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Computer security
 Goal: prevent bad things from happening

 Clients not paying for services
 Critical service unavailable
 Confidential information leaked
 Important information damaged
 System used to violate laws (e.g., copyright)

 Conventional security mechanisms aren’t
up to the challenge
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Harder & more important
In the ’70s, computing systems were isolated.

 software updates done infrequently by an experienced
administrator.

 you trusted the (few) programs you ran.
 physical access was required.
 crashes and outages didn’t cost billions.

The Internet has changed all of this.
 we depend upon the infrastructure for everyday services
 you have no idea what programs do.
 software is constantly updated – sometimes without your knowledge

or consent.
 a hacker in the Philippines is as close as your neighbor.
 everything is executable (e.g., web pages, email).
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Language-based security
 Conventional security: program is black box

 Encryption
 Firewalls
 System calls/privileged mode
 Process-level privilege and permissions-based access control

 Prevents addressing important security issues:
 Downloaded and mobile code
 Buffer overruns and other safety problems
 Extensible systems
 Application-level security policies
 System-level security validation

 Languages and compilers to the rescue!
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Outline
 The need for language-based security
 Security principles
 Security properties
 Memory and type safety
 Encapsulation and access control
 Certifying compilation and verification
 Security types and information flow

 Handouts: copy of slides
 Web site: updated slides, bibliography

www.cs.cornell.edu/andru/pldi06-tutorial

Security principles
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Conventional OS security
 Model: program is black box
 Program talks to OS via protected

interface (system calls)
 Multiplex hardware
 Isolate processes from each other
 Restrict access to persistent data (files)

+ Language-independent, simple, limited
User-level Program

Operating System
Kernel

Hardware
memory

protection
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Access control model
 The classic way to prevent “bad things”

from happening
 Requests to access resources (objects)

are made by principals
 Reference monitor (e.g., kernel) permits or

denies request

Principal Reference
Monitor

Object
(Resource)

request
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Authentication vs. Authorization

 Abstraction of a principal divides
enforcement into two parts
 Authentication: who is making the request
 Authorization: is this principal allowed to make

this request?

Principal Reference
Monitor

Object
(Resource)

request
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1st guideline for security
Principle of complete mediation:
Every access to every object must be checked by

the reference monitor

Problem: OS-level security does not support
complete mediation
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OS: Coarse-grained control
 Operating system enforces security at

system call layer
 Hard to control application when it is not making

system calls

 Security enforcement decisions made with
regard to large-granularity objects
 Files, sockets, processes

 Coarse notion of principal:
 If you run an untrusted program, should the

authorizing principal be “you”?
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Need: fine-grained control
 Modern programs make security decisions

with respect to application abstractions
 UI: access control at window level
 mobile code: no network send after file read
 E-commerce: no goods until payment
 intellectual property rights management

 Need extensible, reusable mechanism for
enforcing security policies
 Language-based security can support an extensible

protected interface, e.g., Java security
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2nd guideline for secure design
Principle of Least Privilege:  each principal

is given the minimum access needed to
accomplish its task.  [Saltzer & Schroeder
‘75]

Examples:
+ Administrators don’t run day-to-day tasks as root.  So

“rm –rf /” won’t wipe the disk.
- fingerd runs as root so it can access different users’

.plan files.  But then it can also
“rm –rf /”.
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Least privilege problems
 OS privilege is coarse-grained: user/group
 Applications need finer granularity

 Web applications: principals unrelated to OS principals

 Who is the “real” principal?
 Trusted program? Full power of the user principal
 Untrusted? Something less
 Trusted program with untrusted extension: ?
 Untrusted program accessing secure trusted subsystem: ?

 Requests may filter through a chain of programs
or hosts
 Loss of information is typical
 E.g., client browser → web server → web app → database
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3rd guideline: Small TCB
Trusted Computing Base (TCB) :

components whose failure compromises
the security of a system

 Example: TCB of operating system includes
kernel, memory protection system, disk image

 Small/simple TCB:
⇒ TCB correctness can be checked/tested/reasoned about more

easily ⇒ more likely to work

 Large/complex TCB:
⇒ TCB contains bugs enabling security violations

Problem: modern OS is huge, impossible to verify
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Small TCB and LBS
 Conventional wisdom (c. 1975):

 “operating system is small and simple, compiler is
large and complex”

 OS is a small TCB, compiler a large one

 c. 2003:
 OS (Win2k) = 50M lines code, compiler ~ 100K lines

code
 Hard to show OS implemented correctly

 Many authors (untrustworthy: device drivers)
 Implementation bugs often create security holes

 Can now prove compilation, type checking correct
 Easier than OS: smaller, functional, not concurrent
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The Gold Standard [Lampson]

 Authenticate
 Every access/request associated with correct principal

 Authorize
 Complete mediation of accesses

 Audit
 Recorded authorization decisions enable after-the-fact

enforcement, identification of problems

 Language-based techniques can help
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When to enforce security
Possible times to respond to security

violations:
 Before execution:

 analyze, reject, rewrite

 During execution:
monitor, log, halt, change

 After execution:
roll back, restore, audit, sue, call police
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Language-based techniques
A complementary tool in the arsenal: programs don’t have

to be black boxes! Options:

1. Analyze programs at compile time or load time to
ensure that they are secure

2. Check analyses at load time to reduce TCB
3. Transform programs at compile/load/run time so that

they can’t violate security, or to log actions for auditing.
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Maturity of language tools
Some things have been learned in the last 25

years…
 How to build a sound, expressive type system

that provably enforces run-time type safety
⇒ protected interfaces

 Type systems that are expressive enough to
encode multiple high-level languages
⇒ language independence

