Abstraction Mechanisms in Theta

Mark Day Robert Gruber Barbara Liskov Andrew C. Myers

Programming Methodology Group Memo 81
February 1994

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139, USA
{mday, gruber,liskov,andru}@lcs.mit.edu

Abstract

Abstraction mechanisms are crucial for the organization of large-scale software. Theta is a new object-
oriented programming language developed for implementing shared persistent objects as components
of large-scale software. Theta provides a number of mechanisms that support abstraction and the
construction of large-scale software. No single mechanism is novel in itself. Instead, the value of
Theta is the combination of relatively well-understood mechanisms into a coherent whole. Theta
provides static type-checking with separate compilation; automatic storage management; specifications
separate from implementation; subtyping; inheritance; and constrained parametric polymorphism. The
mechanisms of inheritance, subtyping, and parametric polymorphism are entirely distinct in Theta.
In contrast to other languages, constraints on parametric polymorphism are not expressed in terms of
subtyping. We demonstrate that the use of subtyping to constrain polymorphism does not work properly.
Our final contributions are to identify the problem of protecting classes from their inheriting subclasses,

and to present rules that suffice for such protection.

1 Introduction

This paper describes a new object-oriented programming language called Theta. Theta was developed
for implementing shared persistent objects as components of large-scale systems in the Thor object-
oriented database system. In Thor, a paramount requirement is the secure, safe sharing of objects. Safe
sharing requires that data abstraction be supported as fully as possible so that objects entrusted to the
database can not be corrupted by other users. In Theta, abstractions are developed and implemented
independently. Abstraction implementations are compiled separately, and programs are produced as
needed by linking implementations together.

Theta has strong compile-time type checking; it guarantees that no type errors can occur after
compilation (e.g., at link or run time). Theta objects reside in a heap and their storage is managed
automatically. Strong type checking and automatic garbage collection together guarantee that programs
are unable to violate encapsulation. Strong type checking has the further advantages that some common

This research was supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored
by the Office of Naval Research under contract NO0014-91-J-4136 and in part by the National Science Foundation under Grant
CCR-8822158

errors are detected at compile time, and that more efficient implementations are sometimes possible
because of the additional information available to the compiler. The possible disadvantage of strong
type checking, namely difficulty in defining generic code, is lessened by providing generic capabilities
more powerful than those in languages such as C++ and Modula-3.

Theta provides the following unique combination of features. First, it distinguishes specifications
from implementations, and allows types to have multiple implementations even within the same program.
Second, it provides support for both subtype and parametric polymorphism. Subtype polymorphism
allows types to be organized in a hierarchy, where subtypes extend the behavior of their supertypes.
Parametric polymorphism allows generic routines and types to be defined in terms of parameter types.
Theta allows constraints on parameter types to be expressed in a way that is different from other object-
oriented languages; we show later in this paper that the mechanisms in most object-oriented languages
do not work properly. Third, Theta provides an inheritance (subclass) mechanism that allows new
implementations to be based on old ones, but the inheritance mechanism is independent of the type
hierarchy mechanism. Finally, it provides mechanisms that can prevent subclasses from causing any
damage to superclass objects. Thus Theta provides complete encapsulation: both clients and inheritors
are unable to interfere with the correct behavior of classes.

The remainder of this paper describes these mechanisms of Theta. In each case we discuss the
issues that must be considered when designing the mechanism and the rationale for our decisions. We
also discuss how the issues have been resolved in other object-oriented languages, and compare our
approach with theirs. Our intention is not just to present Theta, but to provide an overview of the design
issues and how they are treated across a number of languages.

We begin in Section 2 by explaining why we undertook the design of Theta, and the requirements
we are trying to satisfy; we also discuss our design philosophy and the language design principles
that we have attempted to follow. Section 3 describes our specification mechanism and how types and
subtypes are declared. Then in Section 4 we discuss our parametric polymorphism mechanism. Section
5 describes implementations and inheritance. We conclude in Section 6 with a discussion of what we

have accomplished.

2 Motivation

We undertook the design of Theta because of our research on Thor, a new object-oriented database
system [11]. Thor supports heterogeneous sharing of persistent objects. Applications that use Thor
can be written in different programming languages and a single application can have components in
different programming languages sharing the common objects. Thor provides a universe of persistent
objects. Each persistent object has an encapsulated implementation and a set of methods that can be
used to interact with it. Each object also has a type that defines its methods; Thor provides a number of
built-in types and users can define new types. Persistence in Thor is defined by reachability. The Thor
universe has a persistent root; all objects accessible from the root are stored persistently and storage for
objects that become inaccessible from the root is reclaimed automatically.

Since there can be many different users of Thor, it is important that they be protected from one

another. Therefore, secure sharing is an important goal and Thor will provide access control mechanisms
for this purpose. Most user code runs outside Thor and cannot interfere with the correct execution of
the system (this point is discussed further in [4]). However, to define new Thor types, users must write
code that runs inside Thor, and we needed a programming language to be used for this purpose. Security
and safety were an absolute requirement for this language; an ill-behaved program must not be able to
damage other users’ objects or undermine the secure sharing mechanisms in any way.

