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We introduce a general way to locate programmer mistakes that are detected by static analyses. The program

analysis is expressed in a general constraint language which is powerful enough to model type checking,

information flow analysis, dataflow analysis and points-to analysis. Mistakes in program analysis result

in unsatisfiable constraints. Given an unsatisfiable system of constraints, both satisfiable and unsatisfiable

constraints are analyzed, to identify the program expressions most likely to be the cause of unsatisfiability.

The likelihood of different error explanations is evaluated under the assumption that the programmer’s code

is mostly correct, so the simplest explanations are chosen, following Bayesian principles. For analyses that

rely on programmer-stated assumptions, the diagnosis also identifies assumptions likely to have been omitted.

The new error diagnosis approach has been implemented as a tool called SHErrLoc, which is applied to three

very different program analyses, such as type inference for a highly expressive type system implemented by

the Glasgow Haskell Compiler (GHC)—including type classes, GADTs, and type families. The effectiveness of

the approach is evaluated using previously collected programs containing errors. The results show that when

compared to existing compilers and other tools, SHErrLoc consistently identifies the location of programmer

errors significantly more accurately, without any language-specific heuristics.
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1 INTRODUCTION
Type systems and other static analyses help reduce the need for debugging at run time, but

sophisticated type systems and other program analyses can lead to terrible error messages. The
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difficulty of understanding these error messages interferes with the adoption of expressive type

systems and other program analyses.

When deep, non-local software properties are being checked, the analysis may detect an incon-

sistency in a part of the program far from the actual error, resulting in a misleading error message.

The problem is that powerful static analyses and advanced type systems reduce an otherwise-high

annotation burden by drawing information from many parts of the program. However, when the

analysis detects an error, the fact that distant parts of the program influence this determination

makes it hard to accurately attribute blame. Determining from an error message where the true

error lies can require an unreasonably complete understanding of how the analysis works.

We are motivated to study this problem based on experience with three programming languages:

ML, Haskell [35] and Jif [41], a version of Java that statically analyzes the security of information

flow within programs. The expressive type systems in all these languages lead confusing, even

misleading error messages [28, 55]. Prior work has explored a variety of methods for improving

error reporting in each of these languages. Although these methods are usually specialized to

a single language and analysis, they still frequently fail to identify the location of programmer

mistakes.

In this work, we take a more general approach. The insight is that most program analyses,

including type systems and type inference algorithms, can be expressed as systems of constraints

over variables. In the case of ML type inference, variables stand for types, constraints are equalities

between different type expressions, and type inference succeeds when the corresponding system

of constraints is satisfiable. With a sufficiently expressive constraint language, we show that more

advanced features in other program analyses, such as programmer’ assumption in Jif information

flow analysis, quantified propositions involving functions over types, used in GHC, can all be

modeled in a concise yet powerful constraint language SCL (Section 4).

SHErrLoc comes with a customized constraint language and solver
1
, which identifies both

satisfiable and unsatisfiable constraint subsets via a graph representation of the constraint system

(Sections 6–8).When constraints are unsatisfiable, the question is how to report the failure indicating

an error by the programmer. The standard practice is to report the first failed constraint along with

the program point that generated it. Unfortunately, this simple approach often results in misleading

error messages—the actual error may be far from that program point. Another approach is to report

all expressions that might contribute to the error (e.g., [11, 19, 52, 55]). But such reports are often

verbose and hard to understand [24].

Our insight is that when the constraint system is unsatisfiable, a more holistic approach should be

taken. Rather than looking at a failed constraint in isolation, the structure of the constraint system

as a whole should be considered. The constraint system defines paths along which information

propagates; both satisfiable and unsatisfiable paths can help locate the error. An expression involved

in many unsatisfiable paths is more likely to be erroneous; an expression that lies on many

satisfiable paths is more likely correct. This approach can be justified on Bayesian grounds, under

the assumption, captured as a prior distribution, that code is mostly correct (Section 9).

In some languages, the satisfiability of constraint systems depends on environmental assumptions,

which we call hypotheses. The same general approach can also be used to identify hypotheses

likely to be missing: a small, weak set of hypotheses that makes constraints satisfiable is more

likely than a large, strong set.

1
One downside of using a customized constraint language and solver is the SHErrLoc solver may fall out of sync with the

ones in existing compilers, such as GHC. However, this approach is still preferable for its generality, since SHErrLoc is

intended to supplement existing compilers when they fail to provide useful error messages. As long as the solvers largely

agree on constraints, SHErrLoc can provide meaningful error reports when existing compilers are unsatisfactory.
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In summary, this article presents the following contributions:

(1) We define a constraint language, SCL, and its constraint graph representation that can encode

a broad range of type systems and other analyses. In particular, we show that SCL can express

a broad range of program analyses, such as ML type inference, Jif information flow analysis,

many dataflow analyses, points-to analysis and features of the expressive type system of

Haskell, including type classes, GADTs, and type families (Section 4 and 5).

