PLDI’06 Tutorial T1:
Enforcing and Expressing Security
with Programming Languages

Andrew Myers

Cornell University
http://www.cs.cornell.edu/andru

Computer security

Goal: prevent bad things from happening
o Clients not paying for services

o Critical service unavailable

o Confidential information leaked

o Important information damaged

o System used to violate laws (e.g., copyright)
Conventional security mechanisms aren’t
up to the challenge

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Harder & more important

In the *70s, computing systems were isolated.

o software updates done infrequently by an experienced
administrator.

o you trusted the (few) programs you ran.
o physical access was required.
o crashes and outages didn’t cost billions.

The Internet has changed all of this.
o we depend upon the infrastructure for everyday services
o you have no idea what programs do.

o software is constantly updated — sometimes without your knowledge
or consent.

o a hacker in the Philippines is as close as your neighbor.
o everything is executable (e.g., web pages, email).

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Language-based security

Conventional security: program is black box

o Encryption

o Firewalls

o System calls/privileged mode

o Process-level privilege and permissions-based access control

Prevents addressing important security issues:
Downloaded and mobile code

Buffer overruns and other safety problems

Extensible systems

Application-level security policies

System-level security validation

Languages and compilers to the rescue!

000 0 O

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Outline

The need for language-based security
Security principles

Security properties

Memory and type safety
Encapsulation and access control
Certifying compilation and verification
Security types and information flow

Handouts: copy of slides
Web site: updated slides, bibliography

www, cs. cornell. edu/andru/pldi@6-tutorial

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Security principles

Conventional OS security

Model: program is black box

Program talks to OS via protected
interface (system calls)

o Multiplex hardware

o Isolate processes from each other

o Restrict access to persistent data (files)

Language-independent, simple, limited

User-level Program Hardware
memory
Operating System protection

Kernel

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Access control model

The classic way to prevent “bad things”
from happening

Requests to access resources (objects)
are made by principals

Reference monitor (e.g., kernel) permits or
denies request

request |Reference Object
P Monitor | (Resource)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 8

Authentication vs. Authorization

Abstraction of a principal divides
enforcement into two parts
o Authentication: who is making the request

o Authorization: is this principal allowed to make
this request?

- request |Reference Object
P Monitor | (Resource)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 9

15t guideline for security

Principle of complete mediation:

Every access to every object must be checked by
the reference monitor

Problem: OS-level security does not support
complete mediation

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 10

OS: Coarse-grained control

Operating system enforces security at
system call layer

o Hard to control application when it is not making
system calls

Security enforcement decisions made with
regard to large-granularity objects

o Files, sockets, processes

Coarse notion of principal:

o If you run an untrusted program, should the
authorizing principal be “you™?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 1

Need: fine-grained control

Modern programs make security decisions
with respect to application abstractions

o Ul: access control at window level

o mobile code: no network send after file read

o E-commerce: no goods until payment

o intellectual property rights management

Need extensible, reusable mechanism for
enforcing security policies

o Language-based security can support an extensible
protected interface, e.g., Java security

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 12

2"d guideline for secure design

Principle of Least Privilege: each principal
is given the minimum access needed to
accomplish its task. [Saltzer & Schroeder
‘75]

Examples:

+ Administrators don’t run day-to-day tasks as root. So
‘rm —rf /" won't wipe the disk.

- fingerd runs as root so it can access different users’
.plan files. But then it can also
‘rm —rf /"

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 13

Least privilege problems

OS privilege is coarse-grained: user/group

Applications need finer granularity

o Web applications: principals unrelated to OS principals
Who is the “real” principal?

o Trusted program? Full power of the user principal

o Untrusted? Something less

o Trusted program with untrusted extension: ?

o Untrusted program accessing secure trusted subsystem: ?
Requests may filter through a chain of programs
or hosts

o Loss of information is typical

o E.g., client browser — web server — web app — database

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 14

3rd guideline: Small TCB

Trusted Computing Base (TCB) :
components whose failure compromises
the security of a system
Example: TCB of operating system includes
kernel, memory protection system, disk image
Small/simple TCB:

= TCB correctness can be checked/tested/reasoned about more
easily = more likely to work

Large/complex TCB:
- TCB contains bugs enabling security violations
Problem: modern OS is huge, impossible to verify

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 15

Small TCB and LBS

Conventional wisdom (c. 1975):

o “operating system is small and simple, compiler is
large and complex”

o OS is a small TCB, compiler a large one

c. 2003:
o OS (Win2k) = 50M lines code, compiler ~ 100K lines
code

o Hard to show OS implemented correctly
Many authors (untrustworthy: device drivers)
Implementation bugs often create security holes

o Can now prove compilation, type checking correct
Easier than OS: smaller, functional, not concurrent

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 16

The Gold Standard [Lampson]

Authenticate
o Every access/request associated with correct principal

Authorize
o Complete mediation of accesses

Audit

o Recorded authorization decisions enable after-the-fact
enforcement, identification of problems

Language-based techniques can help

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 17

When to enforce security

Possible times to respond to security
violations:
Before execution:
analyze, reject, rewrite
During execution:
monitor, log, halt, change

After execution:
roll back, restore, audit, sue, call police

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 18

Language-based techniques

A complementary tool in the arsenal: programs don’t have
to be black boxes! Options:

Analyze programs at compile time or load time to
ensure that they are secure

Check analyses at load time to reduce TCB

Transform programs at compile/load/run time so that
they can’t violate security, or to log actions for auditing.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 19

Maturity of language tools

How to build a sound, expressive type system
that provably enforces run-time type safety

= protected interfaces
Type systems that are expressive enough to

encode multiple high-level languages
= language independence

How to build fast garbage collectors
= trustworthy pointers

On-the-fly code generation and optimization
= high performance

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 20

Caveat: assumptions and abstraction

Arguments for security always rest on assumptions:
o “the attacker does not have physical access to the hardware”

o “the code of the program cannot be modified during execution”

o “No one is monitoring the EM output of the computer”
Assumptions are vulnerabilities

o Sometimes known, sometimes not

Assumptions arise from abstraction

o security analysis only tractable on a simplification (abstraction) of
actual system

o Abstraction hides details (assumption: unimportant)

Caveat: language-based methods often abstract
aspects of computer systems

o Need other runtime, hardware enforcement mechanisms to
ensure language abstraction isn’t violated—a separation of
concerns

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 21

A sampler of attacks

Attack: buffer overruns

char buf[100];

gets(buf);
buf
Program
sp Stack
Attacker gives long input that overwrites
function return address, local variables

“Return” from function transfers control to
payload code

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 23

Execute-only bit?
Stack smashing executes code on stack -- mark
stack non-executable?
Return-to-libc attack defeats this:
void system(char * arg) {

ro = arg;
|:>exec1(r0, ...); // “return” here with r@ set

}

o Not all dangerous code lives in the code segment...

More attacks: pointer subterfuge (function- and
data-pointer clobbering), heap smashing,
overwriting security-critical variables...

Moral: SEGVs can be turned into attacks

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2%

Attack: format strings
fgets(sock, s, n);

fprintf(output, s);

Attack: pass string s containing a %n
qualifier (writes length of formatted input
to arbitrary location)

Use to overwrite return address to
“return” to malicious payload code in s.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

Attack: SQL injection

Web applications typically construct SQL
database queries.

o In PHP:

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

o Attacker uses userid of © 0rR ‘1’ = ‘1’. Effect:
UPDATE users SET pass=<pass> WHERE userid=‘’ OR ‘1’=‘1’

69% of Internet security vulnerabilities are
in web applications [Symantec]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2%

Using system subversion
Assume attacker can run arbitrary code
(possibly with dangerous privileges)
Initial foothold on target system enables
additional attacks (using other holes)
Worms: programs that autonomously
attack computers and inject their own code
into the computer
Distributed denial of service: many
infected computers saturate target network

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 27

1988: Morris Worm

Penetrated an estimated 5 to 10 percent of
the 6,000 machines on the internet.

Used a number of clever methods to gain
access to a host.
o brute force password guessing
o bug in default sendmail configuration
o X windows vulnerabilities, rlogin, etc.
o buffer overrun in fingerd
Remarks:
o System diversity helped to limit the spread.
o “root kits” for cracking modern systems are easily
available and largely use the same techniques.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

1999: Love Bug & Melissa

Both email-based viruses that exploited:
o a common mail client (MS Outlook)
o trusting (i.e., uneducated) users
o VB scripting extensions within messages to:
lookup addresses in the contacts database
send a copy of the message to those contacts

Melissa: hit an estimated 1.2 million machines.
Love Bug: caused estimated $10B in damage.

Remarks:
o no passwords or crypto involved

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

Why did it succeed?

Visual Basic scripts invoked transparently upon
opening

Run with full privileges of the user

Kernel doesn’t know about fine-grained
application abstractions or related security
issues: mail messages, contacts database, etc.
Recipients trusted the sender — after all, they
know them

Interactions of a complex system were
unanticipated

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 30

A solution for Melissa?

Turn off all executable content?
o no problem when email was just text.
but executable content is genuinely useful.

ex: automated meeting planner agent, postscript, Mpeg4 codecs,
client-side forms, etc.

o US DobD tried to do this : revolt
Fundamental tension:

o modern software wants to be open and extensible.

u programmable components are ultimately flexible.
Postscript, Emacs, Java[script], VB, Jini, ActiveX, plug-n-play...

security wants things to be closed: least privilege.

turning off extensibility is a denial-of-service attack.

o

o

o

o

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

2002: MS-SQL Slammer worm

Jan. 25, 2002: SQL and MSDE servers on
Internet turned into worm broadcasters
o Buffer-overrun vulnerability R =
o Spread to most vulnerable servers

on the Internet in less than 10 min!
Denial of Service attack
o Affected databases unavailable o Ottt
o Full-bandwidth network load = wide & e i
o “Worst attack ever” — brought down many sites, not Internet
Can’t rely on patching!
o Infected SQL servers at Microsoft itself

o Owners of most MSDE systems didn’t know they were
running it...extensibility again

[t

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 32

Virus scanning?

Scan for suspicious code

o e.g., McAfee, Norton, etc.

o based largely on a lexical signature.

o the most effective commercial tool

o but only works for things you've seen
Melissa spread in a matter of hours

o virus kits make it easy to disguise a virus
“polymorphic” viruses

Doesn’t help with worms

o Unless you can generate a filter automatically...