Safe sharing first of all means that abstraction boundaries cannot be violated. Of course, good
support for abstraction is important for control of complexity, module reuse, local reasoning, etc; in our
environment, however, it also helps with secure sharing by ensuring that users share abstract objects
rather than representations, and that they cannot interfere with one another by getting at encapsulated
information. Proper support for abstraction depends on two things. First, abstractions must have
specifications that describe what they do without prescribing how they are implemented. Second,
implementations must be encapsulated so that other parts of the program cannot interfere with them.
Without encapsulation it is not possible to reason

In addition, we needed a strongly-typed language. Thor provides type definitions that are used by
programmers in developing the code that interacts with Thor. We didn’t want those programmers to
have to read code to understand the Thor objects they would be using. We also wanted the ability to
change implementations without causing application code to break.

We considered using a widely-used language to implement Thor objects since this would make
Thor more accessible. However, there is only one widely-used object-oriented language with static
type checking, namely C++, and the type system of C++ is not secure. Since C++ wouldn’t do, we
decided to develop our own language, since this would allow us to learn what features were really
needed. Interestingly, we have arrived at some of the same conclusions as work done on Portlandish
[18], another experimental language designed for a distributed object store.

There are two design principles that guided the language design. We aimed for a design in which
different concepts were expressed by different mechanisms because we believe that a language based
on this principle is easier to understand than one that overloads a single mechanism for several different
purposes. Also, we wanted the language to express “good” practice in a direct way. Although it
is always possible to superimpose a good methodology on a language by defining conventions that
programmers ought to follow, we prefer that a “good” idiom take a straightforward form. In both
C++ and Modula-3, for example, the simplest ways of writing interfaces are not right for developing
reliable large-scale software; ensuring appropriate information hiding requires the consistent use of

extra-language apparatus.

3 Specifications and Type Hierarchy

We argued earlier that specifications are an intrinsic part of support for abstractions. Of course specifi-
cations can be distinguished from implementations without needing to have a special form for declaring
them; this is the approach taken in both CLU [13] and Eiffel [15]. However, we decided that it would

be best to have special forms for specifications in Theta; specifications are given separately from im-

bag = type
% bags are multisets of integers

put(val: int)
% adds val to the bag

get() returns (int) signals (empty)
% removes and returns an arbitrary element of the bag; signals empty if none

is_empty() returns (bool)
% returns true if the bag is empty, else returns false

end bag

Figure 1: Specification of Bag

plementations. Here we are following the lead of a number of other languages: Modula-3 [17], ML
[16], and Ada (and C++ [9] to some extent). Our specifications are “pure”’; they contain no implemen-
tation detail, and therefore they do not constrain possible implementations. This is in contrast to C++,
for example; in C++ programmers can define classes that contain no implementation detail and thus
function as specifications, but they need not do so. However, not doing so can cause problems later:
for example, when a second implementation is needed for the type, or when a subtype that differs in its
implementation details is needed.

Theta has both types and routines. Thus, a routine independent of any class can truly stand alone,
and need not be bundled into a fake class (as is necessary in Eiffel, for instance). A routine is a procedure
or an iterator, and in either case can terminate normally (returning results in the case of a procedure)
or by signaling an exception (possibly with some exception results). Both iterators and the exception
mechanism are taken directly from CLU [13]. Types have objects with methods, and the methods can
be procedures and iterators. In this paper we focus on types.

An example of a Theta type specification, for a bag type, is given in Figure 1. The specification
identifies all the methods of the new type and gives their signatures. It also contains information about
the type’s behavior, but this information is written as comments, and is uninterpreted by Theta.

One point about these specifications is that they only define methods and there is no notion of “fields”
associated with the type. We believe that having such a notion is confusing at best (since both clients
and implementers tend to believe that a real field must correspond to the abstract one) and potentially
damaging to abstraction: for example, the ODMG-93 standard [7] does not provide a way to specify a
read-only field; Eiffel [15] allows a nullary method to be replaced by a field but not vice-versa.

One way in which Theta type specifications are unusual is that they only define the methods that
can be invoked on objects of the type, and do not define any way of creating new objects of the

type (or other “type operations” associated with the type itself). Type operations are omitted for two

reasons. First, different implementations of a type may have different creators. For example, a hashed
implementation of a bag might have a creator that takes in the hash function as an argument, while a
sorted implementation does not need this information. Second, subtypes are likely to have creators that
differ from those of the supertype.

Specifications for subtypes include a declaration of the type’s supertypes; there can be many
supertypes. The Theta compiler checks a subtype specification by comparing it with the specifications
of each supertype: the subtype must have all methods of its supertype, and each method must have a
signature that conforms to that of the associated method of the supertype [3]. A subtype specification is
allowed to rename methods of the supertype; renaming is especially useful when a subtype has multiple
supertypes because there may be name conflicts among the supertypes, and the renaming mechanism
allows them to be resolved. The Theta renaming mechanism is broadly similar to those of Trellis [19]
and Eiffel [15], although it differs in details.