 How to build fast garbage collectors
⇒  trustworthy pointers

 On-the-fly code generation and optimization
 ⇒  high performance
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Caveat: assumptions and abstraction

 Arguments for security always rest on assumptions:
 “the attacker does not have physical access to the hardware”
 “the code of the program cannot be modified during execution”
 “No one is monitoring the EM output of the computer”

 Assumptions are vulnerabilities
 Sometimes known, sometimes not

 Assumptions arise from abstraction
 security analysis only tractable on a simplification (abstraction) of

actual system
 Abstraction hides details (assumption: unimportant)

 Caveat: language-based methods often abstract
aspects of computer systems
 Need other runtime, hardware enforcement mechanisms to

ensure language abstraction isn’t violated—a separation of
concerns

A sampler of attacks
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Return addresschar buf[100];
…
gets(buf);

 Attacker gives long input that overwrites
function return address, local variables

 “Return” from function transfers control to
payload code

Attack: buffer overruns

Program
Stack

buf

Return address

Payload

sp
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Execute-only bit?
 Stack smashing executes code on stack -- mark

stack non-executable?
  Return-to-libc attack defeats this:

 Not all dangerous code lives in the code segment…
 More attacks: pointer subterfuge (function- and

data-pointer clobbering), heap smashing,
overwriting security-critical variables…

 Moral: SEGVs can be turned into attacks

void system(char * arg) {
...

 r0 = arg;
execl(r0, ...); // “return” here with r0 set
...

}
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Attack: format strings
fgets(sock, s, n);
…
fprintf(output, s);

 Attack: pass string s containing a %n
qualifier (writes length of formatted input
to arbitrary location)

 Use to overwrite return address to
“return” to malicious payload code in s.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 26

Attack: SQL injection
 Web applications typically construct SQL

database queries.
 In PHP:

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

 Attacker uses userid of ‘ OR ‘1’ = ‘1’. Effect:
UPDATE users SET pass=<pass> WHERE userid=‘’ OR ‘1’=‘1’

 69% of Internet security vulnerabilities are
in web applications [Symantec]
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Using system subversion
 Assume attacker can run arbitrary code

(possibly with dangerous privileges)
 Initial foothold on target system enables

additional attacks (using other holes)
 Worms: programs that autonomously

attack computers and inject their own code
into the computer

 Distributed denial of service: many
infected computers saturate target network
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1988:  Morris Worm
Penetrated an estimated 5 to 10 percent of

the 6,000 machines on the internet.
Used a number of clever methods to gain

access to a host.
 brute force password guessing
 bug in default sendmail configuration
 X windows vulnerabilities, rlogin, etc.
 buffer overrun in fingerd

Remarks:
 System diversity helped to limit the spread.
 “root kits” for cracking modern systems are easily

available and largely use the same techniques.
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1999: Love Bug & Melissa
Both email-based viruses that exploited:

 a common mail client (MS Outlook)
 trusting (i.e., uneducated) users
 VB scripting extensions within messages to:

 lookup addresses in the contacts database
 send a copy of the message to those contacts

Melissa: hit an estimated 1.2 million machines.
Love Bug:  caused estimated $10B in damage.
Remarks:

 no passwords or crypto involved
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Why did it succeed?
 Visual Basic scripts invoked transparently upon

opening
 Run with full privileges of the user
 Kernel doesn’t know about fine-grained

application abstractions or related security
issues: mail messages, contacts database, etc.

 Recipients trusted the sender – after all, they
know them

 Interactions of a complex system were
unanticipated
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A solution for Melissa?
 Turn off all executable content?

 no problem when email was just text.
 but executable content is genuinely useful.
 ex: automated meeting planner agent, postscript, Mpeg4 codecs,

client-side forms, etc.
 US DoD tried to do this : revolt

 Fundamental tension:
 modern software wants to be open and extensible.
 programmable components are ultimately flexible.

 Postscript, Emacs, Java[script], VB, Jini, ActiveX, plug-n-play...
 security wants things to be closed:  least privilege.
 turning off extensibility is a denial-of-service attack.
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2002: MS-SQL Slammer worm
 Jan. 25, 2002: SQL and MSDE servers on

Internet turned into worm broadcasters
 Buffer-overrun vulnerability
 Spread to most vulnerable servers

on the Internet in less than 10 min!

 Denial of Service attack
 Affected databases unavailable
 Full-bandwidth network load ⇒ widespread service outage
 “Worst attack ever” – brought down many sites, not Internet

 Can’t rely on patching!
 Infected SQL servers at Microsoft itself
 Owners of most MSDE systems didn’t know they were

running it…extensibility again
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Virus scanning?
 Scan for suspicious code

 e.g., McAfee, Norton, etc.
 based largely on a lexical signature.
 the most effective commercial tool
 but only works for things you’ve seen

 Melissa spread in a matter of hours
 virus kits make it easy to disguise a virus

 “polymorphic” viruses

 Doesn’t help with worms
 Unless you can generate a filter automatically…

Security Properties
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Security properties

Security = “bad things don’t happen”

What kinds of properties
should computing systems satisfy?
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Security policies
 Execution (trace) of a program is a

sequence of states s1s2s3… encountered
during execution
 Program has a set of possible executions T

 A generic formalization: security policy is a
predicate P on sets of executions
  Program satisfies policy if P(T)