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Security Properties

Security properties

Security = “bad things don’t happen”

What kinds of properties
should computing systems satisfy?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Security policies

Execution (trace) of a program is a
sequence of states s;s,s;... encountered
during execution

o Program has a set of possible executions T

A generic formalization: security policy is a
predicate P on sets of executions

o Program satisfies policy if P(T)

Examples:

o P(T) if no null pointer is deferenced in any trace in T

o P(T) if every pair of traces in T with the same initial
value for x have the same final value for y

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 36

Safety properties

“Nothing bad ever happens”

A property is a policy that can be enforced using

individual traces

o P(T) < VtET. P'(t) where P’ is some predicate on traces

Safety property can be enforced using only

history of program

o If P’(t) does not hold, then all extensions of t are also bad

o Amenable to run-time enforcement: don’t need to know future

Examples:

o access control (e.g. checking file permissions on file open)

o memory safety (process does not read/write outside its own
memory space)

o type safety (data accessed in accordance with type)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Liveness properties

“Something good eventually happens”

o If P’(t) does not hold, every finite sequence t can be
extended to satisfy P’

Example: nontermination
o “The email server will not stop running”

Violated by denial of service attacks
Can’t enforce purely at run time

Interesting properties often involve both

safety and liveness

o Every property is the intersection of a safety property
and a liveness property [Alpern & Schneider]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 38

Memory safety and isolation

Process isolation: running process cannot
access memory that does not belong to it
o Usually enforced by hardware TLB

TLB caches virtual->physical address mappings

Invalid virtual addresses (other processes) cause kernel trap
o Cross-domain procedure calls/interprocess communication

(RPC/IPC) expensive (TLB misses)

Memory safety: running process does not
attempt to dereference addresses that are not
valid allocated pointers
o No read from or write to dangling pointers
o Not provided by C, C++:

int *x = (int *)@x14953300;
*x = Ox@badfeed;

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 39

Control-flow integrity

Actual control flow must conform to a “legal
execution”
Code injection attacks violate CFI.

Weak: control can only be transferred to legal
program code points
o Rules out classic buffer overrun attacks

o Not provided by C:
int (*x)Q = (int(*)()) Oxdeadbeef; (*x)Q;

Stronger: control must agree with a DFA or CFG
capturing all legal executions

Can be enforced cheaply by dynamic binary
rewriting as in DynamoRIO [Kiriansky et al., 2002]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers W0

Type safety

Values manipulated by program are used in
accordance with their types

o Stronger than memory safety!

Can be enforced at run-time (Scheme), compile-
time (ML), mix (Java)

Abstract data types: data types that can only be
accessed through a limited interface

o can protect their internal storage (private data)

Kernel = ADT with interface = system calls,
abstraction barrier enforced at run time by
hardware

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 4

Access control

Access control decision:
o principal x request x object — boolean

Access control matrix [Lampson]:

file1 file2 file3
user1 r w X
user2 r r
user3 w r

o Columns of matrix: access control lists (ACLs)

Correct enforcement is a safety property

o Safety can be generalized to take into account denial of access,
corrective action by reference monitor
[Hamlen][Ligatti][Viswanathan]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

Information security

Sometimes computer security is an aspect
of physical security

o Make sure attackers cannot take over electric power
distribution grid, military command-and-control, etc.

o Can use type safety, access control to enforce rules
What we’re trying to protect can also be
the information on the computer:
information security

o Memory safety, type safety don’t directly help

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 5

Information security: confidentiality

Confidentiality: valuable information should not
be leaked by computation.

e

4

Also known as secrecy, though sometimes a
distinction is made:

o Secrecy: information itself is not leaked

o Confidentiality: nothing can be learned about information
Simple (access control) version:

o Only authorized processes can read from a file

o But... when should a process be “authorized” ?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers #“

Confidentiality: a Trojan horse

Access control controls release of data
but does not control propagation

Security violation even

with “safe” operations (A)m

% ls -1 personal.txt
rPW--=---~- personal.txt

% more persondl.txt

output device

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 5

End-to-end confidentiality

Access control does not help after access
control check is done

End-to-end confidentiality:

Information should not be improperly released
by a computation no matter how it is used

Enforcement requires tracking information flow

o Encryption provides end-to-end secrecy—but prevents most
computation

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 6

Information security: integrity

Integrity: valuable information should not be /
damaged by computation -

Simple (access control) version:

o Only authorized processes can write to a file \
o But... when should a process be “authorized”

End-to-end version:

o Information should not be updated on the basis of less
trustworthy information

o Requires tracking information flow in system

Information flow is not a property [McLean94]

o No information flow from x to y:
g

P(T) if every pair of traces in T with the same initial value for x
always have the same value for y

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 47

Privacy and Anonymity

Anonymity:

o individuals (principals) and their actions cannot be
linked by an observer

o alt: identity of participating principals cannot be
determined even if actions are known

Privacy: encompasses aspects of
confidentiality, secrecy, anonymity

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 8

Availability

System is responsive to requests

DoS attacks: attempts to destroy availability
(perhaps by cutting off network access)

Fault tolerance: system can recover from faults
(failures), remain available, reliable

Benign faults: not directed by an adversary

o Usual province of fault tolerance work

Malicious or Byzantine faults: adversary can
choose time and nature of fault

o Byzantine faults are attempted security violations
o usually limited by not knowing some secret keys

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 49

Enforcing safety properties

Reference Monitor

Observes the execution of a program and
halts the program if it's going to violate the
security policy.