Some object-oriented languages, such as Emerald [2], do not require an explicit declaration of
the subtype-supertype relation, and instead infer the relationship based on method conformance. This
syntactic approach to subtyping has two drawbacks. First, conformance of method signatures does
not imply that the potential subtype meets the semantic requirements of the supertype [14]. Second,
implicit subtyping rules out the possibility of method renaming. Implicit subtyping is useful when using
subtyping to emulate parametric polymorphism (as discussed in Section 4.1), but the separation of the
two mechanisms in Theta eliminates this rationale.

Figure 2 gives a specification of stack as a subtype of bag; the subtype extends the bag’s behavior by
providing two new methods, and it renames the bag methods put and get to push and pop, respectively.
Note that these methods satisfy the type conformance rules, and that the subtype is meaningful because
its objects behave like those of the supertype as far as any code using supertype methods can tell; a
discussion of the subtype relation can be found in [14]. In this case the push and pop methods constrain
the non-determinism of the corresponding put and get methods by indicating that pop returns the last
element that was pushed.

We use the standard type conformance rule for the usual reasons. In Theta, any object referred to by
variable v: T is guaranteed to belong to T or one of its subtypes. The compiler will allow all T methods
to be called on v; the standard type conformance rule guarantees that these calls are legal, even if the
method being called belongs to a subtype of T. The standard type conformance rule occasionally collides
with a desire to make argument types in subtypes more specific (a feature provided in Eiffel); however,
the requirement of safe, secure typing in a large system makes covariant argument types unworkable.

Theta allows more specific type information to be determined at runtime. For example, consider:

X:bag =y
h: int
typecase x

when stack (z) => h := z.height()
others=>h:=0
end

Stack = type bag {push for put, pop for get}

push(val: int)
% pushes val on top of the stack

pop() returns (int) signals (empty)
% removes and returns the top stack element; signals empty if none

is_.empty() returns (bool)
% returns true if the stack is empty else returns false

height() returns (int)
% returns the height of the stack, i.e., the number of elements in it

total () returns (int)
% returns the sum of the integers in the stack

end Stack
Figure 2: Specification of Stack

Within the typecase, if x actually refers to an object whose type is (a subtype of) stack, the arm
labelled “stack” will be selected and z will refer to the object; within that arm, stack methods can be
called on z. The typecase allows generic code to be written that will work on all subtypes of a supertype,
but deal with particular subtypes differently when necessary. Modula-3 [17] has a similar typecase

statement.

4 Parametric polymorphism

In this section we explain the need for constrained parametric polymorphism. This sort of polymorphism
is not new: it was present in CLU [13], and extended with a form of renaming in Argus [10]. However,
neither of those languages has subtype polymorphism. Some object-oriented languages have omitted
parametric polymorphism entirely, and even those that include parametric polymorphism typically
either provide no constraint mechanism or use subtyping for that mechanism. Theta has entirely distinct
mechanisms for subtype polymorphism and constrained parametric polymorphism.

In this section, we provide a rationale for Theta’s parametric polymorphism. We begin by examining
the need for expressing constraints on type parameters. We then observe that subtyping is not sufficiently
powerful for expressing many useful constraints. We contrast the constraint specification mechanisms
of some existing languages, and describe the mechanism we have chosen for Theta. Since Theta has
both parametric and subtype polymorphism, we define how they interact. Finally, we consider a novel
feature of Theta: renaming and overriding at the point of instantiation.

4.1 The Need for Constraints

Consider a generic min_elt procedure that computes the minimum element in an array[T], for any type

T. In Theta, a partial specification for this routine might look like:

min_elt[T] (x: array[T]) returns (T) signals(empty)
9% Requires: T has a less than or equal” method le that

% partially orders T elements

% Effect: if x is empty, signals empty; otherwise

% returns the minimum element in x according to
% the partial order determined by T’s le method

Here is a partial Theta implementation of such a procedure:

% Note this is not legal Theta!
min_elt[T] (x: array[T]) returns (T) signals(empty)

if (x.empty()) then signal empty end

min: T := x.bottom()

for elt: T in x.elements() do
if elt < min then min :=eltend % < invokes le
end

return(min)

end min_elt

This routine raises an exception if the array is empty, otherwise it computes the min element by
iterating over the elements in the array. It assumes that it can invoke an le method (less than or equal)
on the objects of type T in the array.

To use this routine, it must be instantiated with an actual type. For example, the instantiation
min_elts[int] is a routine that can be used to compute the minimum integer in an array[int]. The
instantiation min_elts[int] is equivalent to re-writing the above implementation, replacing “T” with “int”

everywhere:

min_elt_for_int (x: array[int]) returns (int) signals(empty)
if (x.empty()) then signal empty end
min: int := x.bottom()
for elt: int in x.elements() do
if (elt.le(min)) then min := elt end
end
return(min)
end min_elt_for_int

A compiler can type check this “rewritten” version of the routine as if it had been written by a
programmer. The invocations of array methods empty, bottom, and elements are all correct (this will
be true for any instantiation, since the correctness of the array method invocations does not depend on
the parameter type). The invocation of the le method is also correct, since type int has an le method that
takes an int and returns a bool. However, for some other instantiation min_elts[foo], this invocation may

be incorrect, perhaps because foo does not have an le method.

