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Computer security
 Goal: prevent bad things from happening

 Clients not paying for services
 Critical service unavailable
 Confidential information leaked
 Important information damaged
 System used to violate laws (e.g., copyright)

 Conventional security mechanisms aren’t
up to the challenge
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Harder & more important
In the ’70s, computing systems were isolated.

 software updates done infrequently by an experienced
administrator.

 you trusted the (few) programs you ran.
 physical access was required.
 crashes and outages didn’t cost billions.

The Internet has changed all of this.
 we depend upon the infrastructure for everyday services
 you have no idea what programs do.
 software is constantly updated – sometimes without your knowledge

or consent.
 a hacker in the Philippines is as close as your neighbor.
 everything is executable (e.g., web pages, email).
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Language-based security
 Conventional security: program is black box

 Encryption
 Firewalls
 System calls/privileged mode
 Process-level privilege and permissions-based access control

 Prevents addressing important security issues:
 Downloaded and mobile code
 Buffer overruns and other safety problems
 Extensible systems
 Application-level security policies
 System-level security validation

 Languages and compilers to the rescue!
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Outline
 The need for language-based security
 Security principles
 Security properties
 Memory and type safety
 Encapsulation and access control
 Certifying compilation and verification
 Security types and information flow

 Handouts: copy of slides
 Web site: updated slides, bibliography

www.cs.cornell.edu/andru/pldi06-tutorial

Security principles
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Conventional OS security
 Model: program is black box
 Program talks to OS via protected

interface (system calls)
 Multiplex hardware
 Isolate processes from each other
 Restrict access to persistent data (files)

+ Language-independent, simple, limited
User-level Program

Operating System
Kernel

Hardware
memory

protection
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Access control model
 The classic way to prevent “bad things”

from happening
 Requests to access resources (objects)

are made by principals
 Reference monitor (e.g., kernel) permits or

denies request

Principal Reference
Monitor

Object
(Resource)

request
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Authentication vs. Authorization

 Abstraction of a principal divides
enforcement into two parts
 Authentication: who is making the request
 Authorization: is this principal allowed to make

this request?

Principal Reference
Monitor

Object
(Resource)

request

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 10

1st guideline for security
Principle of complete mediation:
Every access to every object must be checked by

the reference monitor

Problem: OS-level security does not support
complete mediation
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OS: Coarse-grained control
 Operating system enforces security at

system call layer
 Hard to control application when it is not making

system calls

 Security enforcement decisions made with
regard to large-granularity objects
 Files, sockets, processes

 Coarse notion of principal:
 If you run an untrusted program, should the

authorizing principal be “you”?
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Need: fine-grained control
 Modern programs make security decisions

with respect to application abstractions
 UI: access control at window level
 mobile code: no network send after file read
 E-commerce: no goods until payment
 intellectual property rights management

 Need extensible, reusable mechanism for
enforcing security policies
 Language-based security can support an extensible

protected interface, e.g., Java security
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2nd guideline for secure design
Principle of Least Privilege:  each principal

is given the minimum access needed to
accomplish its task.  [Saltzer & Schroeder
‘75]

Examples:
+ Administrators don’t run day-to-day tasks as root.  So

“rm –rf /” won’t wipe the disk.
- fingerd runs as root so it can access different users’

.plan files.  But then it can also
“rm –rf /”.
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Least privilege problems
 OS privilege is coarse-grained: user/group
 Applications need finer granularity

 Web applications: principals unrelated to OS principals

 Who is the “real” principal?
 Trusted program? Full power of the user principal
 Untrusted? Something less
 Trusted program with untrusted extension: ?
 Untrusted program accessing secure trusted subsystem: ?

 Requests may filter through a chain of programs
or hosts
 Loss of information is typical
 E.g., client browser → web server → web app → database
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3rd guideline: Small TCB
Trusted Computing Base (TCB) :

components whose failure compromises
the security of a system

 Example: TCB of operating system includes
kernel, memory protection system, disk image

 Small/simple TCB:
⇒ TCB correctness can be checked/tested/reasoned about more

easily ⇒ more likely to work

 Large/complex TCB:
⇒ TCB contains bugs enabling security violations

Problem: modern OS is huge, impossible to verify
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Small TCB and LBS
 Conventional wisdom (c. 1975):

 “operating system is small and simple, compiler is
large and complex”

 OS is a small TCB, compiler a large one

 c. 2003:
 OS (Win2k) = 50M lines code, compiler ~ 100K lines

code
 Hard to show OS implemented correctly

 Many authors (untrustworthy: device drivers)
 Implementation bugs often create security holes

 Can now prove compilation, type checking correct
 Easier than OS: smaller, functional, not concurrent
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The Gold Standard [Lampson]

 Authenticate
 Every access/request associated with correct principal

 Authorize
 Complete mediation of accesses

 Audit
 Recorded authorization decisions enable after-the-fact

enforcement, identification of problems

 Language-based techniques can help
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When to enforce security
Possible times to respond to security

violations:
 Before execution:

 analyze, reject, rewrite

 During execution:
monitor, log, halt, change

 After execution:
roll back, restore, audit, sue, call police
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Language-based techniques
A complementary tool in the arsenal: programs don’t have

to be black boxes! Options:

1. Analyze programs at compile time or load time to
ensure that they are secure

2. Check analyses at load time to reduce TCB
3. Transform programs at compile/load/run time so that

they can’t violate security, or to log actions for auditing.
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Maturity of language tools
Some things have been learned in the last 25

years…
 How to build a sound, expressive type system

that provably enforces run-time type safety
⇒ protected interfaces

 Type systems that are expressive enough to
encode multiple high-level languages
⇒ language independence