Common Examples:
o memory protection
o access control checks
o routers
o firewalls

Most current enforcement mechanisms are
reference monitors

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 51

Requirements for a Monitor

Must have (reliable) access to information
about security-relevant actions of the program
o e.g., what instruction is it about to execute?

Must have the ability to “stop” the program

o can't stop a program running on a different machine

o ... ortransition to a “good” state.

Must protect the monitor’s state and code

from tampering.

o key reason why a kernel’s data structures and code aren’t
accessible by user code

low overhead in practice

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Pervasive mediation

Reference monitor Interpreter Program instrumentation
. EM Extension
‘ Extension ‘ ‘ ‘ EM ‘
vt vt vt
EM Base system Base system

Base system

OS Reference monitor. won’t capture all events
Wrapper/interpreter. performance overhead

Instrumentation: merge monitor into program
o different security policies = different merged-in code
o simulation does not affect program
o pay only for what you use

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 53

What policies?

Reference monitors can only see the past

o They can enforce safety properties but not liveness
properties

Assumptions:

o monitor can have access to entire state of
computation.

o monitor can have arbitrarily large state

o safety properties enforced are modulo computational
power of monitor

o But: monitor can’t guess the future — the predicate it
uses to determine whether to halt a program must be
computable.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Software Fault Isolation (SFI)

Wahbe et al. (SOSP’93)
Goal is process isolation: keep software components in
same hardware-based address space, provide

o Idea: application can use untrusted code without memory protection
overhead

Software-based reference monitor isolates components

into logical address spaces.

o conceptually: check each read, write, & jump to make sure it's within the
component’s logical address space.

o hope: communication as cheap as procedure call.

o worry: overheads of checking will swamp the benefits of communication.

Only provides memory isolation, doesn’t deal with other

security properties: confidentiality, availability,...

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 55

One way to SFI: Interpreter

void interp(int pc, reg[], mem[], code[], memsz, codesz) {
while (true) {
if (pc >= codesz) exit(l);
int inst = code[pc], rd = RD(inst), rsl =
RS1(inst),
rs2 = RS2(inst), immed = IMMED(inst);
switch (opcode(inst)) {
case ADD: reg[rd] = reg[rsl] + reg[rs2]; break;
case LD: 1int addr = reg[rsl] + immed;
if (addr >= memsz) exit(l);
reg[rd] = mem[addr];
break;
case JMP: pc = reg[rd]; continue;

3} 0: add ri,r2,r3
pC++; 1: 1d r4,r3(12)
1} 2: jmp r4

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 56

Interpreter pros and cons

Pros:
o easy to implement (small TCB.)
o works with binaries (high-level language-independent.)
o easy to enforce other aspects of OS policy
Cons:
o terrible execution overhead (25x? 70x7?)

It's a start.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 5

Partial Evaluation (PE)

A technique for speeding up interpreters.
o we know what the code is.

o specialize the interpreter to the code.

unroll the main interpreter loop — one copy for each
instruction

specialize the switch to the instruction: pick out that case
compile the resulting code

Can do at run time with dynamic binary
rewriting (e.g., DynamoRIO)

o Keep code cache of specialized code

o Reduce load time, code footprint

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 58

Example PE

Interpreter
Original Binary:
Q: add ri,r2,r3 case LD: int addr = reg[rsl] + immed;
1: 1d r4,r3(12) if (addr >= memsz) exit(l);
2: jmp r4 reg[rd] = mem[addr];
e break;

Specialized interpreter: Resulting Code

: add ri,rz,r3

1 addi r5,r3,12

: subi ré,r5,memsz
: jab _exit

: 1d r4,r5(0)

reg[1] = reg[2] + reg[3];
addr = reg[3] + 12;

if (addr >= memsz) exit(l); |:>
reg[4] = mem[addr];
pc = reg[4]

pPONR S

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 59

Sandboxing

SFI code rewriting is “sandboxing”

Requires code and data for a security domain
are in one contiguous segment

o upper bits are all the same and form a segment id.

o separate code space to ensure code is not modified.

Inserts code to ensure load and stores are in the
logical address space

o force the upper bits in the address to be the segment id

o no branch penalty — just mask the address

o re-allocate registers and adjust PC-relative offsets in code.

o simple analysis used to eliminate some masks

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers o

10

Jumps

Inserts code to ensure jump is to a valid
target
o must be in the code segment for the domain

o must be the beginning of the translation of a source
instruction (tricky for variable-length instructions)

PC-relative jumps are easy:
o just adjust to the new instruction’s offset.