Some languages use the “rewrite” approach that we just showed to type-check generic modules:
at each instantiation point, the module is rewritten with the actual types of the instantiation and the
rewritten version is type-checked. Both C++ templates and Modula-3 generics are checked in this way
[9, 17]. Without a description of what is required of the parameter types, there is no contract between
implementer and client. The client cannot tell what is required without reading the code, and has no
guarantee that his code will continue to work with a different implementation of the abstraction.

Also, we consider it unacceptable that the compiler should have to check each instantiation of a
parameterized module by instantiating the body of the module and then type-checking the resulting code.
Indeed, it should be possible to type-check code that uses a parameterized module before that module
has been implemented. To support this, one must capture the necessary type-checking information in
the specification of the parameterized module. The result is constrained parametric polymorphism,
where the specification of a parameterized module includes constraints on the legal instantiation types.

Here is a more complete Theta specification for min_elt:

min_elt[T] (x: array[T]) returns (T) signals(empty)
where T has le(T) returns(bool)
9% Requires: T has a less than or equal” method le that

% partially orders T elements

% Effect: if x is empty, signals empty; otherwise

% returns the minimum element in x according to
% the partial order determined by T’s le method

We have added a where clause, used to specify constraints on type parameters; in this case, min_elt
must be instantiated with a type that has an le method that orders T objects.

The Theta where clause is an adaptation of the CLU where clause [13]. In Theta, a where clause
can specify any number of required methods for a type parameter, and these methods can then be used
in the body of the parameterized module. If no required methods are given, no methods can be invoked.
Unconstrained parameters are still useful for simple collection types or lookup tables where the elements
are only stored and retrieved. For example, the built-in type array[T] does not require any methods for
T elements.

Given a parameterized module with specified type parameter constraints, implementation and use
of this module can be type-checked independently. At the point of use, the compiler checks that
the actual instantiation type satisfies the constraints. For example, in the instantiation min_elt[int], the
compiler checks whether actual type int satisfies the where clause of min_elt. This check works as
follows: first rewrite the required method signatures from the where clause, replacing the parameter
type(s) with the actual type(s); then verify that the method signatures of the actual type(s) conform to
the rewritten method signatures. For min_elt[int], we check that int’s le method conforms to the rewritten
signature le(int) returns(bool) (which it does). Note that uses of min_elt can be checked even before an
implementation has been provided.

An implementation of a parameterized module is checked just once. Invocations on objects of
parameter type T are checked against the signatures of the required methods for T. In our example, the

le method invocation in the generic min_elt above is correct when checked against the le signature given

sorted_collection = type[T]
where T has le(T) returns(bool)
9% Requires: T has an le method that partially orders T objects.
9% What: A collection type that maintains the elements in sorted
% order based on the partial order defined by the le method.

add(elt: T)
% add elt to collection

remove(elt: T)
9% remove elt from collection

elements() yields (T)
% yields the elements in sorted order, as determined by T’s le method

end sorted_collection
Figure 3: Partial Specification of Sorted_Collection

in the where clause above. If the where clause were not provided, the compiler would report an error.
Although we are using parameterized routines in our examples, note that a very important use of
constrained parameteric polymorphism is the definition of parameterized types. For example, Figure 3
shows a Theta specification for a collection type that keeps the elements in sorted order. This type
can only be instantiated with an element type that provides an le method (to be used for ordering the

elements).

4.2 Inadequacy of Types as Constraints

Trellis [19], Eiffel [15], Portlandish [18], and POOL [1] all have parameterized types, but use subtyping
as the constraint mechanism: that is, they allow a parameterized abstraction to be instantiated with
any type that is a subtype of the constraining type. However, a mechanism based on subtyping is not
powerful enough to capture some useful constraints. The designers of the Emerald language initially
chose a subtype-based mechanism but later realized its limitiations and changed to a type matching
mechanism that is similar in power to Theta’s where clauses; see [3] for a good discussion on this issue.

As an example, note that there is no way to rewrite min_elts so that it uses a “constraint type”. To

see this, consider this attempt:

9 This example is type-correct but useless

comparable = type
le(comparable) returns(bool)
end comparable

min_elt2(x: collection[comparable]) returns (comparable) signals(empty)
if (x.empty()) then signal empty end
min: comparable := x.bottom()
for elt: comparable in x.elements() do
if (elt.le(min)) then min := elt end
end
return(min)
end min_elt2

Routine min_elt2 takes a collection[comparable], where type comparable has an le method. The
code as given is type-correct, but it is useless: it cannot be used as intended (to compute the minimum
element of any array whose objects have an le method).