 How to build fast garbage collectors
⇒  trustworthy pointers

 On-the-fly code generation and optimization
 ⇒  high performance
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Caveat: assumptions and abstraction

 Arguments for security always rest on assumptions:
 “the attacker does not have physical access to the hardware”
 “the code of the program cannot be modified during execution”
 “No one is monitoring the EM output of the computer”

 Assumptions are vulnerabilities
 Sometimes known, sometimes not

 Assumptions arise from abstraction
 security analysis only tractable on a simplification (abstraction) of

actual system
 Abstraction hides details (assumption: unimportant)

 Caveat: language-based methods often abstract
aspects of computer systems
 Need other runtime, hardware enforcement mechanisms to

ensure language abstraction isn’t violated—a separation of
concerns

A sampler of attacks
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Return addresschar buf[100];
…
gets(buf);

 Attacker gives long input that overwrites
function return address, local variables

 “Return” from function transfers control to
payload code

Attack: buffer overruns

Program
Stack

buf

Return address

Payload

sp
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Execute-only bit?
 Stack smashing executes code on stack -- mark

stack non-executable?
  Return-to-libc attack defeats this:

 Not all dangerous code lives in the code segment…
 More attacks: pointer subterfuge (function- and

data-pointer clobbering), heap smashing,
overwriting security-critical variables…

 Moral: SEGVs can be turned into attacks

void system(char * arg) {
...

 r0 = arg;
execl(r0, ...); // “return” here with r0 set
...

}
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Attack: format strings
fgets(sock, s, n);
…
fprintf(output, s);

 Attack: pass string s containing a %n
qualifier (writes length of formatted input
to arbitrary location)

 Use to overwrite return address to
“return” to malicious payload code in s.
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Attack: SQL injection
 Web applications typically construct SQL

database queries.
 In PHP:

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

 Attacker uses userid of ‘ OR ‘1’ = ‘1’. Effect:
UPDATE users SET pass=<pass> WHERE userid=‘’ OR ‘1’=‘1’

 69% of Internet security vulnerabilities are
in web applications [Symantec]
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Using system subversion
 Assume attacker can run arbitrary code

(possibly with dangerous privileges)
 Initial foothold on target system enables

additional attacks (using other holes)
 Worms: programs that autonomously

attack computers and inject their own code
into the computer

 Distributed denial of service: many
infected computers saturate target network
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1988:  Morris Worm
Penetrated an estimated 5 to 10 percent of

the 6,000 machines on the internet.
Used a number of clever methods to gain

access to a host.
 brute force password guessing
 bug in default sendmail configuration
 X windows vulnerabilities, rlogin, etc.
 buffer overrun in fingerd

Remarks:
 System diversity helped to limit the spread.
 “root kits” for cracking modern systems are easily

available and largely use the same techniques.
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1999: Love Bug & Melissa
Both email-based viruses that exploited:

 a common mail client (MS Outlook)
 trusting (i.e., uneducated) users
 VB scripting extensions within messages to:

 lookup addresses in the contacts database
 send a copy of the message to those contacts

Melissa: hit an estimated 1.2 million machines.
Love Bug:  caused estimated $10B in damage.
Remarks:

 no passwords or crypto involved
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Why did it succeed?
 Visual Basic scripts invoked transparently upon

opening
 Run with full privileges of the user
 Kernel doesn’t know about fine-grained

application abstractions or related security
issues: mail messages, contacts database, etc.

 Recipients trusted the sender – after all, they
know them

 Interactions of a complex system were
unanticipated
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A solution for Melissa?
 Turn off all executable content?

 no problem when email was just text.
 but executable content is genuinely useful.
 ex: automated meeting planner agent, postscript, Mpeg4 codecs,

client-side forms, etc.
 US DoD tried to do this : revolt

 Fundamental tension:
 modern software wants to be open and extensible.
 programmable components are ultimately flexible.

 Postscript, Emacs, Java[script], VB, Jini, ActiveX, plug-n-play...
 security wants things to be closed:  least privilege.
 turning off extensibility is a denial-of-service attack.
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2002: MS-SQL Slammer worm
 Jan. 25, 2002: SQL and MSDE servers on

Internet turned into worm broadcasters
 Buffer-overrun vulnerability
 Spread to most vulnerable servers

on the Internet in less than 10 min!

 Denial of Service attack
 Affected databases unavailable
 Full-bandwidth network load ⇒ widespread service outage
 “Worst attack ever” – brought down many sites, not Internet

 Can’t rely on patching!
 Infected SQL servers at Microsoft itself
 Owners of most MSDE systems didn’t know they were

running it…extensibility again
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Virus scanning?
 Scan for suspicious code

 e.g., McAfee, Norton, etc.
 based largely on a lexical signature.
 the most effective commercial tool
 but only works for things you’ve seen

 Melissa spread in a matter of hours
 virus kits make it easy to disguise a virus

 “polymorphic” viruses

 Doesn’t help with worms
 Unless you can generate a filter automatically…

Security Properties
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Security properties

Security = “bad things don’t happen”

What kinds of properties
should computing systems satisfy?
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Security policies
 Execution (trace) of a program is a

sequence of states s1s2s3… encountered
during execution
 Program has a set of possible executions T

 A generic formalization: security policy is a
predicate P on sets of executions
  Program satisfies policy if P(T)