Computed jumps are not:

o must ensure code doesn’t jump into or around a check
or else that it's safe for code to do the jump.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 61

More SFI Details

Protection vs. Sandboxing:
a Protection is fail-stop:
stronger security guarantees (e.g., reads)
required 5 dedicated registers, 4 instruction sequence
20% overhead on 1993 RISC machines
a Sandboxing covers only stores
requires only 2 registers, 2 instruction sequence
5% overhead
Remote (cross-domain) Procedure Call:
5} 10x cost of a procedure call
5} 10x faster than a really good OS RPC

Sequoia DB benchmarks: 2-7% overhead for SFI
compared to 18-40% overhead for OS.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 02

Limitations of SFI

Only enforces process isolation

Variable-length instructions are tricky

o But provably correct SFl is possible for x86
[McCamant & Morrisett]

Sometimes want to enforce more complex
rules on untrusted code

o Example: downloaded applet can either read local files
or send to network, but not both

Can we do more by code rewriting?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 6

Inlined reference monitors (IRMs)

SASI [Schneider & Erlingsson 1999],
Naccio [Evans & Twyman 1999]

SFlinlines a particular safety policy into
untrusted code

Idea: embed an arbitrary safety policy into
untrusted code at load time

o Policy may be application-specific, even user-specific
o Low execution overhead

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 64

Security automata

not read not send

read

Every safety property enforceable by security automaton
[Schneider ‘98]

System execution produces sequence of events ...
... automaton reads and accepts/rejects sequence

Need pervasive mediation to allow policies independent
of code being checked

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 65

Example: JVM code in SASI

(Also implemented for x86 machine code)

Tde 1 // new automaton state on stack
putstatic SASI/stateClass/state // cause automaton state change
invokevirtual java/io/FileInputStream/read()I // read integer from file

;etstatic SASI/stateClass/state // automaton state onto stack

ifeq SUCCEED // if stacktop=0 goto succeed
invokestatic SASI/stateClass/FAILQQV // else security violation
SUCCEED:

invokevirtual java/net/SocketOutputStream/write(I)V // send message

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 66

11

PSLang: specifying policies

State diagrams (SASI) are inconvenient -- how to specify

a reference monitor?

Policy Specification Language (PSLang)

0 same expressive power, more convenient

o event-driven programming model maps program actions (events) to
automaton state updates

o specification expressible in terms of application abstractions

Has been used to specify, enforce Java stack inspection

security model (!) with good performance

But..hard to apply complex policies to low-level code
STATE { boolean did_read = false; }

EVENT methodCall FileInputStream.read { did_read = true; }
EVENT methodCall Network.send CONDITION did_read { FAIL; }

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 7

Type Safety and Security

Type-safe languages

Software-engineering benefits of type safety:
memory safety
no buffer overruns (array subscript a[i] only
defined when 1 is in range for the array a.)

no worries about self-modifying code, wild
jumps, etc.

Type safety can be used to construct a protected
interface (e.g., system call interface) that applies
access rules to requests

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers)

Java

Java is a type-safe language in which type
safety is security-critical

programs cannot fabricate
pointers to memory

must use objects at correct
types

private fields, methods of
objects cannot be accessed from outside

Bytecode verifier ensures compiled
bytecode is type-safe

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 0

Java: objects as capabilities

Single Java VM may contain processes
with different levels of privilege (e.g.
different applets)

Some objects are to perform

security-relevant operations:

FileReader f = new
FileReader(“/etc/passwd”);

// now use “f” to read password file
// .but don’t lose track of it!

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers k!

Problems with capabilities

Original 1.0 security model: use type
safety, encapsulation to prevent untrusted
applets from accessing capabilities in
same VM
Problem: tricky to prevent capabilities from
leaking (downcasts, reflection, ...)

o One approach: confined types [Vitek&Bokowski]

Difficult to revoke capabilities esp. in
distributed environment

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2

12

Java Stack Inspection

Added to Java to deal with capability
model shortcomings

Dynamic authorization mechanism

o close (in spirit) to Unix effective UID

o attenuation and amplification of privilege
Richer notion of context

o operation can be good in one context and bad in
another
o E.g: local file access
may want to block applets from doing this
but what about accessing a font to display something?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Security operations

Each method has an associated protection domain
o e.g., applet or local
doPrivileged(P){S}:
o fails if method's domain does not have priv. P.
o switches from the caller's domain to the method's while
executing statement S (think setuid).
checkPermission(P) walks up stack S doing:
for (f := pop(S); lempty(S) ; f := pop(S)) {
if domain(f) does not have priv. P then error;
if f is a doPrivileged frame then break;

Very operational description! But ensures integrity of
control flow leading to a security-critical operation

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

doPrivileged(ReadFiles) {

Example
#Font Library: -
}

load

FileIO: read

éﬁéckPermission(ReadFiles);
readQ);

Requires:
« Privilege enabled by some caller (applet can’t do this!)
« All code between enabling and operation is trustworthy

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Toad("Courier"); Font library *

Some pros and cons?

Pros:

o rich, dynamic notion of context that tracks some of
the history of the computation.

o this could stop Melissa, Love Bug, etc.

o low overhead, no real state needed.

Cons:

o implementation-driven (walking up stacks)
Could be checked statically [Wallach]

o policy is smeared over program

o possible to code around the limited history

e.g., by having applets return objects that are invoked
after the applet's frames are popped.

o danger of over/under amplification

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Require type safety?

Write all security-critical programs in type-safe
high-level language? (e.g., Java)
Problem 1: legacy code written in C, C++
o Solution: type-safe, backwards compatible C
Problem 2: sometimes need control over
memory management
o Solution: type-safe memory management
Can we have compatibility, type safety and low-
level control? Can get 2 out of 3:
o CCured [Necula et al. 2002]
Emphasis on compatibility, memory safety

o Cyclone [Jim et al. 2002]
Emphasis on low-level control, type safety

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Cyclone

A type-safe dialect of C

Goals:

o Memory and type safety (fail-stop behavior)
(relatively) painless porting from C

o writing new code pleasant

o Low-level control: data representations, memory
management, ability to interface to the outside world,
performance, efc.

Has been used to implement low-level,
code safely, e.g. device drivers

C

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

13

Hello World

#include "stdio.h"

int main(int argc, char ?7argv) {
if (argc < 1) {
fprintf(stderr, "usage: %s <name>\n",argv[0]);
exit(-1);
1
printf("Hello, %s\n",*(++argv));
return 0;

3

% a.out ‘World!’
Hello World!

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers i

The trouble with pointers
Pointer arithmetic: The stack:
int *f(int *a) { int x;
return a + 10; scanf(“%d”, &x);

Null pointers:
int *f(int *a) { « All possibly legitimate
return a[4]; uses of C pointers
« How can compiler check
Arrays: them (and modularly)?

struct foo {
int g[10];

int *f(struct foo *x)
{ return &->g[5]; }

=Needs more information

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 80

Pointers

Three kinds: fat, thin-null, thin-not-null
You pay for what you get...

char ?
char *
char @
char *{42}

char * == char *{1}
char @{n+m} =< char @{n} < char *{n} < char ?

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 81

Compatibility

Porting most C code is fairly
straightforward:
o mostly, convert £* to t? where necessary

o use advanced type features (polymorphism, tagged
unions, existential types) to replace unsafe casts with
type-safe operations

put in initializers (only top-level, interprocedural)

put in fallthru's (very rare)

C

C

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 82

CCured [Necula, 2002]
Different pointer classes
o DYNAMIC : no info, slow, all accesses checked
o SAFE: a memory- and type-safe pointer (or null)
o SEQ: pointer to an array of data (like Cyclone fat)

Type-safe world Memory-safe world
x > YA
— DYNAMIC —
SAFE,SEQ DYNAMIC
Nonmodular but fast C—CCured converter using BANE
constraint solving framework (worst case: DYNAMIC)
10-50% Performance penalty

More safe C impls: [Jones&Kelly], [Ruwase&Lam]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 8

Certifying compilation

14

\ Code certification mechanisms

= Problem: can you trust the code you run?

= Code signing using digital signatures
o Too many signers
o If you can't trust Microsoft, ...
= ldea: self-certifying code
o Code consumer can check the code itself to ensure it's safe
o Code includes annotations to make this feasible
o Checking annotations easier than producing them
= Certifying compiler generates self-certifying code
o Java/JVM: first real demonstration of idea

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 85

‘Type-Based Protection (JVM)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 86

| Bytecode verification

= Java compiler is a certifying compiler that compiles to
Java Virtual Machine code
o Generates enough type information in target code to check that code is

type-safe

o Same thing could be done with other source languages
o Microsoft CLR is similar

= Verifier first checks structure (syntax) of bytecode

= Branches checked to ensure they address valid target
instructions (control safety)

= Methods (functions) and class fields are annotated with
complete type signatures (argument and result types)

= Method calls are explicit in JVM -- can look up signatures
directly

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 87

| Type-checking JVM

= Calls can be type-checked once actual argument
types are known

= Java Virtual Machine stores data in locals (used
for variables) and stack locations (used for
arguments, temporaries)

o Types of both can change at every program point, not included in
bytecode format

= Verification uses dataflow analysis to determine
types of every local/stack locn at every program
point

= Use argument types and method result types to
get analysis started

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 88

| Completing analysis

C3
Control-flow / \
graph C1 C2

Class hierarchy

= Merge type information on different paths by
finding least common ancestor (C3)

= If no least common ancestor mark type as
unusable (local 2: ?)

= Report success if all method calls, bytecode
operations type-check, otherwise reject program

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 8

| Compiling to the JVM

= The JVM type-system isn’t all that different
from Java’s = compiling other languages
to JVM doesn’t work that well.

o e.g., no tail-calls in the JVM so Scheme and ML are
hosed... (MS fixed this in CLR)

o no parametric polymorphism, no F-bounded
subtyping, limited modules, etc.
= Operations of the JVM are relatively high-
level, CISC-like.
o method call/return are primitives
o Little control over indirection
o interpreter or JIT is necessary

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 90

15

Ideally:

independence.

Smaller TCB, language

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

| Typed Assembly Language
[Morrisett, 1998]

Two goals:
= Get rid of the need for a trusted interpreter or JIT
compiler
o type-check the actual code that will run.
o try not to interfere with traditional optimizations.
= Provide generic type constructors for encoding
many high-level language type systems.
o reasonable target for compiling many languages
o amore “RISC” philosophy at the type-level
o better understanding of inter-language relationships.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 92

TAL contributions
Theory:

o simple MIPS-like assembly language

o compiler from ML-like language to TAL

o soundness and preservation theorems
Practice:

o most of IA32 (32-bit Intel x86)

o more type constructors (array,+,u,modules)

o prototype Scheme, Safe-C compilers

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

'TAL (simplified)
Registers: »€ {rl,r2,r3,..}
Labels: L € Identifier
Integer: n € [-2k1..2K1)
Blocks: B:=jmp v|i¢;B
Instrs: ¢::=aop r,r,v|bopr,y |MOV rv
Operands: v:=r|n|L
Arithmetic Ops: aop ::= add | sub |mul | ...
Branch Ops: bop ::= beq|bne | bgt | bge |

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 94

Simple program

fact: sub r3,ri,1
ble r3,L2
mul r2,r2,rl
mov r1,r3
jmp fact

L2: mov ri,r2
jmp r31

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

‘Basic type structure

type :=1int | T
where I'={ r,:t;, ryit,, 1r;5:t3, ...}

Avalue with type {rl1:¢,12:¢,,13:¢;, ..} is a code
label, which when you jump to it, expects you to
at least have values of the appropriate types in
the corresponding registers.

You can think of a label as a function that takes a
record of arguments

o the function never returns — it always jumps off

o we assume record subtyping — we can pass a label more
arguments than it needs

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 9%

16

| Simple program with types

fact:{rl:int,r2:int,r31:{rl:int}}
;r1 =n, r2 =accum, r31 = return address
sub r3, rl, 1 ;{r1:intr2:int,r31:{r1:int},r3:int}
ble r3, L2
mul r2, r2, ril
mov ri, r3
jmp fact
L2:{r2:int, r31:{rl:int}}
mov rl, r2
jmp r31

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 97

| Badly typed program

fact:{rl:int,r31:{rl:int}}
;r1 =n, r2 =accum, r31 = return address
sub r3, rl, 1 ;/{r1:intr31:{r1:int},r3:int}
bge ri, L2
mul r2, r2, rl ; ERROR! r2 doesn’t
have a type
mov ril, r3
jmp L1
L2:{r2:int, r31:{rl:int}}
mov rl, r2
jmp ri ; ERROR! r1isn't a valid label

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 9%

'TAL vs JVM, CLR

= The principles behind TAL and the JVM
(or Microsoft's CLR) aren’t too different:
compiler generates enough type
annotations to check target code

= TAL concentrates on orthogonal,
expressive typing components (more
general target lang)

= JVM (and CLR) focus on OO-based
languages with predefined implementation
strategies.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 9

Ideally:

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 100

\ Idea #1: Theorem Prover!

trusted computing base

Warning: components not drawn
to scale!

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 101

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

17

Observation

Finding a proof is hard, but verifying a proof is easy.

74

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 103

-FT - trusted computing

machine code

could be \
1
\
prover \
1
“certified binary"
proof
PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 104

Making “Proof” Rigorous:

Specify machine-code semantics and security
policy using axiomatic semantics.
{Pre} 1d r2,ri(i) {Post}
Given:
o security policy (i.e., axiomatic semantics and associated logic for
assertions)
o untrusted code, annotated with (loop) invariants
it's possible to calculate a verification condition:
o an assertion A such that
o if Ais true then the code respects the policy.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 105

Proof-carrying code

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 106

Code consumer side
Verifier (~5 pages of C code):

o takes code, loop invariants, and policy
o calculates the verification condition A.

o checks that the proof is a valid proof of A:

fails if some step doesn’t follow from an axiom or inference
rule

fails if the proof is valid, but not a proof of A

proof

“certified binary"

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 107

Advantages of PCC

In Principle:
Simple, small, and fast TCB.
No external authentication or cryptography.
No additional run-time checks.
“Tamper-proof”.
Precise and expressive specification of code safety
policies
In Practice:

Still hard to generate proofs for properties stronger than
type safety. Need certifying compiler...

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 108

18

Security types
and information flow

End-to-end security

Near-term problem: ensuring programs are
memory-safe, type-safe so fine-grained access
control policies can be enforced

Long-term problem: ensuring that complex
(distributed) computing systems enforce system-
wide information security policies

o Confidentiality

o Integrity

o Availability

Confidentiality, integrity: end-to-end security
described by information-flow policies that
control information dependency

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 110

Policies vs. mechanisms
(e }®
C3t -

Problem: policy/mechanism mismatch

o Reference monitors (e.g., access control): control
whether A is allowed to transmit to B

o Confidentiality policy: information | can only be
obtained by users U (no matter how it is
transformed) — not a safety policy!

How to map policy onto a mechanism?
(we already do this by hand!)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

111

Problems

Complex policies
o no generally accepted policy language
o weak validation techniques

Information flows hard to find
(covert channels)

Heterogeneous, changing trust

Host machines may be
compromised

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 12

Information leaks

Programs can leak inputs

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

Standard mechanisms
Discretionary access control: no control of
propagation

Mandatory access control: expensive, restrictive

] ? [
[A B ! top secret
secret

classified
unclassified

Java stack inspection: integrity, not confidentiality
Can’t enforce information flow policies

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 14

19

Static information flow
[Denning & Denning, 1977]

Programs are annotated e cme@

with information flow
policies for confidentiality, J.
integrity

Compiler checks, possibly | 15r4et code iPoIicy

transforms program to
ensure that all executions
obey rules

Loader, run-time validates
program policy against
system policies

1 System

Policy
Executable code

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 115

Noninterference

"Low-security behavior of the program is not
affected by any high-security data."
Goguen & Meseguer 1982

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 116

Security types

Idea: add information flow policies as type
annotations (labels)

Simplest policy language: H = confidential,
L = public. L —H ok, H—L bad

int{H} x;
int{L} vy;
String{l} z;

=Y;

= X; // BAD

z.size(Q);
Integer.toString(x) // BAD

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers iy

N X< X
I

Lattices and security

Denning, 1976.

Information flow policies (security policies in
general) are naturally partial orders
o If policy P, is stronger than P,, write P, = P,
P1 = “smoking is forbidden in restaurants”
P2 = “smoking is forbidden in public places”
o Some policies are incomparable:
P, % P,and P, & P,
P2 = “keep off the grass”
If there is always a least restrictive policy as
least as strong as any two policies, policies form
lattice. P, U P, = “join” of P4, P,
P, U P, ="smoking forbidden in restaurants and keep off the grass”

HuH=H, LulL=L, LuH=H

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 118

Checking computation
Combining values with different
information flow policies?

Conservatively,

Label of result should be a policy at least as strong as
the labels of all inputs.

Write x for “label of x”
Label of y+zisy U z

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 119

Implicit Flows

34

a,

X =

if (
X

Final value of X may reveal values of a, b

Conservative: label of X protects
both a and b

I T

aEx &bEXx

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 120

20

Static Assignment Rule

Program-counter label pc captures
implicit flows

if, while, switch statements
bump up pc (temporarily)

x = 0; Compilg-time
if () { checking:
}x=a; «-pc=b alx
pcEx
PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 121

Run-time Checking?

X = 0;
if (b) {

X =d; «—atEx &bEx?

Run-time check

o if b is false, x=0, but no check is performed
o if check fails, b is also leaked!

Static checking not just an optimization!

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 122

Proving noninterference

Volpano et al., 1996
Can show that any type-safe program with information-
flow security types must satisfy noninterference

Strategy: show that each step of execution preserves
low-observable equivalence:

Pl ~L P2
Lo
P1’ ~L P2’
v v

Language with functions, state: Zdancewic, Myers ‘01
Core ML: Pottier, 2002

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 123

Jif: Java + Information Flow
[Myers, 1999]

Annotate (Java) programs with labels from
decentralized label model

Variables have type + label. Labels contain
policies in terms of principals.

int {Alice—Bob} x;
Information flow control and access control

float {x} cos (float x) {
float {x} y = x — 2*PI*(int)(x/(2*PI));
return 1 — y*y/2 + ...;

Available for download:
http://www.cs.cornell.edu/jif

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 124

Confidentiality policies as types

Confidentiality labels:
int{Alice—} a; “ais Alice's private int”

Integrity labels:
int{Alice<} a; *“ais trusted by Alice”

Combined labels:
int{Alice— ; Alice<} a; (Both)

// Insecure // Secure

int{Alice—} al, a2; b =a1; al =a2;
int{Bob<} b; b =c; al=b;
int{Bob<Alice} c; al=c:
- 3
“Bob believes Alice can affect ¢” c=b;
PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers. 125 Q

Intentional leaks

Spreadsheet
Final Tax Form

explicit
release

Proprietary

<
Database

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 126

21

Selective Declassification

[Myers, 1997]
An escape hatch from noninterference
A principal can rewrite its part of the label

{O1—=R1, R2; 02—=R2}

'S
{01—R1, R2} {O1—R1, R2; 02—R2, R3}
Other owners’ policies still respected
Must test authority of running process
Potentially dangerous: explicit operation

Jif 3.0: declassification mediated by integrity checks:
“robustness” [Chong&Myers]

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 127

Information flow and dependency

Checking whether information flows from x
to y is just a dependency analysis

Dependency is crucial to security!

Many other applications of language-
based dependency analysis...

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 128

Catching bad format strings

[Shankar et al., 2001]
Idea: should not use untrustworthy (H)
data as format string, else attacker can
gain control of system
Security type:
int printf(char *_ fmt, ..)
Give network buffer type char *,, :
information flow analysis prevents buffer
data from affecting format string
o problem: false positives
Probably useful for less direct attacks too

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 129

SQL injection vulnerabilities

WebSSARI system [Huang et al.], [Xie & Aiken]:
analyze dependencies in PHP scripts to discover

SQL queries built from untrusted information

$rows=mysql query("UPDATE users SET pass=‘$pass’
WHERE userid=‘$userid’”);

$userid, $pass must be trusted information
Sanitization functions convert untrusted to
trusted after checking for metacharacters etc.
Doesn’t worry about implicit flows -- attacker can
affect SQL queries but probably difficult to
synthesize attacks...

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 130

Detecting worms

Vigilante system [Costa et al.] uses dynamic
and static dependency analysis to

o Detect worm attacks

o Automatically generate filters

o Generalize filters so they catch larger class of related
attacks

o No false positives

Filters can be distributed by peer-to-peer
system in 2.5 min. (a solution to Slammer!)

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 131

Vigilante

Idea: labels on data are sets of bytes from
network messages where c is C

Run app with dynamic binary rewriting,
computing labels for data

At invalid step (e.g., jumping to payload), label
on step says which message bytes matter!
Generate filter from them.

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 132

22

Other work and future challenges

Security types for secrecy in network
protocols

Self-certifying low-level code for object-
oriented languages

Applying interesting policies to PCC/IRM

Secure information flow in concurrent
systems

Enforcing availability policies

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers

The End

Thank you for your participation!

See website for bibliography, more tutorial
information:

www.cs.cornell. edu/andru/pldi@6-tutorial

Acknowledgements: Greg Morrisett, Fred Schneider,
Steve Zdancewic, George Necula, Peter Lee

PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 134

23