 Examples:
 P(T) if no null pointer is deferenced in any trace in T
 P(T) if every pair of traces in T with the same initial

value for x have the same final value for y
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Safety properties
 “Nothing bad ever happens”
 A property is a policy that can be enforced using

individual traces
 P(T)  ⇔  ∀t∈T. P’(t) where P’ is some predicate on traces

 Safety property can be enforced using only
history of program
 If P’(t) does not hold, then all extensions of t are also bad
 Amenable to run-time enforcement: don’t need to know future

 Examples:
 access control (e.g. checking file permissions on file open)
 memory safety (process does not read/write outside its own

memory space)
 type safety (data accessed in accordance with type)
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Liveness properties
 “Something good eventually happens”

 If P’(t) does not hold, every finite sequence t can be
extended to satisfy P’

 Example: nontermination
 “The email server will not stop running”

 Violated by denial of service attacks
 Can’t enforce purely at run time
 Interesting properties often involve both

safety and liveness
 Every property is the intersection of a safety property

and a liveness property [Alpern & Schneider]
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Memory safety and isolation
 Process isolation: running process cannot

access memory that does not belong to it
 Usually enforced by hardware TLB

 TLB caches virtualphysical address mappings
 Invalid virtual addresses (other processes) cause kernel trap

 Cross-domain procedure calls/interprocess communication
(RPC/IPC) expensive (TLB misses)

 Memory safety: running process does not
attempt to dereference addresses that are not
valid allocated pointers
 No read from or write to dangling pointers
 Not provided by C, C++ :

int *x = (int *)0x14953300;
*x = 0x0badfeed;
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Control-flow integrity
 Actual control flow must conform to a “legal

execution”
 Code injection attacks violate CFI.
 Weak: control can only be transferred to legal

program code points
 Rules out classic buffer overrun attacks
 Not provided by C:

int (*x)() = (int(*)()) 0xdeadbeef; (*x)();
 Stronger: control must agree with a DFA or CFG

capturing all legal executions
 Can be enforced cheaply by dynamic binary

rewriting as in DynamoRIO [Kiriansky et al., 2002]
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Type safety
 Values manipulated by program are used in

accordance with their types
 Stronger than memory safety!

 Can be enforced at run-time (Scheme), compile-
time (ML), mix (Java)

 Abstract data types: data types that can only be
accessed through a limited interface
 can protect their internal storage (private data)

 Kernel = ADT with interface = system calls,
abstraction barrier enforced at run time by
hardware
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Access control
 Access control decision:

 principal × request × object → boolean

 Access control matrix [Lampson]:

r rw rx
r r

rw r

user1
user2
user3

file1 file2 file3principals
objects

Allowed requests
 Columns of matrix: access control lists (ACLs)

 Correct enforcement is a safety property
 Safety can be generalized to take into account denial of access,

corrective action by reference monitor
[Hamlen][Ligatti][Viswanathan]
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Information security
 Sometimes computer security is an aspect

of physical security
 Make sure attackers cannot take over electric power

distribution grid, military command-and-control, etc.
 Can use type safety, access control to enforce rules

 What we’re trying to protect can also be
the information on the computer:
information security
 Memory safety, type safety don’t directly help
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Information security: confidentiality

 Confidentiality: valuable information should not
be leaked by computation.

 Also known as secrecy, though sometimes a
distinction is made:
 Secrecy: information itself is not leaked
 Confidentiality: nothing can be learned about information

 Simple (access control) version:
 Only authorized processes can read from a file
 But… when should a process be “authorized” ?
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% ls -l personal.txt
rw-------  personal.txt
% more personal.txt
...

 Access control controls release of data
but does not control propagation

 Security violation even
with “safe” operations

Confidentiality: a Trojan horse

personal.txt

more

output device

A B
?

...
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End-to-end confidentiality
 Access control does not help after access

control check is done
 End-to-end confidentiality:

Information should not be improperly released
by a computation no matter how it is used

 Enforcement requires tracking information flow
 Encryption provides end-to-end secrecy—but prevents most

computation
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Information security: integrity
 Integrity: valuable information should not be

damaged by computation
 Simple (access control) version:

 Only authorized processes can write to a file
 But… when should a process be “authorized”

 End-to-end version:
 Information should not be updated on the basis of less

trustworthy information
 Requires tracking information flow in system

 Information flow is not a property [McLean94]
 No information flow from x to y:

⇔
P(T) if every pair of traces in T with the same initial value for x
always have the same value for y
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Privacy and Anonymity
 Anonymity:

 individuals (principals) and their actions cannot be
linked by an observer

 alt: identity of participating principals cannot be
determined even if actions are known

 Privacy: encompasses aspects of
confidentiality, secrecy, anonymity
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Availability
 System is responsive to requests
 DoS attacks: attempts to destroy availability

(perhaps by cutting off network access)
 Fault tolerance: system can recover from faults

(failures), remain available, reliable
 Benign faults: not directed by an adversary

 Usual province of fault tolerance work

 Malicious or Byzantine faults: adversary can
choose time and nature of fault
 Byzantine faults are attempted security violations
 usually limited by not knowing some secret keys

Enforcing safety properties
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Reference Monitor
Observes the execution of a program and

halts the program if it’s going to violate the
security policy.

Common Examples:
 memory protection
 access control checks
 routers
 firewalls

Most current enforcement mechanisms are
reference monitors
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Requirements for a Monitor
 Must have (reliable) access to information

about security-relevant actions of the program
 e.g., what instruction is it about to execute?

 Must have the ability to “stop” the program
 can’t stop a program running on a different machine
 … or transition to a “good” state.