 Examples:
 P(T) if no null pointer is deferenced in any trace in T
 P(T) if every pair of traces in T with the same initial

value for x have the same final value for y
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Safety properties
 “Nothing bad ever happens”
 A property is a policy that can be enforced using

individual traces
 P(T)  ⇔  ∀t∈T. P’(t) where P’ is some predicate on traces

 Safety property can be enforced using only
history of program
 If P’(t) does not hold, then all extensions of t are also bad
 Amenable to run-time enforcement: don’t need to know future

 Examples:
 access control (e.g. checking file permissions on file open)
 memory safety (process does not read/write outside its own

memory space)
 type safety (data accessed in accordance with type)
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Liveness properties
 “Something good eventually happens”

 If P’(t) does not hold, every finite sequence t can be
extended to satisfy P’

 Example: nontermination
 “The email server will not stop running”

 Violated by denial of service attacks
 Can’t enforce purely at run time
 Interesting properties often involve both

safety and liveness
 Every property is the intersection of a safety property

and a liveness property [Alpern & Schneider]
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Memory safety and isolation
 Process isolation: running process cannot

access memory that does not belong to it
 Usually enforced by hardware TLB

 TLB caches virtualphysical address mappings
 Invalid virtual addresses (other processes) cause kernel trap

 Cross-domain procedure calls/interprocess communication
(RPC/IPC) expensive (TLB misses)

 Memory safety: running process does not
attempt to dereference addresses that are not
valid allocated pointers
 No read from or write to dangling pointers
 Not provided by C, C++ :

int *x = (int *)0x14953300;
*x = 0x0badfeed;
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Control-flow integrity
 Actual control flow must conform to a “legal

execution”
 Code injection attacks violate CFI.
 Weak: control can only be transferred to legal

program code points
 Rules out classic buffer overrun attacks
 Not provided by C:

int (*x)() = (int(*)()) 0xdeadbeef; (*x)();
 Stronger: control must agree with a DFA or CFG

capturing all legal executions
 Can be enforced cheaply by dynamic binary

rewriting as in DynamoRIO [Kiriansky et al., 2002]
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Type safety
 Values manipulated by program are used in

accordance with their types
 Stronger than memory safety!

 Can be enforced at run-time (Scheme), compile-
time (ML), mix (Java)

 Abstract data types: data types that can only be
accessed through a limited interface
 can protect their internal storage (private data)

 Kernel = ADT with interface = system calls,
abstraction barrier enforced at run time by
hardware
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Access control
 Access control decision:

 principal × request × object → boolean

 Access control matrix [Lampson]:

r rw rx
r r

rw r

user1
user2
user3

file1 file2 file3principals
objects

Allowed requests
 Columns of matrix: access control lists (ACLs)

 Correct enforcement is a safety property
 Safety can be generalized to take into account denial of access,

corrective action by reference monitor
[Hamlen][Ligatti][Viswanathan]
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Information security
 Sometimes computer security is an aspect

of physical security
 Make sure attackers cannot take over electric power

distribution grid, military command-and-control, etc.
 Can use type safety, access control to enforce rules

 What we’re trying to protect can also be
the information on the computer:
information security
 Memory safety, type safety don’t directly help

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 44

Information security: confidentiality

 Confidentiality: valuable information should not
be leaked by computation.

 Also known as secrecy, though sometimes a
distinction is made:
 Secrecy: information itself is not leaked
 Confidentiality: nothing can be learned about information

 Simple (access control) version:
 Only authorized processes can read from a file
 But… when should a process be “authorized” ?
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% ls -l personal.txt
rw-------  personal.txt
% more personal.txt
...

 Access control controls release of data
but does not control propagation

 Security violation even
with “safe” operations

Confidentiality: a Trojan horse

personal.txt

more

output device

A B
?

...
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End-to-end confidentiality
 Access control does not help after access

control check is done
 End-to-end confidentiality:

Information should not be improperly released
by a computation no matter how it is used

 Enforcement requires tracking information flow
 Encryption provides end-to-end secrecy—but prevents most

computation
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Information security: integrity
 Integrity: valuable information should not be

damaged by computation
 Simple (access control) version:

 Only authorized processes can write to a file
 But… when should a process be “authorized”

 End-to-end version:
 Information should not be updated on the basis of less

trustworthy information
 Requires tracking information flow in system

 Information flow is not a property [McLean94]
 No information flow from x to y:

⇔
P(T) if every pair of traces in T with the same initial value for x
always have the same value for y
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Privacy and Anonymity
 Anonymity:

 individuals (principals) and their actions cannot be
linked by an observer

 alt: identity of participating principals cannot be
determined even if actions are known

 Privacy: encompasses aspects of
confidentiality, secrecy, anonymity
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Availability
 System is responsive to requests
 DoS attacks: attempts to destroy availability

(perhaps by cutting off network access)
 Fault tolerance: system can recover from faults

(failures), remain available, reliable
 Benign faults: not directed by an adversary

 Usual province of fault tolerance work

 Malicious or Byzantine faults: adversary can
choose time and nature of fault
 Byzantine faults are attempted security violations
 usually limited by not knowing some secret keys

Enforcing safety properties
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Reference Monitor
Observes the execution of a program and

halts the program if it’s going to violate the
security policy.

Common Examples:
 memory protection
 access control checks
 routers
 firewalls

Most current enforcement mechanisms are
reference monitors

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 52

Requirements for a Monitor
 Must have (reliable) access to information

about security-relevant actions of the program
 e.g., what instruction is it about to execute?

 Must have the ability to “stop” the program
 can’t stop a program running on a different machine
 … or transition to a “good” state.

 Must protect the monitor’s state and code
from tampering.
 key reason why a kernel’s data structures and code aren’t

accessible by user code

 low overhead in practice
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Pervasive mediation

OS Reference monitor: won’t capture all events
Wrapper/interpreter: performance overhead
Instrumentation: merge monitor into program

 different security policies ⇒ different merged-in code
 simulation does not affect program
 pay only for what you use

Extension

EM
Base system

Reference monitor

EM
Extension

Base system

Interpreter

Extension

Base system

EM

Program instrumentation
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What policies?
 Reference monitors can only see the past

 They can enforce safety properties but not liveness
properties

Assumptions:
 monitor can have access to entire state of

computation.
 monitor can have arbitrarily large state
 safety properties enforced are modulo computational

power of monitor
 But: monitor can’t guess the future – the predicate it

uses to determine whether to halt a program must be
computable.
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Software Fault Isolation (SFI)
 Wahbe et al. (SOSP’93)
 Goal is process isolation: keep software components in

same hardware-based address space, provide
 Idea: application can use untrusted code without memory protection

overhead

 Software-based reference monitor isolates components
into logical address spaces.
 conceptually:  check each read, write, & jump to make sure it’s within the

component’s logical address space.
 hope:  communication as cheap as procedure call.
 worry:  overheads of checking will swamp the benefits of communication.

 Only provides memory isolation, doesn’t deal with other
security properties: confidentiality, availability,…
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One way to SFI: Interpreter
void interp(int pc, reg[], mem[], code[], memsz, codesz) {

while (true) {
    if (pc >= codesz) exit(1);
    int inst = code[pc], rd = RD(inst), rs1 =
RS1(inst),
        rs2 = RS2(inst), immed = IMMED(inst);
  switch (opcode(inst)) {
       case ADD: reg[rd] = reg[rs1] + reg[rs2]; break;
       case LD:  int addr = reg[rs1] + immed;
                 if (addr >= memsz) exit(1);
                 reg[rd] = mem[addr];
                 break;
       case JMP: pc = reg[rd]; continue;
  ...
}

   pc++;
}}

0: add r1,r2,r3
1: ld r4,r3(12)
2: jmp r4
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Interpreter pros and cons
Pros:

 easy to implement (small TCB.)
 works with binaries (high-level language-independent.)
 easy to enforce other aspects of OS policy

Cons:
 terrible execution overhead (25x?  70x?)

It’s a start.
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Partial Evaluation (PE)
A technique for speeding up interpreters.

 we know what the code is.
 specialize the interpreter to the code.

 unroll the main interpreter loop – one copy for each
instruction

 specialize the switch to the instruction: pick out that case
 compile the resulting code

 Can do at run time with dynamic binary
rewriting (e.g., DynamoRIO)
 Keep code cache of specialized code
 Reduce load time, code footprint
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Example PE

Specialized interpreter:
  reg[1] = reg[2] + reg[3];
  addr = reg[3] + 12;
  if (addr >= memsz) exit(1);
  reg[4] = mem[addr];
  pc = reg[4]

0: add r1,r2,r3
1: ld r4,r3(12)
2: jmp r4
 ...

Original Binary:
 case LD:  int addr = reg[rs1] + immed;
           if (addr >= memsz) exit(1);
           reg[rd] = mem[addr];
           break;

Interpreter

0: add r1,r2,r3
1: addi r5,r3,12
2: subi r6,r5,memsz
3: jab _exit
4: ld r4,r5(0)
…

Resulting Code
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Sandboxing
 SFI code rewriting is “sandboxing”
 Requires code and data for a security domain

are in one contiguous segment
 upper bits are all the same and form a segment id.
 separate code space to ensure code is not modified.

 Inserts code to ensure load and stores are in the
logical address space
 force the upper bits in the address to be the segment id
 no branch penalty – just mask the address
 re-allocate registers and adjust PC-relative offsets in code.
 simple analysis used to eliminate some masks
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Jumps
 Inserts code to ensure jump is to a valid

target
 must be in the code segment for the domain
 must be the beginning of the translation of a source

instruction (tricky for variable-length instructions)

 PC-relative jumps are easy:
 just adjust to the new instruction’s offset.

 Computed jumps are not:
 must ensure code doesn’t jump into or around a check

or else that it’s safe for code to do the jump.
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More SFI Details
Protection vs. Sandboxing:

 Protection is fail-stop:
 stronger security guarantees (e.g., reads)
 required 5 dedicated registers, 4 instruction sequence
 20% overhead on 1993 RISC machines

 Sandboxing covers only stores
 requires only 2 registers, 2 instruction sequence
 5% overhead

Remote (cross-domain) Procedure Call:
 10x cost of a procedure call
 10x faster than a really good OS RPC

Sequoia DB benchmarks:  2-7% overhead for SFI
compared to 18-40% overhead for OS.
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Limitations of SFI
 Only enforces process isolation
 Variable-length instructions are tricky

 But provably correct SFI is possible for x86
[McCamant & Morrisett]

 Sometimes want to enforce more complex
rules on untrusted code
 Example: downloaded applet can either read local files

or send to network, but not both

 Can we do more by code rewriting?
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Inlined reference monitors (IRMs)

 SASI [Schneider & Erlingsson 1999],
Naccio [Evans & Twyman 1999]

 SFI inlines a particular safety policy into
untrusted code

 Idea: embed an arbitrary safety policy into
untrusted code at load time
 Policy may be application-specific, even user-specific
 Low execution overhead
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Security automata

 Every safety property enforceable by security automaton
[Schneider ‘98]

 System execution produces sequence of events …
   … automaton reads and accepts/rejects sequence

 Need pervasive mediation to allow policies independent
of code being checked

read

not read not send
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…
ldc 1                                         // new automaton state on stack
putstatic SASI/stateClass/state               // cause automaton state change
invokevirtual java/io/FileInputStream/read()I // read integer from file
…
getstatic SASI/stateClass/state               // automaton state onto stack
ifeq SUCCEED                                  // if stacktop=0 goto succeed
   invokestatic SASI/stateClass/FAIL()V       // else security violation
SUCCEED:
   invokevirtual java/net/SocketOutputStream/write(I)V   // send message
...

read

not read not send

0 1

Example: JVM code in SASI
(Also implemented for x86 machine code)
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STATE { boolean did_read = false; }
EVENT methodCall FileInputStream.read { did_read = true; }
EVENT methodCall Network.send CONDITION did_read { FAIL; }

 State diagrams (SASI) are inconvenient -- how to specify
a reference monitor?

  Policy Specification Language  (PSLang)
 same expressive power, more convenient
 event-driven programming model maps program actions (events) to

automaton state updates
 specification expressible in terms of application abstractions

 Has been used to specify, enforce Java stack inspection
security model (!) with good performance

 But..hard to apply complex policies to low-level code

PSLang: specifying policies

Type Safety and Security
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Type-safe languages
Software-engineering benefits of type safety:
 memory safety
 no buffer overruns (array subscript a[i] only

defined when i is in range for the array a.)
 no worries about self-modifying code, wild

jumps, etc.

 Type safety can be used to construct a protected
interface (e.g., system call interface) that applies
access rules to requests
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Java
 Java is a type-safe language in which type

safety is security-critical
 Memory safety: programs cannot fabricate

pointers to memory
 Type safety: must use objects at correct

types
 Encapsulation: private fields, methods of

objects cannot be accessed from outside
 Bytecode verifier ensures compiled

bytecode is type-safe
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Java: objects as capabilities
 Single Java VM may contain processes

with different levels of privilege (e.g.
different applets)

 Some objects are capabilities to perform
security-relevant operations:
FileReader f = new
FileReader(“/etc/passwd”);
// now use “f” to read password file
// …but don’t lose track of it!
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Problems with capabilities
 Original 1.0 security model: use type

safety, encapsulation to prevent untrusted
applets from accessing capabilities in
same VM

 Problem: tricky to prevent capabilities from
leaking (downcasts, reflection, …)

 One approach: confined types [Vitek&Bokowski]

 Difficult to revoke capabilities esp. in
distributed environment



13

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 73

Java Stack Inspection
 Added to Java to deal with capability

model shortcomings
 Dynamic authorization mechanism

 close (in spirit) to Unix effective UID
 attenuation and amplification of privilege

 Richer notion of context
 operation can be good in one context and bad in

another
 E.g: local file access

 may want to block applets from doing this
 but what about accessing a font to display something?
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Security operations
 Each method has an associated protection domain

 e.g., applet or local
 doPrivileged(P){S}:

 fails if method's domain does not have priv. P.
 switches from the caller's domain to the method's while

executing statement S (think setuid).
 checkPermission(P) walks up stack S doing:

for (f := pop(S); !empty(S) ; f := pop(S)) {
  if domain(f) does not have priv. P then error;
  if f is a doPrivileged frame then break;
}

 Very operational description! But ensures integrity of
control flow leading to a security-critical operation
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Example
Font Library:
  ...
  doPrivileged(ReadFiles) {
     load("Courier");
  }
  ...

FileIO:
  ...
  checkPermission(ReadFiles);
  read();
  ...

Font library
load

read

…

Applet
stack frames

Requires:
• Privilege enabled by some caller (applet can’t do this!)
• All code between enabling and operation is trustworthy
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Some pros and cons?
 Pros:

 rich, dynamic notion of context that tracks some of
the history of the computation.

 this could stop Melissa, Love Bug, etc.
 low overhead, no real state needed.

 Cons:
 implementation-driven (walking up stacks)

 Could be checked statically [Wallach]
 policy is smeared over program
 possible to code around the limited history

 e.g., by having applets return objects that are invoked
after the applet's frames are popped.

 danger of over/under amplification
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Require type safety?
 Write all security-critical programs in type-safe

high-level language? (e.g., Java)
 Problem 1: legacy code written in C, C++

 Solution: type-safe, backwards compatible C

 Problem 2: sometimes need control over
memory management
 Solution: type-safe memory management

 Can we have compatibility, type safety and low-
level control?  Can get 2 out of 3:
 CCured [Necula et al. 2002]

 Emphasis on compatibility, memory safety
 Cyclone [Jim et al. 2002]

 Emphasis on low-level control, type safety
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Cyclone
 A type-safe dialect of C
 Goals:

 Memory and type safety (fail-stop behavior)
 (relatively) painless porting from C
 writing new code pleasant
 Low-level control: data representations, memory

management, ability to interface to the outside world,
performance, etc.

  Has been used to implement low-level,
code safely, e.g. device drivers
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Hello World
#include "stdio.h"

int main(int argc, char ??argv) {
  if (argc < 1) {
    fprintf(stderr,"usage: %s <name>\n",argv[0]);
    exit(-1);
  }
  printf("Hello, %s\n",*(++argv));
  return 0;
}

% a.out ‘World!’
Hello World!
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The trouble with pointers
 Pointer arithmetic:
int *f(int *a) {
   return a + 10;
}

 Null pointers:
int *f(int *a) {

return a[4];
}

 Arrays:
struct foo {
  int g[10];
}
int *f(struct foo *x)
{ return &x->g[5]; }

 The stack:
int x;
scanf(“%d”, &x);

• All possibly legitimate
uses of C pointers

• How can compiler check
them (and modularly)?

⇒Needs more information
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Pointers
 Three kinds: fat, thin-null, thin-not-null

You pay for what you get…

char ?  :  arbitrary pointer arithmetic, might be null,
         3 words of storage, bounds checked

char *  :  no real arithmetic, might be null,
         1 word of storage

char @  :  same as above, but never null

char *{42} :  same, but points to (at least) 42 chars
char * == char *{1}
char @{n+m} ≤ char @{n} ≤ char *{n} ≤ char ?
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Compatibility
 Porting most C code is fairly

straightforward:
 mostly, convert t* to t? where necessary
 use advanced type features (polymorphism, tagged

unions, existential types) to replace unsafe casts with
type-safe operations

 put in initializers (only top-level, interprocedural)
 put in fallthru's (very rare)
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CCured [Necula, 2002]
 Different pointer classes

 DYNAMIC : no info, slow, all accesses checked
 SAFE: a memory- and type-safe pointer (or null)
 SEQ: pointer to an array of data (like Cyclone fat)

Type-safe world Memory-safe world

DYNAMIC
SAFE,SEQ DYNAMIC

 Nonmodular but fast C→CCured converter using BANE
constraint solving framework (worst case: DYNAMIC)
 10-50% Performance penalty
 More safe C impls: [Jones&Kelly], [Ruwase&Lam]

Certifying compilation
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Code certification mechanisms
 Problem: can you trust the code you run?
 Code signing using digital signatures

 Too many signers
 If you can’t trust Microsoft,…

 Idea: self-certifying code
 Code consumer can check the code itself to ensure it’s safe
 Code includes annotations to make this feasible
 Checking annotations easier than producing them

 Certifying compiler generates self-certifying code
 Java/JVM: first real demonstration of idea
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Type-Based Protection (JVM)

Java Source

javac

JVM bytecodes

JVM verifier System 
Interface

Binary

JIT compiler

System
Binary

JVM

Interpreter
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Bytecode verification
 Java compiler is a certifying compiler that compiles to

Java Virtual Machine code
 Generates enough type information in target code to check that code is

type-safe
 Same thing could be done with other source languages
 Microsoft CLR is similar

 Verifier first checks structure (syntax) of bytecode
 Branches checked to ensure they address valid target

instructions (control safety)
 Methods (functions) and class fields are annotated with

complete type signatures (argument and result types)
 Method calls are explicit in JVM -- can look up signatures

directly
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Type-checking JVM
 Calls can be type-checked once actual argument

types are known
 Java Virtual Machine stores data in locals (used

for variables) and stack locations (used for
arguments, temporaries)
 Types of both can change at every program point, not included in

bytecode format

 Verification uses dataflow analysis to determine
types of every local/stack locn at every program
point

 Use argument types and method result types to
get analysis started
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Completing analysis

 Merge type information on different paths by
finding least common ancestor (C3)

 If no least common ancestor mark type as
unusable (local 2: ?)

 Report success if all method calls, bytecode
operations type-check, otherwise reject program

Local 2 : C1 Local 2 : C2

C1 C2
Local 2: C3

Control-flow
graph

C3

Class hierarchy
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Compiling to the JVM
 The JVM type-system isn’t all that different

from Java’s  compiling other languages
to JVM doesn’t work that well.
 e.g., no tail-calls in the JVM so Scheme and ML are

hosed... (MS fixed this in CLR)
 no parametric polymorphism, no F-bounded

subtyping, limited modules, etc.
 Operations of the JVM are relatively high-

level, CISC-like.
 method call/return are primitives
 Little control over indirection
 interpreter or JIT is necessary
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Ideally:

Your favorite
language

Low-Level IL
(SSA)

optimizer

machine code

verifier System 
Interface

System
Binary“Kernel”

Smaller TCB, language 
independence.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 92

Typed Assembly Language
[Morrisett, 1998]

Two goals:
 Get rid of the need for a trusted interpreter or JIT

compiler
 type-check the actual code that will run.
 try not to interfere with traditional optimizations.

 Provide generic type constructors for encoding
many high-level language type systems.
 reasonable target for compiling many languages
 a more “RISC” philosophy at the type-level
 better understanding of inter-language relationships.
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TAL contributions
Theory:

 simple MIPS-like assembly language
 compiler from ML-like language to TAL
 soundness and preservation theorems

Practice:
 most of IA32 (32-bit Intel x86)
 more type constructors (array,+,µ,modules)
 prototype Scheme, Safe-C compilers
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TAL (simplified)
Registers:  r ∈ {r1,r2,r3,...}
Labels:  L ∈ Identifier
Integer: n ∈ [-2k-1..2k-1)
Blocks:  B ::= jmp v | ι ; B
Instrs:   ι ::= aop rd,rs,v | bop r,v  | mov r,v
Operands:  v ::= r | n | L
Arithmetic Ops: aop ::=  add | sub | mul | ...
Branch Ops: bop ::=  beq | bne | bgt  | bge  |

...
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Simple program
; fact(n,a) = if (n <= 0) then a else fact(n-1,a*n)
;    r1 holds n, r2 holds a, r31 holds return address
;    which expects the result in r1
fact:  sub r3,r1,1 ; r3 := n-1

 ble r3,L2 ; if n < 1 goto L2
 mul r2,r2,r1 ; a := a*n
 mov r1,r3 ; n := n-1
 jmp fact ; goto fact

L2:  mov r1,r2 ; result := a
 jmp r31 ; jump to return address
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Basic type structure
type ::= int | Γ

where Γ = { r1:t1, r2:t2,  r3:t3, ...}

A value with type { r1 : t1, r2 : t2, r3 : t3, ...} is a code
label, which when you jump to it, expects you to
at least have values of the appropriate types in
the corresponding registers.

You can think of a label as a function that takes a
record of arguments
 the function never returns – it always jumps off
 we assume record subtyping – we can pass a label more

arguments than it needs
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Simple program with types
fact:{r1:int,r2:int,r31:{r1:int}}

; r1 = n, r2 = accum, r31 = return address
sub r3, r1, 1 ; {r1:int,r2:int,r31:{r1:int},r3:int}
ble r3, L2
mul r2, r2, r1
mov r1, r3
jmp fact

L2:{r2:int, r31:{r1:int}}
mov r1, r2
jmp r31
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Badly typed program
fact:{r1:int,r31:{r1:int}}

; r1 = n, r2 = accum, r31 = return address
sub r3, r1, 1 ; {r1:int,r31:{r1:int},r3:int}
bge r1, L2
mul r2, r2, r1 ; ERROR!  r2 doesn’t

have a type
mov r1, r3
jmp L1

L2:{r2:int, r31:{r1:int}}
mov r1, r2
jmp r1 ; ERROR!  r1 isn’t a valid label
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TAL vs JVM, CLR
 The principles behind TAL and the JVM

(or Microsoft’s CLR) aren’t too different:
compiler generates enough type
annotations to check target code

 TAL concentrates on orthogonal,
expressive typing components (more
general target lang)

 JVM (and CLR) focus on OO-based
languages with predefined implementation
strategies.
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Ideally:

Your favorite
language

Low-Level IL

optimizer

machine code

verifier Security
Policy

System
Binary

trusted computing base

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 101

Idea #1: Theorem Prover!

Your favorite
language

Low-Level IL

optimizer

machine code

Theorem
Prover Security

Policy

System
Binary

trusted computing base

Warning: components not drawn
to scale!
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Unfortunately...

Theorem
Prover

trusted computing base
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Observation

 Finding a proof is hard, but verifying a proof is easy.
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PCC:

optimizer

machine code

verifier Security
Policy

System
Binary

prover

code proof

could be
 you

trusted computing base

“certified binary”

invariants
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Making “Proof” Rigorous:
Specify machine-code semantics and security

policy using axiomatic semantics.
     {Pre} ld r2,r1(i) {Post}

Given:
 security policy (i.e., axiomatic semantics and associated logic for

assertions)
 untrusted code, annotated with (loop) invariants

it’s possible to calculate a verification condition:
 an assertion A such that
 if A is true then the code respects the policy.
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Code producer

Proof-carrying code

    Code consumer

Verification
condition
generator

Safety
Proof

safety
condition

Proof
checker

Safety
policy

Target
code
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Code consumer side
Verifier (~5 pages of C code):

 takes code, loop invariants, and policy
 calculates the verification condition A.
 checks that the proof is a valid proof of A:

 fails if some step doesn’t follow from an axiom or inference
rule

 fails if the proof is valid, but not a proof of A

code proof

“certified binary”

in-
variantsinvariants
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Advantages of PCC
A generic architecture for providing and checking

safety properties
In Principle:
• Simple, small, and fast TCB.
• No external authentication or cryptography.
• No additional run-time checks.
• “Tamper-proof”.
• Precise and expressive specification of code safety

policies
In Practice:
• Still hard to generate proofs for properties stronger than

type safety. Need certifying compiler…
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Security types
 and information flow
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End-to-end security
 Near-term problem: ensuring programs are

memory-safe, type-safe so fine-grained access
control policies can be enforced

 Long-term problem: ensuring that complex
(distributed) computing systems enforce system-
wide information security policies
 Confidentiality
 Integrity
 Availability

 Confidentiality, integrity: end-to-end security
described by information-flow policies that
control information dependency
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Policies vs. mechanisms

 Problem: policy/mechanism mismatch
 Reference monitors (e.g., access control): control

whether A is allowed to transmit to B
 Confidentiality policy: information I can only be

obtained by users U (no matter how it is
transformed) – not a safety policy!

 How to map policy onto a mechanism?
(we already do this by hand!)

A B
?

I

U
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Problems
 Complex policies

 no generally accepted policy language
 weak validation techniques

 Information flows hard to find
(covert channels)

 Heterogeneous, changing trust
 Host machines may be

compromised
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Bill

Information leaks
 Programs can leak inputs

Spreadsheet

InputTax Data

Databasenetwork

Bob
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Standard mechanisms
 Discretionary access control: no control of

propagation

A B
?

...

Mandatory access control: expensive, restrictive

A B
?

L
top secret
secret
classified
unclassified

L

Java stack inspection: integrity, not confidentiality
Can’t enforce information flow policies
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Static information flow
[Denning & Denning, 1977]
 Programs are annotated

with information flow
policies for confidentiality,
integrity

 Compiler checks, possibly
transforms program to
ensure that all executions
obey rules

 Loader, run-time validates
program policy against
system policies

 Source Code Policy

Target Code Policy

System
Policy

Executable code
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Noninterference
"Low-security behavior of the program is not

affected by any high-security data."
Goguen & Meseguer 1982

H1 L

L H1

H2 L

LH2

≈L

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted

≈L

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 117

Security types
 Idea: add information flow policies as type

annotations (labels)
 Simplest policy language: H = confidential,

L = public. L →H ok, H→L bad

int{H} x; // confidential integer
int{L} y; // public integer
String{L} z; // public string
x = y; // OK
y = x; // BAD
x = z.size(); // OK
z = Integer.toString(x) // BAD
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Lattices and security
 Denning, 1976.
 Information flow policies (security policies in

general) are naturally partial orders
 If policy P2 is stronger than P1, write P1  P2

 P1 = “smoking is forbidden in restaurants”
 P2 = “smoking is forbidden in public places”

 Some policies are incomparable:
P1  / P2 and P2 / P1
 P2 = “keep off the grass”

 If there is always a least restrictive policy as
least as strong as any two policies, policies form
lattice. P1  P2 = “join” of P1, P2

 P1  P2 = “smoking forbidden in restaurants and keep off the grass”

 H ⊔ H = H,    L ⊔ L = L,     L ⊔ H = H
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Checking computation
 Combining values with different

information flow policies?
 Conservatively,

Label of result should be a policy at least as strong as
the labels of all inputs.

 Write x for “label of x”
 Label of y+z is y ⊔ z
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Implicit Flows

 Final value of x may reveal values of a, b
 Conservative: label of x protects

both a and b

a  x  &  b  x

x = 0;
if (b) {
  x = a;
}
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Static Assignment Rule
 Program-counter label pc captures

implicit flows
  if, while, switch statements

bump up pc (temporarily)

x = 0;
if (b) {
  x = a;
}

pc = b

Compile-time
checking:

a ⊑ x
pc ⊑ x
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Run-time Checking?

 Run-time check
 if b is false, x=0, but no check is performed
 if check fails, b is also leaked!

 Static checking not just an optimization!

x = 0;
if (b) {
  x = a;
}

a  x  &  b  x  ?
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Proving noninterference
 Volpano et al., 1996
 Can show that any type-safe program with information-

flow security types must satisfy noninterference
 Strategy: show that each step of execution preserves

low-observable equivalence:

 Language with functions, state: Zdancewic, Myers ‘01
 Core ML: Pottier, 2002

P1  ≈L  P2 

P1  ≈L  P2

… …
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[Myers, 1999]
 Annotate (Java) programs with labels from
decentralized label model
Variables have type + label. Labels contain
policies in terms of principals.

int {Alice→Bob} x;
 Information flow control and access control

Available for download:
http://www.cs.cornell.edu/jif

 float {x} cos (float x) {
float {x} y = x — 2*PI*(int)(x/(2*PI));
return 1 — y*y/2 + ...;

}

Jif: Java + Information Flow
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Confidentiality policies as types

 Confidentiality labels:
int{Alice→} a;    “a is Alice's private int”

 Integrity labels:
int{Alice←} a;   “a is trusted by Alice”

 Combined labels:
int{Alice→ ; Alice←} a;     (Both)

int{Alice→} a1, a2;
int{Bob←} b;
int{Bob←Alice} c;

// Insecure
b = a1;
b = c;

// Secure
a1 = a2;
a1 = b;
a1 = c;
c = b;“Bob believes Alice can affect c”
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Intentional leaks

Spreadsheet

WebTax

Tax Data
Final Tax Form

Proprietary
Database

Bob

Preparer

explicit
release
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Selective Declassification
[Myers, 1997]
 An escape hatch from noninterference
 A principal can rewrite its part of the label

{O1→R1, R2; O2→R2}

{O1→R1, R2} {O1→R1, R2; O2→R2, R3}

O2

 Other owners’ policies still respected
 Must test authority of running process
 Potentially dangerous: explicit operation
 Jif 3.0: declassification mediated by integrity checks:
“robustness” [Chong&Myers]
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Information flow and dependency

 Checking whether information flows from x
to y is just a dependency analysis

 Dependency is crucial to security!
 Many other applications of language-

based dependency analysis…
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Catching bad format strings
[Shankar et al., 2001]
 Idea: should not use untrustworthy (H)

data as format string, else attacker can
gain control of system

 Security type:
int printf(char *L fmt, …)

 Give network buffer type char *H :
information flow analysis prevents buffer
data from affecting format string
 problem: false positives

 Probably useful for less direct attacks too
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SQL injection vulnerabilities
 WebSSARI system [Huang et al.], [Xie & Aiken]:

analyze dependencies in PHP scripts to discover
SQL queries built from untrusted information
$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

 $userid, $pass must be trusted information
 Sanitization functions convert untrusted to

trusted after checking for metacharacters etc.
 Doesn’t worry about implicit flows -- attacker can

affect SQL queries but probably difficult to
synthesize attacks…
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Detecting worms
 Vigilante system [Costa et al.] uses dynamic

and static dependency analysis to
 Detect worm attacks
 Automatically generate filters
 Generalize filters so they catch larger class of related

attacks
 No false positives

 Filters can be distributed by peer-to-peer
system in 2.5 min. (a solution to Slammer!)
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Vigilante
 Idea: labels on data are sets of bytes from

network messages where  is ⊆
 Run app with dynamic binary rewriting,

computing labels for data
 At invalid step (e.g., jumping to payload), label

on step says which message bytes matter!
 Generate filter from them.
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Other work and future challenges

 Security types for secrecy in network
protocols

 Self-certifying low-level code for object-
oriented languages

 Applying interesting policies to PCC/IRM
 Secure information flow in concurrent

systems
 Enforcing availability policies
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The End
 Thank you for your participation!
 See website for bibliography, more tutorial

information:
www.cs.cornell.edu/andru/pldi06-tutorial
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