Suppose we want to pass min_elt2 a collection[int]. This requires that int be a subtype of comparable.!
Unfortunately, since we are using contravariance of argument types, int cannot be a subtype of compa-
rable. Any subtype of comparable must have an le method that takes an argument of type comparable
(or some supertype of comparable), while int has an le method that takes an int.

The comparable example actually works in Eiffel because the language allows covariant argument
types. However, as mentioned above, such a covariance rule requires global program analysis to
determine type correctness and seems ill-suited to the construction of large systems. Moreover, our
main point is that the subtype relation should not be the only way to express constraints. Whether one
has contravariance or covariance for argument types, there are constraints one can express with where

clauses that one cannot express using simple type contraints.

4.3 Inadequacy of Conformance-based Approaches

Emerald uses types to express the same kinds of constraints that where clauses are used for in Theta [3].
For example, in Emerald we can define a type collection[comparable] where comparable has a definition
similar to that in the previous example. However, Emerald does not use subtyping to determine whether
atype is a valid parameter; instead, a collection[T] can be instantiated for any T that matches comparable,
rather than just the T’s that conform to comparable. When determining whether T matches comparable,
we are allowed to substitute T for all occurrences of comparable in the specification of comparable,
thus avoiding the covariance problem described earlier. This solution provides some of the power of
where clauses. However, it introduces pseudo-types like comparable, which exist only to constrain
other types; in all likelihood no objects satisfying the specification of comparable will ever be created.
In Theta, such meaningless types are unnecessary.

F-bounded polymorphism [5] can describe many of the same useful polymorphic types. F-bounded
quantification is essentially the same as the conformance-based approach used by Emerald, though it

provides additional power if recursive types are allowed in a very general way. Theta’s where clauses

"This example also requires that parameterized type collection be defined in such a way that if S is a subtype of T,
collection[S] is a subtype of collection[T]. The issue of subtype relationships for parameterized types is discussed in
Section 4 4.

10

are in practical terms more powerful than F-bounded polymorphism or Emerald conformance.

First, where clauses can introduce mutual dependencies between type parameters. For example, we
can declare a method parameterized on types T and U such that T and U must be related by a particular set
of methods. However, no subtype relation between T and U can be specified. Such mutual dependencies
can be useful when designing methods whose signatures mention that take collections of two different
types. Such mutual dependencies can be described (clumsily) by F-bounded quantification, but they
require a very general

Second, where clauses allow the instantiator to override the methods that satisfy them, providing
other methods or even stand-alone routines instead. Neither Emerald nor F-bounded quantification can

directly express instantiation with overriding.

4.4 Combining Parametric and Subtype Polymorphism

In a language like Theta with mechanisms for both parametric and subtype polymorphism, we must
define how they interact.

Suppose P1 and P2 are both parameterized types, with a single type parameter. When specifying
P2, the following are two possible subtype declarations:

(1) P2[T] < P1[T] forall T
(2) P2[S] < P2[T] when S < T

Here, < is used to denote the subtype-of relationship. The first declaration says that for any type T,
P2[T] is a subtype of P1[T]. The second declaration says: for any two types S and T, if S is a subtype of
type T then P2[S] is a subtype of P2[T]. In a language that allows both forms, they can be used together
to imply the following:

(3) P2[S] < P1[T]when S < T

Thus there is no need to support this third form directly.

The first form is useful and is supported in Theta. When specifying type P2 in Theta, one can give
P1 as a supertype: the implication is that P2[T] is a subtype of P1[T] for all types T. The compiler verifies
that P2’s signature conforms to P1’s; since the same type parameter T is used in both signatures, this
is no harder than checking the conformance of two non-parameterized types. This supports the kind of
type evolution we are interested in, e.g., introducing a subtype that adds an additional method or two to
an existing type.

We believe the second form is less useful, and it is not currently supported in Theta. The reason is
that such a declaration only works for types that do not use a parameter type as (a component of) the

argument type of any method. For example, even if the form were supported, one could not declare

array[S] < array[T]when S < T % This is wrong

Consider the store method: for array[T] it takes an integer index and a T object, while for array[S]
it takes an integer index and an S object. Contravariance of arguments requires that array[S]’s store

method would take a T object, but clearly we cannot allow T objects to be stored in an array[S], since

11

such an array is only supposed to contain objects of type S (or a subtype of S). Thus the contravariance
of argument type rule correctly prevents us from making the above declaration.

All mutable collection objects with parameterized element type T have a mutation method such as
store that takes a T object; for any mutable type M, we cannot declare M[S] < M[T] when S < T. What
about immutable types? Most immutable types have at least one comparison method, and, like mutation
methods, comparison methods have element type T in their signature, thus the same problem occurs.
For example, the immutable type sequence[T] in Theta has an equal method that takes a sequence[T]
as argument and returns a bool; thus, we cannot declare sequence[S] < sequence[T] when S < T.

We conclude that most real parameterized types (types that will have actual instances) cannot make
use of the second form of subtype declaration. Note, however, that one can define “abstract supertypes”

of these types that have no comparison or mutation methods. The simplest example is the following:

collection= type[T]
elements() yields(T)
end collection

Type collection captures the one behavior common to all collections parameterized by type T: the
fact that they have T elements. We can declare that collection[S]"$<$ collection[T] when S$<$°T, and
this declaration works since no method arguments involve type T. One could then declare that types
such as array[T] are subtypes of collection[T]. In this case one could write a routine draw_shapes that
takes a collection[shape] and pass in an array|[circle] (assuming circle"$<$ shape).

Thus, the second form of subtype declaration does have its uses, if one defines abstract supertypes
such as collection. However, we believe most such abstract supertypes are not necessary; moreover, it
will simplify the type hiearchy if they are not introduced. For example, the only information captured
by type collection is the existence of an elements iterator, and we can use constrained parametric
polymorphism to capture the same information:

draw_shapes[C](shapes: C, d: display)
where C has elements() yields(shape)
% C is a collection type that contains shapes
for s: shape in shapes.elements() do s.draw(d) end
end draw_shapes

We can then use this routine on an array[circle] by instantiating it with array[circle]. Since cir-
cle < shape, the elements method for array[circle] conforms to the one specified in the where clause,
and the instantiation would be legal. This use of parametric polymorphism seems more direct than the
use of the type collection, and has not introduced a new type declaration.

Of the languages we know of that have both subtype and parameteric polymorphism, the Trellis
language [19] has the richest descriptive mechanism for expressing subtype relationships between
parameterized entities. The initial Theta approach is very simple, and we are still exploring the question

of whether it is sufficent.

12

4.5 Renaming and Overriding

When we write a where clause constraining a type parameter to have one or more methods, we choose
names for these methods that are intended to convey the semantics required. However, it may be that
different types use different names for a given method with the desired behavior; to handle this case,
Theta supports renaming at the point of instantiation?

In some cases there can even be more than one appropriate method to use for a given required
method. As an example of this, consider a min_elt[T] routine that requires an le method. Suppose type
color has methods darker and lighter. We can compute the lightest and darkest colors in an array of

colors as follows:

darkest := min_elt[color {darker for le}](mycolors)
lightest := min_elt[color {lighter for le}](mycolors)

Sometimes a type does not have a required method, but the necessary functionality can be provided
by some other routine. Theta supports this with procedure overriding at instantiation time. For example,
suppose type color only has a brightness method, but no darker or lighter methods. We could write the
following:

darker(x, y: color) returns(bool)
return (x.brightness() < y.brightness())
end darker

darkest := min_elt[color {op darker for le}](mycolors)

In this case the keyword op indicates that a stand-alone routine, rather than a method, should be
used in place of le.

Suppose the required method for type parameter T is foo(at1, at2, ..., atk) returns(rt), where at1
through atk are argument types and rt is the result type. The supplied stand-alone routine must have
a signature that conforms with the signature (T, at1, at2, ..., atk) returns(rt). This allows the supplied
stand-alone routine to be used wherever the required method is invoked within the parameterized module.

We believe that Theta is unique in its mechanisms for renaming and overriding at the instantiation

point.

5 Classes and Inheritance

A type is implemented by a unit of code that, following standard terminology, we call a class. A
class usually implements a type extension. Such a class implements both the operations defined in an
extension and the methods of the type it extends. (A class used purely for code sharing by subclasses,
corresponding roughly to an abstract class in C++ or a deferred class in Eiffel, may implement only
a type). There can be many different classes implementing an extension, and we do not express the

“implements” relation by using the subtype relation, as is done in some languages. The main reason for

>The Theta mechanism is an extension of a renaming mechanism that was designed for Argus [10] but never implemented.

13

not doing this is that it exposes implementations too much, and allows code to become dependent on an
implementation when it ought to be dependent only on the type being implemented.

Classes in Theta are similar to those in other languages. The class defines a set of instance variables,
and provides implementations of the methods and operations in terms of those variables. The class
must implement all the methods and operations defined by the type and extension, and in addition can
implement some private methods and operations. The signatures of the public methods and operations
must conform to those in the extension and type specifications.

A class can be defined as a subclass of some other class, using Theta’s inheritance mechanism.
Inheritance provides several advantages. It allows the programmer to conveniently reuse code when
implementing a subtype; it allows the creation of abstract classes, where a partial implementation
provides a template that is filled in by subclasses; and it provides efficient sharing of code.

The Theta inheritance mechanism is used only for sharing implementation details among classes.
Because it is distinct from the subtype mechanism, inheritance can be used for implementations of
unrelated types. For example, suppose C1 is a subclass of C2, where C1 implements type T1 and C2
implements type T2. We do not require that T1 be a subtype of T2, although this will sometimes be the
case. As others have pointed out [20, 8, 6], it is a good idea to keep these hierarchies distinct, since they
are solving different problems. The type hierarchy is concerned with behavior, and subtypes of the same
type may be implemented very different. The inheritance mechanism is concerned with implementation,
and it is sometimes useful to borrow an implementation of an unrelated type. Some other languages
(POOL [1], Portlandish [18]) have similarly chosen to separate subtyping and inheritance.

Theta supports only single inheritance. We believe this is sufficient because we use inheritance
only for code sharing. Languages such as C++ and Eiffel use multiple inheritance in several ways:
code sharing, type hierarchy, multiple implementations, and as a way of achieving or constraining
parametric polymorphism. When inheritance is used for several things, a class often needs to have
several superclasses, some to express type hierarchy, some to express the “implements” relation, some
to express parametric polymorphism, and perhaps some others for code sharing. However, in Theta
we use inheritance only for code sharing, and we believe that a single superclass will be sufficient.
Avoiding multiple superclasses is good because we thereby avoid the complexity associated with
resolving conflicts among multiply-inherited instance variables, as well as being able to avoid the cost
of a multiple-inheritance method dispatch mechanism.

Figure 4 shows a class that implements stacks (as specified in Figure 2) by inheriting from the Theta
built-in array class. Stacks are not a subtype of arrays, but it is convenient to base their implementation
on arrays, since arrays in Theta can grow and shrink using the addh and remh operations.

The figure illustrates some features of Theta classes. First, the subclass can rename superclass
methods; here we rename size to height since it does exactly what is wanted. Second, note the use of
up-arrow to name superclass methods and operations, e.g., “create identifies the array create operation
as opposed to the stack create operation.

As is usual, the subclass can inherit and override methods of the superclass. Methods that it overrides
must conform to the signatures provided in the superclass. The reason for this is that they may be called
in other superclass methods; conformance guarantees that those calls will be legal.

14

s = stack class inherits array[int] {height for size}

sum: int

push (x: int)
sum = sum + X

"addh(x) % array.addh appends one element to the end

end push

pop () returns (int) signals (empty)
x:int :="remh() % array.remh removes the last element
except when bounds: signal empty end

sum = sum - X
return (x)
end pop

is_empty () returns (bool)
return ("size() = 0)

end is_empty

total () returns (int)
return (sum)

ends
create makes (s)

init {sum := 0} “create() end
end create

5.1 Makers

Figure 4: Implementation of stack

Figure 4 also illustrates the use of a maker. Some operations and methods that return new objects

are implemented by having them create the new objects themselves while others are implemented by

making a call to create the new object. We consider this choice to be an implementation detail that

should not be visible in the specification. Inside the class, methods and operations that create the new

object directly are implemented as makers. A maker has an additional implicit argument, the new object

that it is initializing; this object can be referred to (using the name newobject), but only after its fields

have been filled in by the init statement. (In the example the maker returns immediately after filling in

the fields.)

A maker in a subclass initializes the superclass fields by using a maker of the superclass within the

init statement. The superclass maker is called only after the subclass fields have been initialized; this

15

guarantees that the new object is accessible outside the maker only when all its fields are initialized.

C++ constructors are similar to Theta makers, but initialize in the reverse order: the subclass fields
are initialized only after the superclass portion of the object is filled in. Because the subclass fields are
uninitialized during superclass initialization, any method invocations must call the superclass versions,
since the subclass methods would depend on uninitialized fields. This effect has a runtime cost, since
C++ constructors overwrite the object dispatch information at each stage of object initialization. Theta
objects, on the other hand, can be initialized immediately with the proper dispatch information.

In addition to type extension operations, Theta makers can also be used to directly implement
methods. Thus a copy method can be implemented as a maker in Theta, whereas it must invoke a

constructor in C++.

5.2 Encapsulation

In most object-oriented languages, object implementations are encapsulated so as to be inaccessible to
client modules, but they often remain vulnerable to subclasses. In Theta it is possible to implement
classes in a way that ensures that subclasses cannot interfere with objects of the class.

First, subclasses are not allowed access to superclass fields. Each subclass object contains the fields
defined by the superclass: the object’s representation (rep) is a concatenation of the superclass fields
and the subclass fields. But within the subclass the superclass fields cannot be accessed directly; instead
they can be accessed only by the methods available to the subclass.

Limiting access in this way means that the subclass can cause the superclass fields to violate the
superclass rep invariant [12] only if the superclass provides methods and operations that do not ensure
the invariant (i.e., they terminate at a point when the superclass fields do not satisfy the invariant).
This limitation makes it easier to implement the subclass correctly. It also protects the superclass: if
all inherited fields of subclass objects satisfy the superclass rep invariant, then there is no danger that
superclass methods will propagate bad information into superclass objects.

For example, suppose that stack has a copy method, and also suppose the s implementation shown
earlier has a private set_sum method and implements these methods by

maker copy ()
init {sum := self.sum} "copy() end
end copy

set_sum (x: int)
sum =X
end set_sum

The set_sum method is a “violator” because it does not ensure the rep invariant of s (the invariant
being that sum is equal to the sum of the array elements). If this method is not exported to subclasses
of s, they cannot cause a violation of s’s rep invariant for the s fields of their objects. If the method is
exported, however, such violations are possible. Of course, the correctness of s only concerns s objects.

However, if the copy method is also exported to subclasses, it can “propagate” the bad information to an

16

s object: when it is called on a subclass object it just copies the fields without checking the rep invariant,
and the result may be an invalid s object.

A class that exports only public methods and operations to its subclasses cannot be hurt by them. A
class can also export private methods and operations and there will be no problem provided these also
ensure the rep invariant. If the class exports “violator” methods and operations, there still will be no
problem provided it does not also export “propagator” methods like copy to its subclasses

To provide the needed power, we allow a class to control the interface it exports to its subclasses.
The default is that all public methods are exported and all private methods are hidden. The following is
an example of overriding the default:

s = stackE class inherits array[int] {height for size}
exports set_sum % used to export a private method
hides copy % used to hide a public method

end s

There is one final problem with inheritance in Theta: we need to be sure that a subclass object
cannot masquerade as an object of the type implemented by the superclass®. This problem can only
arise for classes with trivial implementations of copy-like methods. For example, to implement copy

for sequences (immutable arrays), we might just write

copy () returns (seq)
return (self)
end copy

Here copy returns the very same object; this is legitimate for immutable types because the sharing
isn’t visible to clients. However, if copy is inherited, the result when it is called on a subclass object
is to make that object appear to be an object of type seq. To avoid such a problem, a class with such

methods simply avoids exporting them to its subclasses.

6 Conclusion

This paper has described Theta, a new object-oriented programming language. Theta was developed for
use in an environment in which secure, safe sharing was of paramount importance. This led to a number
of decisions about the language: complete static type checking with separate compilation, automatic
storage management, and specifications separate from implementations.

Theta provides a combination of features that makes it different from other languages; in addition,
some of the features are themselves novel. Of most interest, we believe, are the separation of types from

extensions, the separation of inheritance from subtyping, the way that type constraints for parametric

3In theory this would not be a problem in a language in which the two hierarchies were the same, although in practice it
might very well be a problem because some subclasses might have objects that did not behave like those of the superclass’

type.

17

polymorphism are expressed, the construction of new objects by makers, and the mechanisms that allow
classes to be protected from their subclasses.

The paper has also discussed the issues that arise in designing a language like Theta. We have
argued that parametric and subtype polymorphism are distinct and ought to be supported by separate
mechanisms. In addition, we showed that constraints for parametric polymorphism cannot be expressed
adequately using a subtype mechanism.

An early version of Theta is in use as the interface specification language for our Thor prototype
implementation; that version distinguishes subtyping from inheritance but does not include any of the
other features described in this paper. We are currently implementing the full language, including the

features described here.

References

[1] Pierre America and Frank van der Linden. A parallel object-oriented language with inheritance
and subtyping. In ECOOP/OOPSLA "90 Proceedings, pages 21-25, October 1990.

[2] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distribution and
abstract types in Emerald. IEEE Transactions on Software Engineering, SE-13(1):65-76, January
1987.

[3] Andrew P. Black and Norman Hutchinson. Typechecking polymorphism in Emerald. Technical
Report 91/1, Digital Equipment Corporation, Cambridge Research Laboratory, December 1990.

[4] Philip Bogle and Barbara Liskov. Reducing cross-domain call overhead using batched futures.
In ACM Conference on Object-Oriented Programming: Systems, Languages, and Applications
(OOPSLA), pages 777-777,1994.

[5] Peter Canning, William Cook, Walter Hill, John Mitchell, and Walter Olthoff. F-bounded poly-
morphism for object-oriented programming. In Proceedings of the Conference on Functional

Programming Languages and Computer Architecture, pages 273-280, 1989.

[6] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Interfaces for strongly-
typed object-oriented programming. In ACM Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 457-467, 1989.

[7] Richard G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann,
1994.

[8] William R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In ACM
Conference on Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA),
pages 1-15, 1992.

[9] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

18

[10] Barbara Liskov, Mark Day, Maurice Herlihy, Paul Johnson, Gary Leavens, Robert Scheifler, and
William Weihl. Argus Reference Manual. Technical Report 400, MIT Laboratory for Computer

Science, November 1987.

[11] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in Thor. In Dis-
tributed Object Management. Morgan Kaufmann, 1994,

[12] Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. MIT
Press, 1986.

[13] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction mechanisms in
CLU. CACM, 20(8):564-576, August 1977.

[14] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM TOPLAS,
16(6):1811-1841, November 1994.

[15] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[16] Robin Milner, Mads Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge,
MA, 1990.

[17] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, 1991.

[18] Harry H. Porter, III. Separating the subtype hierarchy from the inheritance of implementation.
Journal of Object-Oriented Programming, pages 20-29, February 1992.

[19] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based Environment, Language
Reference Manual. Technical Report DEC-TR-372, Digital Equipment Corporation, November
1985. Published as SIGPLAN Notices 21(11), November, 1986.

[20] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In ACM
Conference on Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA),
pages 38-45, 1986.

19