 Must protect the monitor’s state and code
from tampering.
 key reason why a kernel’s data structures and code aren’t

accessible by user code

 low overhead in practice
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Pervasive mediation

OS Reference monitor: won’t capture all events
Wrapper/interpreter: performance overhead
Instrumentation: merge monitor into program

 different security policies ⇒ different merged-in code
 simulation does not affect program
 pay only for what you use

Extension

EM
Base system

Reference monitor

EM
Extension

Base system

Interpreter

Extension

Base system

EM

Program instrumentation
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What policies?
 Reference monitors can only see the past

 They can enforce safety properties but not liveness
properties

Assumptions:
 monitor can have access to entire state of

computation.
 monitor can have arbitrarily large state
 safety properties enforced are modulo computational

power of monitor
 But: monitor can’t guess the future – the predicate it

uses to determine whether to halt a program must be
computable.



10

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 55

Software Fault Isolation (SFI)
 Wahbe et al. (SOSP’93)
 Goal is process isolation: keep software components in

same hardware-based address space, provide
 Idea: application can use untrusted code without memory protection

overhead

 Software-based reference monitor isolates components
into logical address spaces.
 conceptually:  check each read, write, & jump to make sure it’s within the

component’s logical address space.
 hope:  communication as cheap as procedure call.
 worry:  overheads of checking will swamp the benefits of communication.

 Only provides memory isolation, doesn’t deal with other
security properties: confidentiality, availability,…

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 56

One way to SFI: Interpreter
void interp(int pc, reg[], mem[], code[], memsz, codesz) {

while (true) {
    if (pc >= codesz) exit(1);
    int inst = code[pc], rd = RD(inst), rs1 =
RS1(inst),
        rs2 = RS2(inst), immed = IMMED(inst);
  switch (opcode(inst)) {
       case ADD: reg[rd] = reg[rs1] + reg[rs2]; break;
       case LD:  int addr = reg[rs1] + immed;
                 if (addr >= memsz) exit(1);
                 reg[rd] = mem[addr];
                 break;
       case JMP: pc = reg[rd]; continue;
  ...
}

   pc++;
}}

0: add r1,r2,r3
1: ld r4,r3(12)
2: jmp r4
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Interpreter pros and cons
Pros:

 easy to implement (small TCB.)
 works with binaries (high-level language-independent.)
 easy to enforce other aspects of OS policy

Cons:
 terrible execution overhead (25x?  70x?)

It’s a start.
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Partial Evaluation (PE)
A technique for speeding up interpreters.

 we know what the code is.
 specialize the interpreter to the code.

 unroll the main interpreter loop – one copy for each
instruction

 specialize the switch to the instruction: pick out that case
 compile the resulting code

 Can do at run time with dynamic binary
rewriting (e.g., DynamoRIO)
 Keep code cache of specialized code
 Reduce load time, code footprint
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Example PE

Specialized interpreter:
  reg[1] = reg[2] + reg[3];
  addr = reg[3] + 12;
  if (addr >= memsz) exit(1);
  reg[4] = mem[addr];
  pc = reg[4]

0: add r1,r2,r3
1: ld r4,r3(12)
2: jmp r4
 ...

Original Binary:
 case LD:  int addr = reg[rs1] + immed;
           if (addr >= memsz) exit(1);
           reg[rd] = mem[addr];
           break;

Interpreter

0: add r1,r2,r3
1: addi r5,r3,12
2: subi r6,r5,memsz
3: jab _exit
4: ld r4,r5(0)
…

Resulting Code
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Sandboxing
 SFI code rewriting is “sandboxing”
 Requires code and data for a security domain

are in one contiguous segment
 upper bits are all the same and form a segment id.
 separate code space to ensure code is not modified.

 Inserts code to ensure load and stores are in the
logical address space
 force the upper bits in the address to be the segment id
 no branch penalty – just mask the address
 re-allocate registers and adjust PC-relative offsets in code.
 simple analysis used to eliminate some masks
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Jumps
 Inserts code to ensure jump is to a valid

target
 must be in the code segment for the domain
 must be the beginning of the translation of a source

instruction (tricky for variable-length instructions)

 PC-relative jumps are easy:
 just adjust to the new instruction’s offset.

 Computed jumps are not:
 must ensure code doesn’t jump into or around a check

or else that it’s safe for code to do the jump.
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More SFI Details
Protection vs. Sandboxing:

 Protection is fail-stop:
 stronger security guarantees (e.g., reads)
 required 5 dedicated registers, 4 instruction sequence
 20% overhead on 1993 RISC machines

 Sandboxing covers only stores
 requires only 2 registers, 2 instruction sequence
 5% overhead

Remote (cross-domain) Procedure Call:
 10x cost of a procedure call
 10x faster than a really good OS RPC

Sequoia DB benchmarks:  2-7% overhead for SFI
compared to 18-40% overhead for OS.
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Limitations of SFI
 Only enforces process isolation
 Variable-length instructions are tricky

 But provably correct SFI is possible for x86
[McCamant & Morrisett]

 Sometimes want to enforce more complex
rules on untrusted code
 Example: downloaded applet can either read local files

or send to network, but not both

 Can we do more by code rewriting?
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Inlined reference monitors (IRMs)

 SASI [Schneider & Erlingsson 1999],
Naccio [Evans & Twyman 1999]

 SFI inlines a particular safety policy into
untrusted code

 Idea: embed an arbitrary safety policy into
untrusted code at load time
 Policy may be application-specific, even user-specific
 Low execution overhead
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Security automata

 Every safety property enforceable by security automaton
[Schneider ‘98]

 System execution produces sequence of events …
   … automaton reads and accepts/rejects sequence

 Need pervasive mediation to allow policies independent
of code being checked

read

not read not send
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…
ldc 1                                         // new automaton state on stack
putstatic SASI/stateClass/state               // cause automaton state change
invokevirtual java/io/FileInputStream/read()I // read integer from file
…
getstatic SASI/stateClass/state               // automaton state onto stack
ifeq SUCCEED                                  // if stacktop=0 goto succeed
   invokestatic SASI/stateClass/FAIL()V       // else security violation
SUCCEED:
   invokevirtual java/net/SocketOutputStream/write(I)V   // send message
...

read

not read not send

0 1

Example: JVM code in SASI
(Also implemented for x86 machine code)
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STATE { boolean did_read = false; }
EVENT methodCall FileInputStream.read { did_read = true; }
EVENT methodCall Network.send CONDITION did_read { FAIL; }

 State diagrams (SASI) are inconvenient -- how to specify
a reference monitor?

  Policy Specification Language  (PSLang)
 same expressive power, more convenient
 event-driven programming model maps program actions (events) to

automaton state updates
 specification expressible in terms of application abstractions

 Has been used to specify, enforce Java stack inspection
security model (!) with good performance

 But..hard to apply complex policies to low-level code

PSLang: specifying policies

Type Safety and Security
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Type-safe languages
Software-engineering benefits of type safety:
 memory safety
 no buffer overruns (array subscript a[i] only

defined when i is in range for the array a.)
 no worries about self-modifying code, wild

jumps, etc.

 Type safety can be used to construct a protected
interface (e.g., system call interface) that applies
access rules to requests
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Java
 Java is a type-safe language in which type

safety is security-critical
 Memory safety: programs cannot fabricate

pointers to memory
 Type safety: must use objects at correct

types
 Encapsulation: private fields, methods of

objects cannot be accessed from outside
 Bytecode verifier ensures compiled

bytecode is type-safe
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Java: objects as capabilities
 Single Java VM may contain processes

with different levels of privilege (e.g.
different applets)

 Some objects are capabilities to perform
security-relevant operations:
FileReader f = new
FileReader(“/etc/passwd”);
// now use “f” to read password file
// …but don’t lose track of it!
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Problems with capabilities
 Original 1.0 security model: use type

safety, encapsulation to prevent untrusted
applets from accessing capabilities in
same VM

 Problem: tricky to prevent capabilities from
leaking (downcasts, reflection, …)

 One approach: confined types [Vitek&Bokowski]

 Difficult to revoke capabilities esp. in
distributed environment
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Java Stack Inspection
 Added to Java to deal with capability

model shortcomings
 Dynamic authorization mechanism

 close (in spirit) to Unix effective UID
 attenuation and amplification of privilege

 Richer notion of context
 operation can be good in one context and bad in

another
 E.g: local file access

 may want to block applets from doing this
 but what about accessing a font to display something?
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Security operations
 Each method has an associated protection domain

 e.g., applet or local
 doPrivileged(P){S}:

 fails if method's domain does not have priv. P.
 switches from the caller's domain to the method's while

executing statement S (think setuid).
 checkPermission(P) walks up stack S doing:

for (f := pop(S); !empty(S) ; f := pop(S)) {
  if domain(f) does not have priv. P then error;
  if f is a doPrivileged frame then break;
}

 Very operational description! But ensures integrity of
control flow leading to a security-critical operation
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Example
Font Library:
  ...
  doPrivileged(ReadFiles) {
     load("Courier");
  }
  ...

FileIO:
  ...
  checkPermission(ReadFiles);
  read();
  ...

Font library
load

read

…

Applet
stack frames

Requires:
• Privilege enabled by some caller (applet can’t do this!)
• All code between enabling and operation is trustworthy
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Some pros and cons?
 Pros:

 rich, dynamic notion of context that tracks some of
the history of the computation.

 this could stop Melissa, Love Bug, etc.
 low overhead, no real state needed.

 Cons:
 implementation-driven (walking up stacks)

 Could be checked statically [Wallach]
 policy is smeared over program
 possible to code around the limited history

 e.g., by having applets return objects that are invoked
after the applet's frames are popped.

 danger of over/under amplification
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Require type safety?
 Write all security-critical programs in type-safe

high-level language? (e.g., Java)
 Problem 1: legacy code written in C, C++

 Solution: type-safe, backwards compatible C

 Problem 2: sometimes need control over
memory management
 Solution: type-safe memory management

 Can we have compatibility, type safety and low-
level control?  Can get 2 out of 3:
 CCured [Necula et al. 2002]

 Emphasis on compatibility, memory safety
 Cyclone [Jim et al. 2002]

 Emphasis on low-level control, type safety
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Cyclone
 A type-safe dialect of C
 Goals:

 Memory and type safety (fail-stop behavior)
 (relatively) painless porting from C
 writing new code pleasant
 Low-level control: data representations, memory

management, ability to interface to the outside world,
performance, etc.

  Has been used to implement low-level,
code safely, e.g. device drivers
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Hello World
#include "stdio.h"

int main(int argc, char ??argv) {
  if (argc < 1) {
    fprintf(stderr,"usage: %s <name>\n",argv[0]);
    exit(-1);
  }
  printf("Hello, %s\n",*(++argv));
  return 0;
}

% a.out ‘World!’
Hello World!
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The trouble with pointers
 Pointer arithmetic:
int *f(int *a) {
   return a + 10;
}

 Null pointers:
int *f(int *a) {

return a[4];
}

 Arrays:
struct foo {
  int g[10];
}
int *f(struct foo *x)
{ return &x->g[5]; }

 The stack:
int x;
scanf(“%d”, &x);

• All possibly legitimate
uses of C pointers

• How can compiler check
them (and modularly)?

⇒Needs more information
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Pointers
 Three kinds: fat, thin-null, thin-not-null

You pay for what you get…

char ?  :  arbitrary pointer arithmetic, might be null,
         3 words of storage, bounds checked

char *  :  no real arithmetic, might be null,
         1 word of storage

char @  :  same as above, but never null

char *{42} :  same, but points to (at least) 42 chars
char * == char *{1}
char @{n+m} ≤ char @{n} ≤ char *{n} ≤ char ?
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Compatibility
 Porting most C code is fairly

straightforward:
 mostly, convert t* to t? where necessary
 use advanced type features (polymorphism, tagged

unions, existential types) to replace unsafe casts with
type-safe operations

 put in initializers (only top-level, interprocedural)
 put in fallthru's (very rare)
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CCured [Necula, 2002]
 Different pointer classes

 DYNAMIC : no info, slow, all accesses checked
 SAFE: a memory- and type-safe pointer (or null)
 SEQ: pointer to an array of data (like Cyclone fat)

Type-safe world Memory-safe world

DYNAMIC
SAFE,SEQ DYNAMIC

 Nonmodular but fast C→CCured converter using BANE
constraint solving framework (worst case: DYNAMIC)
 10-50% Performance penalty
 More safe C impls: [Jones&Kelly], [Ruwase&Lam]

Certifying compilation
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Code certification mechanisms
 Problem: can you trust the code you run?
 Code signing using digital signatures

 Too many signers
 If you can’t trust Microsoft,…

 Idea: self-certifying code
 Code consumer can check the code itself to ensure it’s safe
 Code includes annotations to make this feasible
 Checking annotations easier than producing them

 Certifying compiler generates self-certifying code
 Java/JVM: first real demonstration of idea
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Type-Based Protection (JVM)

Java Source

javac

JVM bytecodes

JVM verifier System 
Interface

Binary

JIT compiler

System
Binary

JVM

Interpreter
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Bytecode verification
 Java compiler is a certifying compiler that compiles to

Java Virtual Machine code
 Generates enough type information in target code to check that code is

type-safe
 Same thing could be done with other source languages
 Microsoft CLR is similar

 Verifier first checks structure (syntax) of bytecode
 Branches checked to ensure they address valid target

instructions (control safety)
 Methods (functions) and class fields are annotated with

complete type signatures (argument and result types)
 Method calls are explicit in JVM -- can look up signatures

directly
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Type-checking JVM
 Calls can be type-checked once actual argument

types are known
 Java Virtual Machine stores data in locals (used

for variables) and stack locations (used for
arguments, temporaries)
 Types of both can change at every program point, not included in

bytecode format

 Verification uses dataflow analysis to determine
types of every local/stack locn at every program
point

 Use argument types and method result types to
get analysis started
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Completing analysis

 Merge type information on different paths by
finding least common ancestor (C3)

 If no least common ancestor mark type as
unusable (local 2: ?)

 Report success if all method calls, bytecode
operations type-check, otherwise reject program

Local 2 : C1 Local 2 : C2

C1 C2
Local 2: C3

Control-flow
graph

C3

Class hierarchy
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Compiling to the JVM
 The JVM type-system isn’t all that different

from Java’s  compiling other languages
to JVM doesn’t work that well.
 e.g., no tail-calls in the JVM so Scheme and ML are

hosed... (MS fixed this in CLR)
 no parametric polymorphism, no F-bounded

subtyping, limited modules, etc.
 Operations of the JVM are relatively high-

level, CISC-like.
 method call/return are primitives
 Little control over indirection
 interpreter or JIT is necessary
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Ideally:

Your favorite
language

Low-Level IL
(SSA)

optimizer

machine code

verifier System 
Interface

System
Binary“Kernel”

Smaller TCB, language 
independence.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 92

Typed Assembly Language
[Morrisett, 1998]

Two goals:
 Get rid of the need for a trusted interpreter or JIT

compiler
 type-check the actual code that will run.
 try not to interfere with traditional optimizations.

 Provide generic type constructors for encoding
many high-level language type systems.
 reasonable target for compiling many languages
 a more “RISC” philosophy at the type-level
 better understanding of inter-language relationships.
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TAL contributions
Theory:

 simple MIPS-like assembly language
 compiler from ML-like language to TAL
 soundness and preservation theorems

Practice:
 most of IA32 (32-bit Intel x86)
 more type constructors (array,+,µ,modules)
 prototype Scheme, Safe-C compilers
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TAL (simplified)
Registers:  r ∈ {r1,r2,r3,...}
Labels:  L ∈ Identifier
Integer: n ∈ [-2k-1..2k-1)
Blocks:  B ::= jmp v | ι ; B
Instrs:   ι ::= aop rd,rs,v | bop r,v  | mov r,v
Operands:  v ::= r | n | L
Arithmetic Ops: aop ::=  add | sub | mul | ...
Branch Ops: bop ::=  beq | bne | bgt  | bge  |

...
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Simple program
; fact(n,a) = if (n <= 0) then a else fact(n-1,a*n)
;    r1 holds n, r2 holds a, r31 holds return address
;    which expects the result in r1
fact:  sub r3,r1,1 ; r3 := n-1

 ble r3,L2 ; if n < 1 goto L2
 mul r2,r2,r1 ; a := a*n
 mov r1,r3 ; n := n-1
 jmp fact ; goto fact

L2:  mov r1,r2 ; result := a
 jmp r31 ; jump to return address
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Basic type structure
type ::= int | Γ

where Γ = { r1:t1, r2:t2,  r3:t3, ...}

A value with type { r1 : t1, r2 : t2, r3 : t3, ...} is a code
label, which when you jump to it, expects you to
at least have values of the appropriate types in
the corresponding registers.

You can think of a label as a function that takes a
record of arguments
 the function never returns – it always jumps off
 we assume record subtyping – we can pass a label more

arguments than it needs
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Simple program with types
fact:{r1:int,r2:int,r31:{r1:int}}

; r1 = n, r2 = accum, r31 = return address
sub r3, r1, 1 ; {r1:int,r2:int,r31:{r1:int},r3:int}
ble r3, L2
mul r2, r2, r1
mov r1, r3
jmp fact

L2:{r2:int, r31:{r1:int}}
mov r1, r2
jmp r31
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Badly typed program
fact:{r1:int,r31:{r1:int}}

; r1 = n, r2 = accum, r31 = return address
sub r3, r1, 1 ; {r1:int,r31:{r1:int},r3:int}
bge r1, L2
mul r2, r2, r1 ; ERROR!  r2 doesn’t

have a type
mov r1, r3
jmp L1

L2:{r2:int, r31:{r1:int}}
mov r1, r2
jmp r1 ; ERROR!  r1 isn’t a valid label
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TAL vs JVM, CLR
 The principles behind TAL and the JVM

(or Microsoft’s CLR) aren’t too different:
compiler generates enough type
annotations to check target code

 TAL concentrates on orthogonal,
expressive typing components (more
general target lang)

 JVM (and CLR) focus on OO-based
languages with predefined implementation
strategies.
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Ideally:

Your favorite
language

Low-Level IL

optimizer

machine code

verifier Security
Policy

System
Binary

trusted computing base
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Idea #1: Theorem Prover!

Your favorite
language

Low-Level IL

optimizer

machine code

Theorem
Prover Security

Policy

System
Binary

trusted computing base

Warning: components not drawn
to scale!
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Unfortunately...

Theorem
Prover

trusted computing base
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Observation

 Finding a proof is hard, but verifying a proof is easy.
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PCC:

optimizer

machine code

verifier Security
Policy

System
Binary

prover

code proof

could be
 you

trusted computing base

“certified binary”

invariants
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Making “Proof” Rigorous:
Specify machine-code semantics and security

policy using axiomatic semantics.
     {Pre} ld r2,r1(i) {Post}

Given:
 security policy (i.e., axiomatic semantics and associated logic for

assertions)
 untrusted code, annotated with (loop) invariants

it’s possible to calculate a verification condition:
 an assertion A such that
 if A is true then the code respects the policy.
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Code producer

Proof-carrying code

    Code consumer

Verification
condition
generator

Safety
Proof

safety
condition

Proof
checker

Safety
policy

Target
code
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Code consumer side
Verifier (~5 pages of C code):

 takes code, loop invariants, and policy
 calculates the verification condition A.
 checks that the proof is a valid proof of A:

 fails if some step doesn’t follow from an axiom or inference
rule

 fails if the proof is valid, but not a proof of A

code proof

“certified binary”

in-
variantsinvariants
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Advantages of PCC
A generic architecture for providing and checking

safety properties
In Principle:
• Simple, small, and fast TCB.
• No external authentication or cryptography.
• No additional run-time checks.
• “Tamper-proof”.
• Precise and expressive specification of code safety

policies
In Practice:
• Still hard to generate proofs for properties stronger than

type safety. Need certifying compiler…
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Security types
 and information flow
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End-to-end security
 Near-term problem: ensuring programs are

memory-safe, type-safe so fine-grained access
control policies can be enforced

 Long-term problem: ensuring that complex
(distributed) computing systems enforce system-
wide information security policies
 Confidentiality
 Integrity
 Availability

 Confidentiality, integrity: end-to-end security
described by information-flow policies that
control information dependency
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Policies vs. mechanisms

 Problem: policy/mechanism mismatch
 Reference monitors (e.g., access control): control

whether A is allowed to transmit to B
 Confidentiality policy: information I can only be

obtained by users U (no matter how it is
transformed) – not a safety policy!

 How to map policy onto a mechanism?
(we already do this by hand!)

A B
?

I

U
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Problems
 Complex policies

 no generally accepted policy language
 weak validation techniques

 Information flows hard to find
(covert channels)

 Heterogeneous, changing trust
 Host machines may be

compromised
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Bill

Information leaks
 Programs can leak inputs

Spreadsheet

InputTax Data

Databasenetwork

Bob
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Standard mechanisms
 Discretionary access control: no control of

propagation

A B
?

...

Mandatory access control: expensive, restrictive

A B
?

L
top secret
secret
classified
unclassified

L

Java stack inspection: integrity, not confidentiality
Can’t enforce information flow policies
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Static information flow
[Denning & Denning, 1977]
 Programs are annotated

with information flow
policies for confidentiality,
integrity

 Compiler checks, possibly
transforms program to
ensure that all executions
obey rules

 Loader, run-time validates
program policy against
system policies

 Source Code Policy

Target Code Policy

System
Policy

Executable code
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Noninterference
"Low-security behavior of the program is not

affected by any high-security data."
Goguen & Meseguer 1982

H1 L

L H1

H2 L

LH2

≈L

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted

≈L
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Security types
 Idea: add information flow policies as type

annotations (labels)
 Simplest policy language: H = confidential,

L = public. L →H ok, H→L bad

int{H} x; // confidential integer
int{L} y; // public integer
String{L} z; // public string
x = y; // OK
y = x; // BAD
x = z.size(); // OK
z = Integer.toString(x) // BAD
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Lattices and security
 Denning, 1976.
 Information flow policies (security policies in

general) are naturally partial orders
 If policy P2 is stronger than P1, write P1  P2

 P1 = “smoking is forbidden in restaurants”
 P2 = “smoking is forbidden in public places”

 Some policies are incomparable:
P1  / P2 and P2 / P1
 P2 = “keep off the grass”

 If there is always a least restrictive policy as
least as strong as any two policies, policies form
lattice. P1  P2 = “join” of P1, P2

 P1  P2 = “smoking forbidden in restaurants and keep off the grass”

 H ⊔ H = H,    L ⊔ L = L,     L ⊔ H = H
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Checking computation
 Combining values with different

information flow policies?
 Conservatively,

Label of result should be a policy at least as strong as
the labels of all inputs.

 Write x for “label of x”
 Label of y+z is y ⊔ z
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Implicit Flows

 Final value of x may reveal values of a, b
 Conservative: label of x protects

both a and b

a  x  &  b  x

x = 0;
if (b) {
  x = a;
}
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Static Assignment Rule
 Program-counter label pc captures

implicit flows
  if, while, switch statements

bump up pc (temporarily)

x = 0;
if (b) {
  x = a;
}

pc = b

Compile-time
checking:

a ⊑ x
pc ⊑ x
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Run-time Checking?

 Run-time check
 if b is false, x=0, but no check is performed
 if check fails, b is also leaked!

 Static checking not just an optimization!

x = 0;
if (b) {
  x = a;
}

a  x  &  b  x  ?
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Proving noninterference
 Volpano et al., 1996
 Can show that any type-safe program with information-

flow security types must satisfy noninterference
 Strategy: show that each step of execution preserves

low-observable equivalence:

 Language with functions, state: Zdancewic, Myers ‘01
 Core ML: Pottier, 2002

P1  ≈L  P2 

P1  ≈L  P2

… …
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[Myers, 1999]
 Annotate (Java) programs with labels from
decentralized label model
Variables have type + label. Labels contain
policies in terms of principals.

int {Alice→Bob} x;
 Information flow control and access control

Available for download:
http://www.cs.cornell.edu/jif

 float {x} cos (float x) {
float {x} y = x — 2*PI*(int)(x/(2*PI));
return 1 — y*y/2 + ...;

}

Jif: Java + Information Flow
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Confidentiality policies as types

 Confidentiality labels:
int{Alice→} a;    “a is Alice's private int”

 Integrity labels:
int{Alice←} a;   “a is trusted by Alice”

 Combined labels:
int{Alice→ ; Alice←} a;     (Both)

int{Alice→} a1, a2;
int{Bob←} b;
int{Bob←Alice} c;

// Insecure
b = a1;
b = c;

// Secure
a1 = a2;
a1 = b;
a1 = c;
c = b;“Bob believes Alice can affect c”
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Intentional leaks

Spreadsheet

WebTax

Tax Data
Final Tax Form

Proprietary
Database

Bob

Preparer

explicit
release
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Selective Declassification
[Myers, 1997]
 An escape hatch from noninterference
 A principal can rewrite its part of the label

{O1→R1, R2; O2→R2}

{O1→R1, R2} {O1→R1, R2; O2→R2, R3}

O2

 Other owners’ policies still respected
 Must test authority of running process
 Potentially dangerous: explicit operation
 Jif 3.0: declassification mediated by integrity checks:
“robustness” [Chong&Myers]
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Information flow and dependency

 Checking whether information flows from x
to y is just a dependency analysis

 Dependency is crucial to security!
 Many other applications of language-

based dependency analysis…
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Catching bad format strings
[Shankar et al., 2001]
 Idea: should not use untrustworthy (H)

data as format string, else attacker can
gain control of system

 Security type:
int printf(char *L fmt, …)

 Give network buffer type char *H :
information flow analysis prevents buffer
data from affecting format string
 problem: false positives

 Probably useful for less direct attacks too
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SQL injection vulnerabilities
 WebSSARI system [Huang et al.], [Xie & Aiken]:

analyze dependencies in PHP scripts to discover
SQL queries built from untrusted information
$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

 $userid, $pass must be trusted information
 Sanitization functions convert untrusted to

trusted after checking for metacharacters etc.
 Doesn’t worry about implicit flows -- attacker can

affect SQL queries but probably difficult to
synthesize attacks…
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Detecting worms
 Vigilante system [Costa et al.] uses dynamic

and static dependency analysis to
 Detect worm attacks
 Automatically generate filters
 Generalize filters so they catch larger class of related

attacks
 No false positives

 Filters can be distributed by peer-to-peer
system in 2.5 min. (a solution to Slammer!)
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Vigilante
 Idea: labels on data are sets of bytes from

network messages where  is ⊆
 Run app with dynamic binary rewriting,

computing labels for data
 At invalid step (e.g., jumping to payload), label

on step says which message bytes matter!
 Generate filter from them.
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Other work and future challenges

 Security types for secrecy in network
protocols

 Self-certifying low-level code for object-
oriented languages

 Applying interesting policies to PCC/IRM
 Secure information flow in concurrent

systems
 Enforcing availability policies
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The End
 Thank you for your participation!
 See website for bibliography, more tutorial

information:
www.cs.cornell.edu/andru/pldi06-tutorial
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