~x})
(e1binope2) · {~v/~x} −→ (e1 · {~v/~x}) binop(e2 · {~v/~x})

9



(e1; e2) · {~v/~x} −→ (e1 · {~v/~x}); (e2 · {~v/~x})
(let id = e1 in e2) · {~v/~x} −→ let id = (e1 · {~v/~x}) in (e2 · {~v/~x})

(rec id in e) · {~v/~x} −→ e·{~v/~x}+ {rec id in e/id}
(fun id -> e) · {~v/~x} −→ fun id -> (e · {~v/~x} − id)

(e1 e2) · {~v/~x} −→ (e1 · {~v/~x}) (e2 · {~v/~x})
(if e1 then e2 else e3) · {~v/~x} −→ if (e1 · {~v/~x}) then (e2 · {~v/~x}) else (e3 · {~v/~x})
(match e1 with p-> e2 . . . ) · {~v/~x} −→ match (e1 · {~v/~x}) with p · {~v/~x}-> (e2 · {~v/~x}) . . .

(e0, e1, . . . , en−1) · {~v/~x} −→ ((e0 · {~v/~x}), (e1 · {~v/~x}), . . . , (en−1 · {~v/~x}))
(array e) · {~v/~x} −→ array (e · {~v/~x})

(e1[e2]) · {~v/~x} −→ (e1 · {~v/~x})[(e2 · {~v/~x})]
(e1[e2 := e3]) · {~v/~x} −→ (e1 · {~v/~x})[(e2 · {~v/~x}) := (e3 · {~v/~x})]
(mailbox e) · {~v/~x} −→ mailbox (e · {~v/~x})

(send e1 <- e2) · {~v/~x} −→ send (e1 · {~v/~x}) <- (e2 · {~v/~x})
(recv e) · {~v/~x} −→ recv (e · {~v/~x})
(wait e) · {~v/~x} −→ wait (e · {~v/~x})

(do e) · {~v/~x} −→ do (e · {~v/~x})
(spawn e) · {~v/~x} −→ spawn (e · {~v/~x})

(e · {~v/~x}) · {~v′/~x′} −→ e · ({~v/~x}+ {~v′/~x′})

The following example illustrates evaluation steps using explicit substitution:

let x = 1 in let f = fun z -> x + z in f 3
−→ (let f = fun z -> x + z in f 3)·{1/x}
−→ let f = (fun z -> x + z)·{1/x} in (f 3)·{1/x}
−→ let f = (fun z -> (x + z)·{1/x}) in (f 3)·{1/x}
−→ (f 3)·{1/x}·{(fun z -> (x + z)·{1/x})/f}
−→ (f 3)·{1/x, (fun z -> (x + z)·{1/x})/f}
−→ f ·{1/x, (fun z -> (x + z)·{1/x})/f}3·{1/x, (fun z -> (x + z)·{1/x})/f}
−→ (fun z -> (x + z)·{1/x}) 3·{1/x, (fun z -> (x + z)·{1/x})/f}
−→ (fun z -> (x + z)·{1/x}) 3
−→ (x + z)·{1/x}·{z/3} −→ (x + z)·{1/x, 3/z}
−→ x·{1/x, 3/z}+ z·{1/x, 3/z} −→ 1 + z·{1/x, 3/z}
−→ 1 + 3 −→ 4

3 Using the interpreter

3.1 File structure

The interpreter code is structured as follows:

• ast.ml: definitions of basic types (AST.exp)

• config.ml: definition of the configuration type

• evaluation.ml: performs a single step of the main interpreter loop. The evaluation
searches for the leftmost subexpression to reduce, then calls the reduction function.

10



• concurrency.ml: defines all the mailbox operations

• arrayCL.ml: defines the type of arrays

• substMap.ml defines the type of the substitution map

• reduction.ml: defines the one-step reduction function.

• world.ml: interface for interaction with the external world

• debug.ml: interface for debugging

• cl/*.cl, a few sample CL programs

3.2 Running CL code

You will build a custom toplevel containing all of your PS5 code. We have provided a script
calledbuildToplevel.bat (which can be run on both Windows and Unix) which creates such a
toplevel. To start the toplevel, execute the scriptrunToplevel.bat. From the toplevel, you can
enter the debugging mode using the command:

Debug.debug “a string representing an CL program”

You will see a prompt (>). You can get the list of available commands by typing “help”. These
are some commands for quick start:

• s: steps one step and shows the new stepped expression

• r: runs until the end

• load filename: resets the interpreter and loads a file with an CL program

• h: gives you the help message and shows you many more commands

• q: quits the debugger

There are many other helpful functions and debugger commands; seedebug.ml for more de-
tails. If you feel that the debugging tools implemented are inadequate, feel free to modify them.

4 Your task

Part 1: Match Evaluation

Finish the implementation of thematch expession. You will have to make changes to the following
files:

• eval/evaluation.ml

• eval/reduction.ml

11



Part 2: Performance Improvements

The current CL interpreter is very inefficient. It is your task to discover where these bottlenecks lie
and to improve the performance of the interpreter. You should be able to speed up the interpreter by
an order of magnitude if you do your job right. You should also document any changes you made
and explain how and why they improve performance. You are allowed to modify any code in the
eval directory. However, you should not modify theevaluation.mli file. Gratuitous changes
may result in a penalty.

As on PS3, the group that produces the fastest correct interpreter implementation will receive
a bonus.

You will want to think about the right data structures to implement performance-critical ab-
stractions.You may use any data structures you find in theOCaml Core Library(e.g., arrays and
lists). However, you arenotallowed to use the additional data structures found in theOCaml Stan-
dard Libraryexcept List and Array, though you may implement your own versions of any data
structures if you want to.

To help you figure out where your time is going in the interpreter, you will probably find
the OCaml profiler to be helpful. A profiler is a tool that records where time is being spent in
your program. It can then generate various useful reports that will help you identify performance
bottlenecks. We will expect you to show us before-and-after profiles for your interpreter running a
standard benchmark, and to explain how these profiles show that you did your job well.

Unfortunately, Windows does not support profiling OCaml programs very well. For this rea-
son, you will need to profile your code on Linux. We will host a demo session where we will show
you how to use the OCaml profiler and Linux. If you have a CSUGLab account, you can access
computers running Linux (csug11–csug15 or linus, schroeder, marcie, redbaron, sally) by
following the instructions at:
http://www.csuglab.cornell.edu/Info/linux-info.html. If you do not have a CSUGLab ac-
count, you can obtain one:
http://www.csuglab.cornell.edu/Info/accounts.html The course staff can help you find a
Linux machine and profile your code if you go to consulting hours or office hours.

Running the profiler

Once you’ve logged into Linux, make sure thatocaml andgprof are installed (they should already
be installed on the CSUGLab machines).

1. From the command line, navigate to the directory that contains your PS5 solution.

2. Run thebuildExecutable.sh script by entering the command./buildExecutable.sh.
It should create an executable calledruncl in your current directory.runcl is a program
that takes the name of a CLfile as an argument on the command line and executes it. The
buildExecutable.sh script buildsruncl with extra profiling code. This extra code records
how much time is being spent in each part of your OCaml code each time you executeruncl.

If you get an error saying you do not have permission to run the script, you will need to
change its permissions with the commandchmod +x buildExecutable.sh.

12

http://caml.inria.fr/pub/docs/manual-ocaml/manual033.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual034.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual034.html
http://www.csuglab.cornell.edu/Info/linux-info.html
http://www.csuglab.cornell.edu/Info/accounts.html


3. Now choose a CL program (for example,cl/fibo.cl) that you want your interpreter to
evaluate, and use the command./runcl cl/fibo.cl to evaluate it.runcl will generate
profiling information while it runs.

4. To view the profiling information that you just recorded, you will use a program called
gprof. You can do this with the commandgprof runcl. This command will print a lot of
text to the console, so you may prefer to redirect its output to a file:
gprof runcl > results.txt

One particularly useful table is the “flat profile”. It lists each function that was called along
with the percentage of the total time that was spent in it, as in the following:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
25.00 0.10 0.10 1000012 0.00 0.00 camlEvaluation stepProcess 116
11.25 0.15 0.05 1700014 0.00 0.00 camlReduction subst 119
10.00 0.19 0.04 4500033 0.00 0.00 camlReduction isValue 103
7.50 0.22 0.03 1000018 0.00 0.00 compare val
7.50 0.25 0.03 1 30.00 350.01 camlDebug step 69
5.00 0.27 0.02 1000012 0.00 0.00 camlEvaluation stepAndUpdate 251
5.00 0.29 0.02 900015 0.00 0.00 caml compare
3.75 0.30 0.02 400004 0.00 0.00 camlReduction reduce 226
2.50 0.31 0.01 1800072 0.00 0.00 caml string length
2.50 0.32 0.01 1000012 0.00 0.00 camlEvaluation stepConfig 260
2.50 0.33 0.01 900006 0.00 0.00 camlSubstMap compare 89
2.50 0.34 0.01 200001 0.00 0.00 camlReduction funOfBinop 187

The “cumulative seconds” is just a running total of the “self seconds” column. The “self
seconds” column measures the time spent in each function, not including any functions it
calls.

Later in thegprof output you will find breakdowns of where time was spent within each
function, including functions they call. For example, if you wanted to see whether functions
called byEvaluation.stepProcess were spending a lot of time, that’s the place to look.

Part 3: Source Control

You are required to use a source control system like CVS or SVN. Submit the log file that describes
your activity. If you are using CVS, this can be obtained with the commandcvs log. CVS is
supported in the CSUG Lab. For information on how to get started with CVS there, read the
CVS/CSUG handout

13

https://www.cs.cornell.edu/Courses/cs3110/2008fa/handouts/cvsusage.html
https://www.cs.cornell.edu/Courses/cs3110/2008fa/handouts/cvsusage.html


Part 4: CL Implementation

CL doesn’t have as many built-in operations and data structures as OCaml. Fortunately, many
things we’re used to having in other languages are easy to implement, using higher-order functions
and other CL features.

1. Using CL, implement a functionfoldi that folds over a range of integers, much likefold left

folds over elements of a list. That is,foldi body init start end should apply the func-
tion body to every integer betweenstart andend. The functionbody has two arguments;
the first is the accumulated value (which starts atinit) and the second is the current integer.
For example,

foldi (fun acc -> fun i -> do (1, i); acc+i) 0 1 5

should print the numbers from 1 to 5, and its value should be 15.

Your implementation should include a test harness forfoldi.

2. A priority queue is a queue that allows elements to be pushed (enqueued) in any order, but
when elements are dequeued, they come out in order of their priority.

Write a test program that implements a concurrent, thread-safe shared priority queue in CL.
That is, multiple threads should be able to use your priority queue concurrently. An element
enqueued onto the priority queue by one thread can be dequeued by a different thread. In
this context, thread-safe means that operations of the priority queue should not interfere
with each other. If two threads attempt to dequeue simultaneously, they should never get the
same object. Nor should objects get lost from the queue if there are concurrent enqueues or
dequeues. Hint: use message passing.

Be sure to write specs for any priority queue operations you define. Your implementation
does not have to be as efficient as possible, but we will give bonus points for especially effi-
cient implementations. Your program should include a test harness that creates two threads
which both enqueue and dequeue 1000 elements.

Part 5: Written problems

There are three written parts to this assignment.

(a) Consider the problem of multiplying two n-bit integers. One of the more efficient methods
for performing this task is theKaratsubaalgorithm, given below:

14



Requires: x, y both n bit numbers

Returns: x × y
let rec karatsuba(x, y, n) =

if (n = 1) then x*y

else

let x1 = first n/2 bits of x in

let x2 = last n/2 bits of x in

let y1 = first n/2 bits of y in

let y2 = last n/2 bits of y in

let U = karatsuba(x1, y1, n/2) in

let V = karatsuba(x2, y2, n/2) in

let W = karatsuba(x1 - x2, y1 - y2, n/2) in

let Z = U + V - W in

(2 ^ n) * U + 2 ^ (n/2) * Z + V

Derive a recurrence relation for Karatsuba’s algorithm, explaining each term. Then solve for
the closed form and prove your answer by induction. For simplicity, assume thatn = 2k

for somek. Additionally, any addition operations are performed inO(n) time, as well as
any multiplications by2k, since this can be accomplished by left-shifting the bits in the
multiplicand.

How does this compare to multiplication as normally done by hand?

(b) Consider the functionbsearch:

(* Requires: ∃ x such that a ≤ x, x ≤ b, f(x) = 0,
* and ∀ y, z (y ≤ z ⇒ f(y) ≤ f(z))
* Returns: r = bsearch f a b, where a ≤ r, r ≤ b, and f(r) = 0
*)

let rec bsearch f a b =

if a = b then a

else let m = (a+b)/2 in

if f(m) < 0 then bsearch f m b

else bsearch f a m

(a) This function contains an error. Identify it and explain how to fix it.

(b) Prove partial correctness of the corrected function using Hoare logic. Identify the step
of the proof that would fail with the uncorrected version and give a brief explanation
why. You may use reasonable axioms for algebraic manipulation of expressions over
integers.
Your proof probably won’t be small enough to write as one proof tree. Feel free to
break it down into smaller trees that can be assembled into a single proof. Just make it
clear how that assembly is done. (This amounts to proving lemmas.)
The Hoare logic proof will have several predicate logic premises. You don’t have to
give a formal proof of these premises, though you may. It is enough to give an informal
proof: that is, a convincing English-language argument that each premise is true.

15



(c) Consider the functionfilter:

(* Requires: True

* Returns: elements(filter f l) = { e ∈ elements(l) | f e }

*)

let filter f l =

let rec filter_t f l acc =

match l with

[] -> acc

| h::t -> if f h then filter_t f t h::acc else filter_t f t acc

in

filter_t f l []

Write a clear specification forfilter t that would enable this code to be proved correct.
That is,

(a) Its precondition should be satisfied by its use infilter.

(b) Its postcondition should satisfy the postcondition offilter.

(c) The precondition of its recursive call should be satisfied assuming its precondition is
satisfied.

(d) The postcondition of its call should be satisfied assuming the postcondition of its re-
cursive call is satisfied.

Argue informally that each of these four criteria are satisfied by your spec forfilter.

Files to submit

• PS5.zip: A zip file containing all the files to run the interpreter

• foldi.cl: Foldi implementation file

• priority.cl: CL Priority Queue implementation file

• written.txt or written.pdf: Written problems solution file

• ps5.log: your CVS logs

• design overview.txt ordesign overview.pdf: An overview document for your assign-
ment, as in the previous two assignments. Be sure to describe the changes you made and to
explain how and why they improved performance.

16


	Introduction
	The CL language
	Overview
	Expressions
	Evaluation
	Reductions
	The external environment
	Configurations
	Creating threads
	Errors and termination
	Substitutions

	Using the interpreter
	File structure
	Running CL code

	Your task