(2) We present a novel constraint-graph-based solving technique that handles the expressive

SCL constraint language. The novel technique allows the creation of new nodes and edges in

the graph and thereby to support counterfactual reasoning about type classes, type families,

and their universally quantified axioms. We prove that the new algorithm always terminates

(Section 6–8).

(3) We develop a Bayesian model for inferring the most likely cause of program mistakes

identified in the constraint analysis. Using a Bayesian posterior distribution [18], the algorithm

suggests program expressions that are likely errors and offers hypotheses that the programmer

is likely to have omitted (Section 9).

(4) We evaluate the accuracy and performance of SHErrLoc on three different sets of programs

written in OCaml, Haskell and Jif. As part of this evaluation, we use large sets of programs

collected from students using OCaml and Haskell to do programming assignments [20, 31].

Appealingly, high-quality results do not rely on language-specific tuning (Section 10).

Contributions in relation to prior versions. This article supersedes its previous conference versions
presented at the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages [58]

and the ACM SIGPLAN conference on Programming Language Design and Implementation [59]

in several ways:

• It provides the syntax (Section 4.1), graph construction (Section 6), and graph saturation

algorithm (Section 7) for the complete SCL constraint language. Earlier versions have omitted

features for simplicity: the POPL’14 paper [58] lacks quantified axioms in hypotheses and

functions over constraint elements; the PLDI’15 paper [59] lacks contravariant/invariant

constructors, projections, and join and meet operations on constraint elements.

• It provides an end-to-end overview of the core components of SHErrLoc (Section 2.4). The

overview includes information that is omitted in the previous versions, such as a detailed

discussion on how constraints are generated, how the Bayesian model works, and how errors

are reported by SHErrLoc.

• It provides a running example (Section 3) to give an in-depth view of the advanced features

of SHErrLoc. The running example is explained throughout the paper.

• It formalizes the entailment rules for the SCL constraint language (Section 4.2).

• It provides more details on the DLMmodel [40] and its encoding in the constraint language; in

particular, it proves that a confidentiality/integrity policy in the DLM model is a constructor

on principals with the appropriate variance (Section 5.2).

• It shows that the SCL language is expressive enough to model a nontrivial program analysis:

points-to analysis (Section 5.4).

• It proves that our constraint analysis algorithm always terminates (Section 7.5).

• It also proves that “redundant” graph edges provide no extra information for error localization

(Section 8.4).

• It describes an efficient search algorithm, based on A*, that searches for the most-likely

explanation of program errors. The algorithm is proved to always return optimal solutions

(Section 9.2).
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1 let f(lst: move list): (float*float) list =
2 ...
3 let rec loop lst x y dir acc =
4 if lst = [] then
5 acc
6 else
7 print_string "foo"
8 in
9 List.rev (loop lst 0.0 0.0 0.0 [(0.0,0.0)] )

OCaml Compiler Report:

Line 9, Characters 33-44: This expression has type

’a list but is here used with type unit.

SHErrLoc Report:

Expressions in the source code that appear most

likely to be wrong:

print_string “foo” (Line 7, characters 6-24)

Fig. 1. OCaml example. Line 9 is blamed by OCaml compiler for a mistake at line 7.

1 fac n = if n == 0 then 1
2 else n * fac ( n == 1 )

GHC Compiler Report:

Line 1 Column 18: No instance for (Num Bool)

arising from the literal ‘0’

SHErrLoc Report:

Expressions in the source code that appear most

likely to be wrong:

n == 1 (Line 2, Characters 23-28)

Fig. 2. Haskell example. Line 1 is blamed for a mistake at line 2.

2 APPROACH
Our general approach to diagnosing errors can be illustrated through examples from three languages:

ML, Haskell and Jif.

2.1 ML type inference
The power of type inference is that programmers may omit types. But when type inference fails,

the resulting error messages can be confusing. Consider Figure 1, containing (simplified) OCaml

code written by a student working on a programming assignment [31]. The OCaml compiler

reports that the expression [(0.0, 0.0)] at line 9 is a list, but is used with type unit. However, the
programmer’s actual fix shows that the error is the print_string expression at line 7.

The misleading report arises because currently prevalent error reporting methods (e.g., in

OCaml [43], SML [39], and Haskell [26]) unify types according to type constraints or typing rules,

and report the last expression considered, the one on which unification fails. However, the first failed

expression can be far from the actual error, since early unification using an erroneous expression

may lead type inference down a garden path of incorrect inferences.

In our example, the inference algorithm unifies (i.e., equates) the types of the four highlighted

expressions, in a particular order built into the compiler. One of those expressions, [(0.0, 0.0)], is
blamed because the inconsistency is detected when unifying its type.

Prior work has attempted to address this problem by reporting either the complete slice of the
program relating to a type inference failure, or a smaller subset of unsatisfiable constraints [11, 19,

52, 55]. Unfortunately, both variants of this approach can still require considerable manual effort to

identify the actual error within the program slice, especially when the slice is large [24].

2.2 Haskell type inference
Haskell is recognized as having a particularly rich type system, and hence makes an excellent

test case for our approach. Consider the Haskell program from [30] in Figure 2, which fails to

type-check. The actual mistake is that the second equality test (==, in line 2) should be subtraction
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1 public final byte[ {} ]{this} encText;
2 ...
3 public void m(FileOutputStream[ {this} ]{this} encFos)
4 throws (IOException) {
5 try {
6 for (int i=0; i<encText.length; i++)
7 encFos.write(encText[i]);
8 } catch (IOException e) {}
9 }

Jif Compiler Report:

Line 3: The non-exception termina-

tion of themethod bodymay reveal

more information than is declared

by the method return label.

SHErrLoc Report:

Expressions in the source code that

appear most likely to be wrong:

{} (Line 1, Characters 19-20)

Fig. 3. Jif example. Line 3 is blamed for a mistake at line 1.

(-), but GHC instead blames the literal 0, saying that Bool is not a numerical type. A programmer

reading this message would probably be confused why 0 should have type Bool. Unfortunately, such

confusing error messages are not uncommon.

The core of the problem is that like ML, GHC implements constraint solving by iteratively

simplifying type constraints, making error reporting sensitive to the order of simplification. GHC

here decides to first unify the return type of (n == 1), namely Bool, with the type of n, which is the

argument of fac. Once the type of n is fixed to Bool, the compiler picks up the constraint arising

from line 1, (expression n == 0), unifies the type of 0 with Bool and reports misleadingly that literal

0 is the error source.

2.3 Jif label checking
Confusing error messages are not unique to traditional type inference. The analysis of information

flow security, which checks a different kind of nonlocal code property, can also generate confusing

messages when security cannot be verified.

Jif [41] is a Java-like language whose static analysis of information flow often generates confusing

error messages [28]. Figure 3 shows a simplified version of code written by a Jif programmer. Jif

programs are similar to Java programs except that they specify security labels, shadowed in the

example. A security label describes the intended confidentiality and integrity for the associated data.

Omitted labels (such as the label of i at line 6) are inferred automatically. However, Jif label inference

works differently from ML type inference algorithms: the type checker generates constraints on

labels, creating a system of inequalities that are then solved iteratively. For instance, the compiler

generates a constraint {} ≤ {this} for line 7, bounding the label of the argument encText[i] by

that on the formal parameter to write(), which is {this} because of encFos’s type.
Jif error messages are a product of the iterative process used to solve these constraints. The

solver uses a two-pass process that involves both raising lower bounds and lowering upper bounds

on labels to be solved for. Errors are reported when the lower bound on a label cannot be bounded

by its upper bound.

As with ML, early processing of an incorrect constraint may cause the solver to detect an

inconsistency later at the wrong location. In this example, Jif reports that a constraint at line 3 is

wrong, but the actual programmer mistake is the label {} at line 1.

An unusual feature of Jif is that programmers may specify assumptions, capturing trust relation-

ships that are expected to hold in the environment in which the program is run. A common reason

why label checking fails in Jif is that the programmer has gotten these assumptions wrong. Sharing

constraints on ML functor parameters are also assumptions, but are simpler and less central to ML

programming.
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(1) unit print_string (7) = α acc (5)

(2) α acc (5) = β acc (3)

(3) β acc (3) = (float*float) list [(0.0,0.0)](9)

(4) unit print_string (7) = γ loop ret (9)

(5) γ loop ret (9) = δ list List.rev (9)

(6) δ list List.rev (9) = (float*float) list f ret (1)

(7) γ loop ret (9) = α acc (5)

print_string
unit
(7)

acc (5)

loop ret (9)

acc (3)

List.rev
'a list (9)

f ret
(float*float) list (1)

[(0.0,0.0)]
(float*float) list (9)

P2

P1

P3

Fig. 4. Part of the constraints generated from the OCaml example in Figure 1 (left) and the corresponding
constraint graph (right).

For instance, an assignment from a memory location labeled with a patient’s security label to

another location with a doctor’s label might fail to label-check because the crucial assumption

is missing that the doctor acts for the patient. With that assumption in force, it is clear that an

information flow from patient to doctor is secure.

In this article, we propose a unified way to infer both program expressions likely to be wrong

and assumptions likely to be missing.

2.4 Overview of the approach
We use the OCaml example in Figure 1 to provide an end-to-end overview of SHErrLoc.

Constraints. As a basis for a general way to diagnose errors, we define an expressive constraint

language, SCL, that can encode a large class of program analyses, including not only ML, Haskell

type inference and Jif label checking, but also dataflow analyses and points-to analysis.

Constraints in this language assert partial orderings on constraint elements, in the form of

E1 ≤ E2, where E1 and E2 are constraint elements. Each constraint element and constraint is

associated with meta data (e.g, the corresponding line number and expression in the source code).

They are only used for better readability: SHErrLoc use the meta data to map an identified error

cause in the constraint system back into the source code.

For example, the code in Figure 1 generates a constraint system containing several assertions,

including but not limited to the ones shown in Figure 4 (here, E1 = E2 is a short hand for E1 ≤
E2 ∧ E2 ≤ E1). For simplicity, only the meta data (expression and line number) for each constraint

elements are shown in shades. Here, α , β , γ etc. represent type variables to be inferred, while other

constraint elements are data types. For example, the first constraint states that the type of the result

of print_string, which is unit, must be identical to the type of the expression acc at line 5, since
the “then” and “else” branches must have the same type in OCaml. The sixth constraint states that

the type of the return value of function List.rev must be identical to the type of the return value

of f, which is (float*float) list as provided in the function signature.

Constraint graph. The constraints are then converted into a representation as a directed graph.

In that graph, a node represents a constraint element, and a directed edge represents an ordering

between the two elements it connects.

For example, the right of Figure 4 (excluding dashed edges) shows the constructed constraint

graph for the constraints shown on the left. The leftmost node represents the type of the result of

print_string (i.e., constraint element unit). The leftmost node is connected by edges to the node

representing the result type of loop due to the constraint unit = γ .

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, Article 18. Publication date: August 2017.
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Graph saturation. To identify potential conflicts in the constraints, more (shortest) directed

paths that must hold are inferred in the graph representation, in a form of reachability: CFL-

reachability [49], to be precise. For example, the dashed paths P1, P2 and P3 in Figure 4 can be

inferred due to the transitivity of ≤.

Type inference fails if there is at least one unsatisfiable pathwithin the constraint graph, indicating

a sequence of unifications that generate a contradiction. Consider, for example, the three paths P1,
P2, and P3 in the figure. The end nodes of each path must represent the same types. Other such

inferred paths exist, such as a path between the node for unit and the node acc (3), but these paths
are not shown since a path with at least one variable on an end node is trivially satisfiable. We call

paths that are not trivially satisfiable, such as P1, P2, and P3, the informative paths. We note that

other informative paths can be inferred, such as a path from unit to δ list (9); these paths are
omitted for simplicity.

In this example, the paths P1 and P2 are unsatisfiable because the types at their endpoints are
different. Note that path P2 corresponds to the expressions highlighted in the OCaml code. By

contrast, path P3 is satisfiable.

Bayesian reasoning. The constraints along unsatisfiable paths form a complete explanation of

the error, but one that is often too verbose. Our goal is to be more useful by pinpointing where

along the path the error occurs. The key insight is to analyze both satisfiable and unsatisfiable

informative paths identified in the constraint graph.

In Figure 4, the strongest candidate for the real source of the error is the leftmost node of type

unit, rather than the lower-right expression of type (float*float) list that features in the

misleading error report produced by OCaml. Two general heuristics help us identify unit as the
culprit:

(1) All else equal, an explanation for unsatisfiability in which programmers have made fewer

mistakes is more likely. This is an application of Occam’s Razor. In this case, the minimum

explanation is a single expression (the unit node) which appears on both unsatisfiable paths.

(2) Erroneous nodes are less likely to appear in satisfiable paths. In this case, The unit node

appears only on unsatisfiable informative paths, but not on the informative, satisfiable path

P3. Hence, the unit node is a better error explanation than any node lying on path P3.

We note that in Figure 4, the first heuristic alone already promotes the real source of the error (the

leftmost node of type unit) as the strongest candidate. However, in general, the second heuristic

improves error localization accuracy as well. For example, consider a constraint graph that is

identical to Figure 4 except that the bottom left solid edge between unit and acc (5) is removed. In

this graph, P2 is removed as well. Hence, all nodes along path P1 are equally likely to be wrong

according to the first heuristic. In this case, the second heuristics is needed to identify the leftmost

node as the strongest candidate.

A Bayesian model justifies the intuitive heuristics above. To see why, we interpret the error

diagnosis process as identifying an explanation of observing the saturated constraint graph. In this

case, the observation o is the satisfiability of informative paths within the constraint graph. We

denote the observation as o = (o1,o2, . . . ,on), where oi ∈ {unsat, sat} represents unsatisfiability
or satisfiability of the corresponding path. Let P(E |o) be the posterior probability that a set of

nodes E explains the given observation o. By Bayes’ theorem, maximizing P(E |o) is equivalent to
maximizing the term

P(E)P(o |E)

With a couple of simplifying assumptions (Section 9.1), the most-likely explanation can be

identified as a set of nodes, E, such that
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(1) Any unsatisfiable path uses at least one node in E, and
(2) E minimizes the termC1 |E | +C2kE , where kE is the number of satisfiable paths using at least

one node in E, and C1, C2 are some tunable constants.

We note that the Bayesian model justifies the intuitive heuristics above: the explanation is likely

to contain fewer nodes (heuristic 1) and show less frequently on satisfiable edges (heuristic 2).

Appealingly, these two heuristics rely only on graph structure, and are oblivious to the language

and program being diagnosed. The same generic approach can therefore be applied to very different

program analyses.

Error reporting. SHErrLoc uses an instance of A
∗
search algorithm to identify top-ranked expla-

nations according to the term C1 |E | +C2kE . Each explanation consists of one or multiple program

expressions. For example, SHErrLoc reports the only top-ranked explanation for the OCaml program

in Figure 1 as follows:

Expressions in the source code that appear most likely to be wrong:

print_string "foo" (Line 7, characters 6-24)

This explanation is exactly the true mistake in the program, according to the programmer’s actual

error fix.

For the programs in Figure 2 and Figure 3, the SHErrLoc reports are shown on the right of the

figures. Again, SHErrLoc correctly and precisely localizes the actual causes of the errors in those

examples.

3 RUNNING EXAMPLE
To explore more advanced features of SHErrLoc, we use the Haskell program in Figure 5 as a

running example for the rest of this article. This example involves a couple of sophisticated features

in Haskell:

• Type classes introduce, in effect, relations over types, on top of ordinary unification con-

straints. For example, the type of literal 0 can be any instance of the type class Num, such as

Int and Float.

• Type families are functions at the level of types:
1 type instance F [a] = (Int ,a)
2 f :: F [Bool] -> Bool
3 f x = snd x

In this example, it is okay to treat x as a pair although it is declared to have type F [Bool],

because of the axiom describing the behavior of the type family F. (Note that in Haskell, type

[Bool] represents a list of Bool’s.)

• Type signatures. Polymorphic type signatures introduce universally quantified variables

that cannot be unified with other types [46]. Consider the following program.

1 f :: forall a. a -> (a,a)
2 f x = (True ,x)

This program is ill-typed, as the body of f indicates that the function is not really polymorphic

(consider applying f 42).

Moreover, it is unsound to equate a type variable bound in an outer scope to a universally

quantified variable from an inner scope. Consider the following program.

1 f x = let g :: forall a. a -> (a,a)

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, Article 18. Publication date: August 2017.
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1 -f::∀c . (c, c) → c
2 -g::∀d . Num d ⇒ d → Bool
3 -assume Q = (∀a. F[a]= (a,a))
4 - ∧ ([Int] ≤ Num)
5

6 let h::∀a b . a=[b]⇒ (F a) → b
7 = λx. f x
8 in g [`a'] -- error

(a : a0,b : b0, x : χ1, c : ξ2, f x : ϕ2,
d : δ0, 'a' : α0, g ['a'] : γ0)

H ′ ⊢ χ1 → ϕ2= (ξ2, ξ2) → ξ2
∧ H ′ ⊢ χ1 → ϕ2= (F a0) → b0
∧ H ⊢ δ0 ≤ Num
∧ H ⊢ α0=Char
∧ H ⊢ [α0] → γ0=δ0 → Bool

where H = (∀a . F [a]= (a,a))
∧ ([Int] ≤ Num)

H ′ = H ∧ (a0 = [b0])

Fig. 5. Running example. Top left: source program; Bottom left: generated constraints; Right: part of the graph
for constraints.

2 g z = (z,x)
3 in (g 42, g True)

This program is ill-typed, since x’s type bound in the enclosing context should not be unified

to a, the universally quantified variable from the signature of g. