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Computer security

Goal: prevent bad things from happening
o Clients not paying for services

o Critical service unavailable

o Confidential information leaked

o Important information damaged

o System used to violate laws (e.g., copyright)
Conventional security mechanisms aren’t
up to the challenge
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Harder & more important

In the *70s, computing systems were isolated.

o software updates done infrequently by an experienced
administrator.

o you trusted the (few) programs you ran.
o physical access was required.
o crashes and outages didn’t cost billions.

The Internet has changed all of this.
o we depend upon the infrastructure for everyday services
o you have no idea what programs do.

o software is constantly updated — sometimes without your knowledge
or consent.

o a hacker in the Philippines is as close as your neighbor.
o everything is executable (e.g., web pages, email).
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Language-based security

Conventional security: program is black box

o Encryption

o Firewalls

o System calls/privileged mode

o Process-level privilege and permissions-based access control

Prevents addressing important security issues:
Downloaded and mobile code

Buffer overruns and other safety problems

Extensible systems

Application-level security policies

System-level security validation

Languages and compilers to the rescue!
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Outline

The need for language-based security
Security principles

Security properties

Memory and type safety
Encapsulation and access control
Certifying compilation and verification
Security types and information flow

Handouts: copy of slides
Web site: updated slides, bibliography

www, cs. cornell. edu/andru/pldi@6-tutorial
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Security principles




Conventional OS security

Model: program is black box

Program talks to OS via protected
interface (system calls)

o Multiplex hardware

o Isolate processes from each other

o Restrict access to persistent data (files)

Language-independent, simple, limited

User-level Program Hardware
memory
Operating System protection

Kernel
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Access control model

The classic way to prevent “bad things”
from happening

Requests to access resources (objects)
are made by principals

Reference monitor (e.g., kernel) permits or
denies request

request |Reference Object
P Monitor | (Resource)
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Authentication vs. Authorization

Abstraction of a principal divides
enforcement into two parts
o Authentication: who is making the request

o Authorization: is this principal allowed to make
this request?

- request |Reference Object
P Monitor | (Resource)
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15t guideline for security

Principle of complete mediation:

Every access to every object must be checked by
the reference monitor

Problem: OS-level security does not support
complete mediation
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OS: Coarse-grained control

Operating system enforces security at
system call layer

o Hard to control application when it is not making
system calls

Security enforcement decisions made with
regard to large-granularity objects

o Files, sockets, processes

Coarse notion of principal:

o If you run an untrusted program, should the
authorizing principal be “you™?
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Need: fine-grained control

Modern programs make security decisions
with respect to application abstractions

o Ul: access control at window level

o mobile code: no network send after file read

o E-commerce: no goods until payment

o intellectual property rights management

Need extensible, reusable mechanism for
enforcing security policies

o Language-based security can support an extensible
protected interface, e.g., Java security
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2"d guideline for secure design

Principle of Least Privilege: each principal
is given the minimum access needed to
accomplish its task. [Saltzer & Schroeder
‘75]

Examples:

+ Administrators don’t run day-to-day tasks as root. So
‘rm —rf /" won't wipe the disk.

- fingerd runs as root so it can access different users’
.plan files. But then it can also
‘rm —rf /"
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Least privilege problems

OS privilege is coarse-grained: user/group

Applications need finer granularity

o Web applications: principals unrelated to OS principals
Who is the “real” principal?

o Trusted program? Full power of the user principal

o Untrusted? Something less

o Trusted program with untrusted extension: ?

o Untrusted program accessing secure trusted subsystem: ?
Requests may filter through a chain of programs
or hosts

o Loss of information is typical

o E.g., client browser — web server — web app — database
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3rd guideline: Small TCB

Trusted Computing Base (TCB) :
components whose failure compromises
the security of a system
Example: TCB of operating system includes
kernel, memory protection system, disk image
Small/simple TCB:

= TCB correctness can be checked/tested/reasoned about more
easily = more likely to work

Large/complex TCB:
- TCB contains bugs enabling security violations
Problem: modern OS is huge, impossible to verify
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Small TCB and LBS

Conventional wisdom (c. 1975):

o “operating system is small and simple, compiler is
large and complex”

o OS is a small TCB, compiler a large one

c. 2003:
o OS (Win2k) = 50M lines code, compiler ~ 100K lines
code

o Hard to show OS implemented correctly
Many authors (untrustworthy: device drivers)
Implementation bugs often create security holes

o Can now prove compilation, type checking correct
Easier than OS: smaller, functional, not concurrent

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 16

The Gold Standard [Lampson]

Authenticate
o Every access/request associated with correct principal

Authorize
o Complete mediation of accesses

Audit

o Recorded authorization decisions enable after-the-fact
enforcement, identification of problems

Language-based techniques can help

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 17

When to enforce security

Possible times to respond to security
violations:
Before execution:
analyze, reject, rewrite
During execution:
monitor, log, halt, change

After execution:
roll back, restore, audit, sue, call police
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Language-based techniques

A complementary tool in the arsenal: programs don’t have
to be black boxes! Options:

Analyze programs at compile time or load time to
ensure that they are secure

Check analyses at load time to reduce TCB

Transform programs at compile/load/run time so that
they can’t violate security, or to log actions for auditing.
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Maturity of language tools

How to build a sound, expressive type system
that provably enforces run-time type safety

= protected interfaces
Type systems that are expressive enough to

encode multiple high-level languages
= language independence

How to build fast garbage collectors
= trustworthy pointers

On-the-fly code generation and optimization
= high performance
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Caveat: assumptions and abstraction

Arguments for security always rest on assumptions:
o “the attacker does not have physical access to the hardware”

o “the code of the program cannot be modified during execution”

o “No one is monitoring the EM output of the computer”
Assumptions are vulnerabilities

o Sometimes known, sometimes not

Assumptions arise from abstraction

o security analysis only tractable on a simplification (abstraction) of
actual system

o Abstraction hides details (assumption: unimportant)

Caveat: language-based methods often abstract
aspects of computer systems

o Need other runtime, hardware enforcement mechanisms to
ensure language abstraction isn’t violated—a separation of
concerns
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A sampler of attacks

Attack: buffer overruns

char buf[100];

gets(buf);
buf
Program
sp Stack
Attacker gives long input that overwrites
function return address, local variables

“Return” from function transfers control to
payload code
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Execute-only bit?
Stack smashing executes code on stack -- mark
stack non-executable?
Return-to-libc attack defeats this:
void system(char * arg) {

ro = arg;
|:>exec1(r0, ...); // “return” here with r@ set

}

o Not all dangerous code lives in the code segment...

More attacks: pointer subterfuge (function- and
data-pointer clobbering), heap smashing,
overwriting security-critical variables...

Moral: SEGVs can be turned into attacks
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Attack: format strings
fgets(sock, s, n);

fprintf(output, s);

Attack: pass string s containing a %n
qualifier (writes length of formatted input
to arbitrary location)

Use to overwrite return address to
“return” to malicious payload code in s.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

Attack: SQL injection

Web applications typically construct SQL
database queries.

o In PHP:

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

o Attacker uses userid of © 0rR ‘1’ = ‘1’. Effect:
UPDATE users SET pass=<pass> WHERE userid=‘’ OR ‘1’=‘1’

69% of Internet security vulnerabilities are
in web applications [Symantec]
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Using system subversion
Assume attacker can run arbitrary code
(possibly with dangerous privileges)
Initial foothold on target system enables
additional attacks (using other holes)
Worms: programs that autonomously
attack computers and inject their own code
into the computer
Distributed denial of service: many
infected computers saturate target network
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1988: Morris Worm

Penetrated an estimated 5 to 10 percent of
the 6,000 machines on the internet.

Used a number of clever methods to gain
access to a host.
o brute force password guessing
o bug in default sendmail configuration
o X windows vulnerabilities, rlogin, etc.
o buffer overrun in fingerd
Remarks:
o System diversity helped to limit the spread.
o “root kits” for cracking modern systems are easily
available and largely use the same techniques.
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1999: Love Bug & Melissa

Both email-based viruses that exploited:
o a common mail client (MS Outlook)
o trusting (i.e., uneducated) users
o VB scripting extensions within messages to:
lookup addresses in the contacts database
send a copy of the message to those contacts

Melissa: hit an estimated 1.2 million machines.
Love Bug: caused estimated $10B in damage.

Remarks:
o no passwords or crypto involved
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Why did it succeed?

Visual Basic scripts invoked transparently upon
opening

Run with full privileges of the user

Kernel doesn’t know about fine-grained
application abstractions or related security
issues: mail messages, contacts database, etc.
Recipients trusted the sender — after all, they
know them

Interactions of a complex system were
unanticipated
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A solution for Melissa?

Turn off all executable content?
o no problem when email was just text.
but executable content is genuinely useful.

ex: automated meeting planner agent, postscript, Mpeg4 codecs,
client-side forms, etc.

o US DobD tried to do this : revolt
Fundamental tension:

o modern software wants to be open and extensible.

u  programmable components are ultimately flexible.
Postscript, Emacs, Java[script], VB, Jini, ActiveX, plug-n-play...

security wants things to be closed: least privilege.

turning off extensibility is a denial-of-service attack.

o

o

o

o
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2002: MS-SQL Slammer worm

Jan. 25, 2002: SQL and MSDE servers on
Internet turned into worm broadcasters
o Buffer-overrun vulnerability R =
o Spread to most vulnerable servers

on the Internet in less than 10 min!
Denial of Service attack
o Affected databases unavailable o Ottt
o Full-bandwidth network load = wide & e i
o “Worst attack ever” — brought down many sites, not Internet
Can’t rely on patching!
o Infected SQL servers at Microsoft itself

o Owners of most MSDE systems didn’t know they were
running it...extensibility again

[t
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Virus scanning?

Scan for suspicious code

o e.g., McAfee, Norton, etc.

o based largely on a lexical signature.

o the most effective commercial tool

o but only works for things you've seen
Melissa spread in a matter of hours

o virus kits make it easy to disguise a virus
“polymorphic” viruses

Doesn’t help with worms

o Unless you can generate a filter automatically...
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Security Properties

Security properties

Security = “bad things don’t happen”

What kinds of properties
should computing systems satisfy?
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Security policies

Execution (trace) of a program is a
sequence of states s;s,s;... encountered
during execution

o Program has a set of possible executions T

A generic formalization: security policy is a
predicate P on sets of executions

o Program satisfies policy if P(T)

Examples:

o P(T) if no null pointer is deferenced in any trace in T

o P(T) if every pair of traces in T with the same initial
value for x have the same final value for y
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Safety properties

“Nothing bad ever happens”

A property is a policy that can be enforced using

individual traces

o P(T) < VtET. P'(t) where P’ is some predicate on traces

Safety property can be enforced using only

history of program

o If P’(t) does not hold, then all extensions of t are also bad

o Amenable to run-time enforcement: don’t need to know future

Examples:

o access control (e.g. checking file permissions on file open)

o memory safety (process does not read/write outside its own
memory space)

o type safety (data accessed in accordance with type)
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Liveness properties

“Something good eventually happens”

o If P’(t) does not hold, every finite sequence t can be
extended to satisfy P’

Example: nontermination
o “The email server will not stop running”

Violated by denial of service attacks
Can’t enforce purely at run time

Interesting properties often involve both

safety and liveness

o Every property is the intersection of a safety property
and a liveness property [Alpern & Schneider]
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Memory safety and isolation

Process isolation: running process cannot
access memory that does not belong to it
o Usually enforced by hardware TLB

TLB caches virtual->physical address mappings

Invalid virtual addresses (other processes) cause kernel trap
o Cross-domain procedure calls/interprocess communication

(RPC/IPC) expensive (TLB misses)

Memory safety: running process does not
attempt to dereference addresses that are not
valid allocated pointers
o No read from or write to dangling pointers
o Not provided by C, C++:

int *x = (int *)@x14953300;
*x = Ox@badfeed;
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Control-flow integrity

Actual control flow must conform to a “legal
execution”
Code injection attacks violate CFI.

Weak: control can only be transferred to legal
program code points
o Rules out classic buffer overrun attacks

o Not provided by C:
int (*x)Q = (int(*)()) Oxdeadbeef; (*x)Q;

Stronger: control must agree with a DFA or CFG
capturing all legal executions

Can be enforced cheaply by dynamic binary
rewriting as in DynamoRIO [Kiriansky et al., 2002]
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Type safety

Values manipulated by program are used in
accordance with their types

o Stronger than memory safety!

Can be enforced at run-time (Scheme), compile-
time (ML), mix (Java)

Abstract data types: data types that can only be
accessed through a limited interface

o can protect their internal storage (private data)

Kernel = ADT with interface = system calls,
abstraction barrier enforced at run time by
hardware
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Access control

Access control decision:
o principal x request x object — boolean

Access control matrix [Lampson]:

file1 file2 file3
user1 r w X
user2 r r
user3 w r

o Columns of matrix: access control lists (ACLs)

Correct enforcement is a safety property

o Safety can be generalized to take into account denial of access,
corrective action by reference monitor
[Hamlen][Ligatti][Viswanathan]
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Information security

Sometimes computer security is an aspect
of physical security

o Make sure attackers cannot take over electric power
distribution grid, military command-and-control, etc.

o Can use type safety, access control to enforce rules
What we’re trying to protect can also be
the information on the computer:
information security

o Memory safety, type safety don’t directly help
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Information security: confidentiality

Confidentiality: valuable information should not
be leaked by computation.

e

4

Also known as secrecy, though sometimes a
distinction is made:

o Secrecy: information itself is not leaked

o Confidentiality: nothing can be learned about information
Simple (access control) version:

o Only authorized processes can read from a file

o But... when should a process be “authorized” ?
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Confidentiality: a Trojan horse

Access control controls release of data
but does not control propagation

Security violation even

with “safe” operations (A)m

% ls -1 personal.txt
rPW--=---~- personal.txt

% more persondl.txt

output device
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End-to-end confidentiality

Access control does not help after access
control check is done

End-to-end confidentiality:

Information should not be improperly released
by a computation no matter how it is used

Enforcement requires tracking information flow

o Encryption provides end-to-end secrecy—but prevents most
computation
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Information security: integrity

Integrity: valuable information should not be /
damaged by computation -

Simple (access control) version:

o Only authorized processes can write to a file \
o But... when should a process be “authorized”

End-to-end version:

o Information should not be updated on the basis of less
trustworthy information

o Requires tracking information flow in system

Information flow is not a property [McLean94]

o No information flow from x to y:
g

P(T) if every pair of traces in T with the same initial value for x
always have the same value for y
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Privacy and Anonymity

Anonymity:

o individuals (principals) and their actions cannot be
linked by an observer

o alt: identity of participating principals cannot be
determined even if actions are known

Privacy: encompasses aspects of
confidentiality, secrecy, anonymity
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Availability

System is responsive to requests

DoS attacks: attempts to destroy availability
(perhaps by cutting off network access)

Fault tolerance: system can recover from faults
(failures), remain available, reliable

Benign faults: not directed by an adversary

o Usual province of fault tolerance work

Malicious or Byzantine faults: adversary can
choose time and nature of fault

o Byzantine faults are attempted security violations
o usually limited by not knowing some secret keys
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Enforcing safety properties

Reference Monitor

Observes the execution of a program and
halts the program if it's going to violate the
security policy.

Common Examples:
o memory protection
o access control checks
o routers
o firewalls

Most current enforcement mechanisms are
reference monitors
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Requirements for a Monitor

Must have (reliable) access to information
about security-relevant actions of the program
o e.g., what instruction is it about to execute?

Must have the ability to “stop” the program

o can't stop a program running on a different machine

o ... ortransition to a “good” state.

Must protect the monitor’s state and code

from tampering.

o key reason why a kernel’s data structures and code aren’t
accessible by user code

low overhead in practice
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Pervasive mediation

Reference monitor Interpreter Program instrumentation
. EM Extension
‘ Extension ‘ ‘ ‘ EM ‘
vt vt vt
EM Base system Base system

Base system

OS Reference monitor. won’t capture all events
Wrapper/interpreter. performance overhead

Instrumentation: merge monitor into program
o different security policies = different merged-in code
o simulation does not affect program
o pay only for what you use
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What policies?

Reference monitors can only see the past

o They can enforce safety properties but not liveness
properties

Assumptions:

o monitor can have access to entire state of
computation.

o monitor can have arbitrarily large state

o safety properties enforced are modulo computational
power of monitor

o But: monitor can’t guess the future — the predicate it
uses to determine whether to halt a program must be
computable.
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Software Fault Isolation (SFI)

Wahbe et al. (SOSP’93)
Goal is process isolation: keep software components in
same hardware-based address space, provide

o Idea: application can use untrusted code without memory protection
overhead

Software-based reference monitor isolates components

into logical address spaces.

o conceptually: check each read, write, & jump to make sure it's within the
component’s logical address space.

o hope: communication as cheap as procedure call.

o worry: overheads of checking will swamp the benefits of communication.

Only provides memory isolation, doesn’t deal with other

security properties: confidentiality, availability,...
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One way to SFI: Interpreter

void interp(int pc, reg[], mem[], code[], memsz, codesz) {
while (true) {
if (pc >= codesz) exit(l);
int inst = code[pc], rd = RD(inst), rsl =
RS1(inst),
rs2 = RS2(inst), immed = IMMED(inst);
switch (opcode(inst)) {
case ADD: reg[rd] = reg[rsl] + reg[rs2]; break;
case LD: 1int addr = reg[rsl] + immed;
if (addr >= memsz) exit(l);
reg[rd] = mem[addr];
break;
case JMP: pc = reg[rd]; continue;

3} 0: add ri,r2,r3
pC++; 1: 1d r4,r3(12)
1} 2: jmp r4
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Interpreter pros and cons

Pros:
o easy to implement (small TCB.)
o works with binaries (high-level language-independent.)
o easy to enforce other aspects of OS policy
Cons:
o terrible execution overhead (25x? 70x7?)

It's a start.
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Partial Evaluation (PE)

A technique for speeding up interpreters.
o we know what the code is.

o specialize the interpreter to the code.

unroll the main interpreter loop — one copy for each
instruction

specialize the switch to the instruction: pick out that case
compile the resulting code

Can do at run time with dynamic binary
rewriting (e.g., DynamoRIO)

o Keep code cache of specialized code

o Reduce load time, code footprint

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 58

Example PE

Interpreter
Original Binary:
Q: add ri,r2,r3 case LD: int addr = reg[rsl] + immed;
1: 1d r4,r3(12) if (addr >= memsz) exit(l);
2: jmp r4 reg[rd] = mem[addr];
e break;

Specialized interpreter: Resulting Code

: add ri,rz,r3

1 addi r5,r3,12

: subi ré,r5,memsz
: jab _exit

: 1d r4,r5(0)

reg[1] = reg[2] + reg[3];
addr = reg[3] + 12;

if (addr >= memsz) exit(l); |:>
reg[4] = mem[addr];
pc = reg[4]

pPONR S
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Sandboxing

SFI code rewriting is “sandboxing”

Requires code and data for a security domain
are in one contiguous segment

o upper bits are all the same and form a segment id.

o separate code space to ensure code is not modified.

Inserts code to ensure load and stores are in the
logical address space

o force the upper bits in the address to be the segment id

o no branch penalty — just mask the address

o re-allocate registers and adjust PC-relative offsets in code.

o simple analysis used to eliminate some masks
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Jumps

Inserts code to ensure jump is to a valid
target
o must be in the code segment for the domain

o must be the beginning of the translation of a source
instruction (tricky for variable-length instructions)

PC-relative jumps are easy:
o just adjust to the new instruction’s offset.

Computed jumps are not:

o must ensure code doesn’t jump into or around a check
or else that it's safe for code to do the jump.
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More SFI Details

Protection vs. Sandboxing:
a Protection is fail-stop:
stronger security guarantees (e.g., reads)
required 5 dedicated registers, 4 instruction sequence
20% overhead on 1993 RISC machines
a Sandboxing covers only stores
requires only 2 registers, 2 instruction sequence
5% overhead
Remote (cross-domain) Procedure Call:
5} 10x cost of a procedure call
5} 10x faster than a really good OS RPC

Sequoia DB benchmarks: 2-7% overhead for SFI
compared to 18-40% overhead for OS.
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Limitations of SFI

Only enforces process isolation

Variable-length instructions are tricky

o But provably correct SFl is possible for x86
[McCamant & Morrisett]

Sometimes want to enforce more complex
rules on untrusted code

o Example: downloaded applet can either read local files
or send to network, but not both

Can we do more by code rewriting?
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Inlined reference monitors (IRMs)

SASI [Schneider & Erlingsson 1999],
Naccio [Evans & Twyman 1999]

SFlinlines a particular safety policy into
untrusted code

Idea: embed an arbitrary safety policy into
untrusted code at load time

o Policy may be application-specific, even user-specific
o Low execution overhead
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Security automata

not read not send

read

Every safety property enforceable by security automaton
[Schneider ‘98]

System execution produces sequence of events ...
... automaton reads and accepts/rejects sequence

Need pervasive mediation to allow policies independent
of code being checked
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Example: JVM code in SASI

(Also implemented for x86 machine code)

Tde 1 // new automaton state on stack
putstatic SASI/stateClass/state // cause automaton state change
invokevirtual java/io/FileInputStream/read()I // read integer from file

;etstatic SASI/stateClass/state // automaton state onto stack

ifeq SUCCEED // if stacktop=0 goto succeed
invokestatic SASI/stateClass/FAILQQV // else security violation
SUCCEED:

invokevirtual java/net/SocketOutputStream/write(I)V // send message
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PSLang: specifying policies

State diagrams (SASI) are inconvenient -- how to specify

a reference monitor?

Policy Specification Language (PSLang)

0 same expressive power, more convenient

o event-driven programming model maps program actions (events) to
automaton state updates

o specification expressible in terms of application abstractions

Has been used to specify, enforce Java stack inspection

security model (!) with good performance

But..hard to apply complex policies to low-level code
STATE { boolean did_read = false; }

EVENT methodCall FileInputStream.read { did_read = true; }
EVENT methodCall Network.send CONDITION did_read { FAIL; }
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Type Safety and Security

Type-safe languages

Software-engineering benefits of type safety:
memory safety
no buffer overruns (array subscript a[i] only
defined when 1 is in range for the array a.)

no worries about self-modifying code, wild
jumps, etc.

Type safety can be used to construct a protected
interface (e.g., system call interface) that applies
access rules to requests
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Java

Java is a type-safe language in which type
safety is security-critical

programs cannot fabricate
pointers to memory

must use objects at correct
types

private fields, methods of
objects cannot be accessed from outside

Bytecode verifier ensures compiled
bytecode is type-safe
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Java: objects as capabilities

Single Java VM may contain processes
with different levels of privilege (e.g.
different applets)

Some objects are to perform

security-relevant operations:

FileReader f = new
FileReader(“/etc/passwd”);

// now use “f” to read password file
// .but don’t lose track of it!
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Problems with capabilities

Original 1.0 security model: use type
safety, encapsulation to prevent untrusted
applets from accessing capabilities in
same VM
Problem: tricky to prevent capabilities from
leaking (downcasts, reflection, ...)

o One approach: confined types [Vitek&Bokowski]

Difficult to revoke capabilities esp. in
distributed environment

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2
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Java Stack Inspection

Added to Java to deal with capability
model shortcomings

Dynamic authorization mechanism

o close (in spirit) to Unix effective UID

o attenuation and amplification of privilege
Richer notion of context

o operation can be good in one context and bad in
another
o E.g: local file access
may want to block applets from doing this
but what about accessing a font to display something?
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Security operations

Each method has an associated protection domain
o e.g., applet or local
doPrivileged(P){S}:
o fails if method's domain does not have priv. P.
o switches from the caller's domain to the method's while
executing statement S (think setuid).
checkPermission(P) walks up stack S doing:
for (f := pop(S); lempty(S) ; f := pop(S)) {
if domain(f) does not have priv. P then error;
if f is a doPrivileged frame then break;

Very operational description! But ensures integrity of
control flow leading to a security-critical operation
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doPrivileged(ReadFiles) {

Example
#Font Library: -
}

load

FileIO: read

éﬁéckPermission(ReadFiles);
readQ);

Requires:
« Privilege enabled by some caller (applet can’t do this!)
« All code between enabling and operation is trustworthy
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Toad("Courier"); Font library *

Some pros and cons?

Pros:

o rich, dynamic notion of context that tracks some of
the history of the computation.

o this could stop Melissa, Love Bug, etc.

o low overhead, no real state needed.

Cons:

o implementation-driven (walking up stacks)
Could be checked statically [Wallach]

o policy is smeared over program

o possible to code around the limited history

e.g., by having applets return objects that are invoked
after the applet's frames are popped.

o danger of over/under amplification
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Require type safety?

Write all security-critical programs in type-safe
high-level language? (e.g., Java)
Problem 1: legacy code written in C, C++
o Solution: type-safe, backwards compatible C
Problem 2: sometimes need control over
memory management
o Solution: type-safe memory management
Can we have compatibility, type safety and low-
level control? Can get 2 out of 3:
o CCured [Necula et al. 2002]
Emphasis on compatibility, memory safety

o Cyclone [Jim et al. 2002]
Emphasis on low-level control, type safety
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Cyclone

A type-safe dialect of C

Goals:

o Memory and type safety (fail-stop behavior)
(relatively) painless porting from C

o writing new code pleasant

o Low-level control: data representations, memory
management, ability to interface to the outside world,
performance, efc.

Has been used to implement low-level,
code safely, e.g. device drivers

C

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers
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Hello World

#include "stdio.h"

int main(int argc, char ?7argv) {
if (argc < 1) {
fprintf(stderr, "usage: %s <name>\n",argv[0]);
exit(-1);
1
printf( "Hello, %s\n",*(++argv));
return 0;

3

% a.out ‘World!’
Hello World!
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The trouble with pointers
Pointer arithmetic: The stack:
int *f(int *a) { int x;
return a + 10; scanf(“%d”, &x);

Null pointers:
int *f(int *a) { « All possibly legitimate
return a[4]; uses of C pointers
« How can compiler check
Arrays: them (and modularly)?

struct foo {
int g[10];

int *f(struct foo *x)
{ return &->g[5]; }

=Needs more information
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Pointers

Three kinds: fat, thin-null, thin-not-null
You pay for what you get...

char ?
char *
char @
char *{42}

char * == char *{1}
char @{n+m} =< char @{n} < char *{n} < char ?
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Compatibility

Porting most C code is fairly
straightforward:
o mostly, convert £* to t? where necessary

o use advanced type features (polymorphism, tagged
unions, existential types) to replace unsafe casts with
type-safe operations

put in initializers (only top-level, interprocedural)

put in fallthru's (very rare)

C

C
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CCured [Necula, 2002]
Different pointer classes
o DYNAMIC : no info, slow, all accesses checked
o SAFE: a memory- and type-safe pointer (or null)
o SEQ: pointer to an array of data (like Cyclone fat)

Type-safe world Memory-safe world
x > YA
— DYNAMIC —
SAFE,SEQ DYNAMIC
Nonmodular but fast C—CCured converter using BANE
constraint solving framework (worst case: DYNAMIC)
10-50% Performance penalty

More safe C impls: [Jones&Kelly], [Ruwase&Lam]
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Certifying compilation
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\ Code certification mechanisms

= Problem: can you trust the code you run?

= Code signing using digital signatures
o Too many signers
o If you can't trust Microsoft, ...
= ldea: self-certifying code
o Code consumer can check the code itself to ensure it's safe
o Code includes annotations to make this feasible
o Checking annotations easier than producing them
= Certifying compiler generates self-certifying code
o Java/JVM: first real demonstration of idea
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‘Type-Based Protection (JVM)
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| Bytecode verification

= Java compiler is a certifying compiler that compiles to
Java Virtual Machine code
o Generates enough type information in target code to check that code is

type-safe

o Same thing could be done with other source languages
o Microsoft CLR is similar

= Verifier first checks structure (syntax) of bytecode

= Branches checked to ensure they address valid target
instructions (control safety)

= Methods (functions) and class fields are annotated with
complete type signatures (argument and result types)

= Method calls are explicit in JVM -- can look up signatures
directly
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| Type-checking JVM

= Calls can be type-checked once actual argument
types are known

= Java Virtual Machine stores data in locals (used
for variables) and stack locations (used for
arguments, temporaries)

o Types of both can change at every program point, not included in
bytecode format

= Verification uses dataflow analysis to determine
types of every local/stack locn at every program
point

= Use argument types and method result types to
get analysis started
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| Completing analysis

C3
Control-flow / \
graph C1 C2

Class hierarchy

= Merge type information on different paths by
finding least common ancestor (C3)

= If no least common ancestor mark type as
unusable (local 2: ?)

= Report success if all method calls, bytecode
operations type-check, otherwise reject program
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| Compiling to the JVM

= The JVM type-system isn’t all that different
from Java’s = compiling other languages
to JVM doesn’t work that well.

o e.g., no tail-calls in the JVM so Scheme and ML are
hosed... (MS fixed this in CLR)

o no parametric polymorphism, no F-bounded
subtyping, limited modules, etc.
= Operations of the JVM are relatively high-
level, CISC-like.
o method call/return are primitives
o Little control over indirection
o interpreter or JIT is necessary
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Ideally:

independence.

Smaller TCB, language
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| Typed Assembly Language
[Morrisett, 1998]

Two goals:
= Get rid of the need for a trusted interpreter or JIT
compiler
o type-check the actual code that will run.
o try not to interfere with traditional optimizations.
= Provide generic type constructors for encoding
many high-level language type systems.
o reasonable target for compiling many languages
o amore “RISC” philosophy at the type-level
o better understanding of inter-language relationships.
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TAL contributions
Theory:

o simple MIPS-like assembly language

o compiler from ML-like language to TAL

o soundness and preservation theorems
Practice:

o most of IA32 (32-bit Intel x86)

o more type constructors (array,+,u,modules)

o prototype Scheme, Safe-C compilers
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'TAL (simplified)
Registers: »€ {rl,r2,r3,..}
Labels: L € Identifier
Integer: n € [-2k1..2K1)
Blocks: B:=jmp v|i¢;B
Instrs: ¢::=aop r,r,v|bopr,y |MOV rv
Operands: v:=r|n|L
Arithmetic Ops: aop ::= add | sub |mul | ...
Branch Ops: bop ::= beq|bne | bgt | bge |
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Simple program

fact: sub r3,ri,1
ble r3,L2
mul r2,r2,rl
mov r1,r3
jmp fact

L2: mov ri,r2
jmp r31
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‘Basic type structure

type :=1int | T
where I'={ r,:t;, ryit,, 1r;5:t3, ...}

Avalue with type {rl1:¢,12:¢,,13:¢;, ..} is a code
label, which when you jump to it, expects you to
at least have values of the appropriate types in
the corresponding registers.

You can think of a label as a function that takes a
record of arguments

o the function never returns — it always jumps off

o we assume record subtyping — we can pass a label more
arguments than it needs

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 9%
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| Simple program with types

fact:{rl:int,r2:int,r31:{rl:int}}
;r1 =n, r2 =accum, r31 = return address
sub r3, rl, 1 ;{r1:intr2:int,r31:{r1:int},r3:int}
ble r3, L2
mul r2, r2, ril
mov ri, r3
jmp fact
L2:{r2:int, r31:{rl:int}}
mov rl, r2
jmp r31
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| Badly typed program

fact:{rl:int,r31:{rl:int}}
;r1 =n, r2 =accum, r31 = return address
sub r3, rl, 1 ;/{r1:intr31:{r1:int},r3:int}
bge ri, L2
mul r2, r2, rl ; ERROR! r2 doesn’t
have a type
mov ril, r3
jmp L1
L2:{r2:int, r31:{rl:int}}
mov rl, r2
jmp ri ; ERROR! r1isn't a valid label
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'TAL vs JVM, CLR

= The principles behind TAL and the JVM
(or Microsoft's CLR) aren’t too different:
compiler generates enough type
annotations to check target code

= TAL concentrates on orthogonal,
expressive typing components (more
general target lang)

= JVM (and CLR) focus on OO-based
languages with predefined implementation
strategies.
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Ideally:

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 100

\ Idea #1: Theorem Prover!

trusted computing base

Warning: components not drawn
to scale!
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Observation

Finding a proof is hard, but verifying a proof is easy.

74
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-FT - trusted computing

machine code

could be \
1
\
prover \
1
“certified binary"
proof
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Making “Proof” Rigorous:

Specify machine-code semantics and security
policy using axiomatic semantics.
{Pre} 1d r2,ri(i) {Post}
Given:
o security policy (i.e., axiomatic semantics and associated logic for
assertions)
o untrusted code, annotated with (loop) invariants
it's possible to calculate a verification condition:
o an assertion A such that
o if Ais true then the code respects the policy.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 105

Proof-carrying code
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Code consumer side
Verifier (~5 pages of C code):

o takes code, loop invariants, and policy
o calculates the verification condition A.

o checks that the proof is a valid proof of A:

fails if some step doesn’t follow from an axiom or inference
rule

fails if the proof is valid, but not a proof of A

proof

“certified binary"
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Advantages of PCC

In Principle:
Simple, small, and fast TCB.
No external authentication or cryptography.
No additional run-time checks.
“Tamper-proof”.
Precise and expressive specification of code safety
policies
In Practice:

Still hard to generate proofs for properties stronger than
type safety. Need certifying compiler...
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Security types
and information flow

End-to-end security

Near-term problem: ensuring programs are
memory-safe, type-safe so fine-grained access
control policies can be enforced

Long-term problem: ensuring that complex
(distributed) computing systems enforce system-
wide information security policies

o Confidentiality

o Integrity

o Availability

Confidentiality, integrity: end-to-end security
described by information-flow policies that
control information dependency
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Policies vs. mechanisms
(e }®
C3t -

Problem: policy/mechanism mismatch

o Reference monitors (e.g., access control): control
whether A is allowed to transmit to B

o Confidentiality policy: information | can only be
obtained by users U (no matter how it is
transformed) — not a safety policy!

How to map policy onto a mechanism?
(we already do this by hand!)
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Problems

Complex policies
o no generally accepted policy language
o weak validation techniques

Information flows hard to find
(covert channels)

Heterogeneous, changing trust

Host machines may be
compromised

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 12

Information leaks

Programs can leak inputs
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Standard mechanisms
Discretionary access control: no control of
propagation

Mandatory access control: expensive, restrictive

] ? [
[ A B ! top secret
secret

classified
unclassified

Java stack inspection: integrity, not confidentiality
Can’t enforce information flow policies

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 14
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Static information flow
[Denning & Denning, 1977]

Programs are annotated e cme@

with information flow
policies for confidentiality, J.
integrity

Compiler checks, possibly | 15r4et code iPoIicy

transforms program to
ensure that all executions
obey rules

Loader, run-time validates
program policy against
system policies

1 System

Policy
Executable code
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Noninterference

"Low-security behavior of the program is not
affected by any high-security data."
Goguen & Meseguer 1982

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted
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Security types

Idea: add information flow policies as type
annotations (labels)

Simplest policy language: H = confidential,
L = public. L —H ok, H—L bad

int{H} x;
int{L} vy;
String{l} z;

=Y;

= X; // BAD

z.size(Q);
Integer.toString(x) // BAD
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N X< X
I

Lattices and security

Denning, 1976.

Information flow policies (security policies in
general) are naturally partial orders
o If policy P, is stronger than P,, write P, = P,
P1 = “smoking is forbidden in restaurants”
P2 = “smoking is forbidden in public places”
o Some policies are incomparable:
P, % P,and P, & P,
P2 = “keep off the grass”
If there is always a least restrictive policy as
least as strong as any two policies, policies form
lattice. P, U P, = “join” of P4, P,
P, U P, ="smoking forbidden in restaurants and keep off the grass”

HuH=H, LulL=L, LuH=H
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Checking computation
Combining values with different
information flow policies?

Conservatively,

Label of result should be a policy at least as strong as
the labels of all inputs.

Write x for “label of x”
Label of y+zisy U z
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Implicit Flows

34

a,

X =

if (
X

Final value of X may reveal values of a, b

Conservative: label of X protects
both a and b

I T

aEx &bEXx
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Static Assignment Rule

Program-counter label pc captures
implicit flows

if, while, switch statements
bump up pc (temporarily)

x = 0; Compilg-time
if () { checking:
}x=a; «-pc=b alx
pcEx
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Run-time Checking?

X = 0;
if (b) {

X =d; «—atEx &bEx?

Run-time check

o if b is false, x=0, but no check is performed
o if check fails, b is also leaked!

Static checking not just an optimization!
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Proving noninterference

Volpano et al., 1996
Can show that any type-safe program with information-
flow security types must satisfy noninterference

Strategy: show that each step of execution preserves
low-observable equivalence:

Pl ~L P2
Lo
P1’ ~L P2’
v v

Language with functions, state: Zdancewic, Myers ‘01
Core ML: Pottier, 2002
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Jif: Java + Information Flow
[Myers, 1999]

Annotate (Java) programs with labels from
decentralized label model

Variables have type + label. Labels contain
policies in terms of principals.

int {Alice—Bob} x;
Information flow control and access control

float {x} cos (float x) {
float {x} y = x — 2*PI*(int)(x/(2*PI));
return 1 — y*y/2 + ...;

Available for download:
http://www.cs.cornell.edu/jif
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Confidentiality policies as types

Confidentiality labels:
int{Alice—} a; “ais Alice's private int”

Integrity labels:
int{Alice<} a; *“ais trusted by Alice”

Combined labels:
int{Alice— ; Alice<} a; (Both)

// Insecure // Secure

int{Alice—} al, a2; b =a1; al =a2;
int{Bob<} b; b =c; al=b;
int{Bob<Alice} c; al=c:
- 3
“Bob believes Alice can affect ¢” c=b;
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Intentional leaks

Spreadsheet
Final Tax Form

explicit
release

Proprietary

<
Database
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Selective Declassification

[Myers, 1997]
An escape hatch from noninterference
A principal can rewrite its part of the label

{O1—=R1, R2; 02—=R2}

'S
{01—R1, R2} {O1—R1, R2; 02—R2, R3}
Other owners’ policies still respected
Must test authority of running process
Potentially dangerous: explicit operation

Jif 3.0: declassification mediated by integrity checks:
“robustness” [Chong&Myers]
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Information flow and dependency

Checking whether information flows from x
to y is just a dependency analysis

Dependency is crucial to security!

Many other applications of language-
based dependency analysis...
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Catching bad format strings

[Shankar et al., 2001]
Idea: should not use untrustworthy (H)
data as format string, else attacker can
gain control of system
Security type:
int printf(char *_ fmt, ..)
Give network buffer type char *,, :
information flow analysis prevents buffer
data from affecting format string
o problem: false positives
Probably useful for less direct attacks too
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SQL injection vulnerabilities

WebSSARI system [Huang et al.], [Xie & Aiken]:
analyze dependencies in PHP scripts to discover

SQL queries built from untrusted information

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

$userid, $pass must be trusted information
Sanitization functions convert untrusted to
trusted after checking for metacharacters etc.
Doesn’t worry about implicit flows -- attacker can
affect SQL queries but probably difficult to
synthesize attacks...
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Detecting worms

Vigilante system [Costa et al.] uses dynamic
and static dependency analysis to

o Detect worm attacks

o Automatically generate filters

o Generalize filters so they catch larger class of related
attacks

o No false positives

Filters can be distributed by peer-to-peer
system in 2.5 min. (a solution to Slammer!)
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Vigilante

Idea: labels on data are sets of bytes from
network messages where c is C

Run app with dynamic binary rewriting,
computing labels for data

At invalid step (e.g., jumping to payload), label
on step says which message bytes matter!
Generate filter from them.
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Other work and future challenges

Security types for secrecy in network
protocols

Self-certifying low-level code for object-
oriented languages

Applying interesting policies to PCC/IRM

Secure information flow in concurrent
systems

Enforcing availability policies
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The End

Thank you for your participation!

See website for bibliography, more tutorial
information:

www.cs.cornell. edu/andru/pldi@6-tutorial
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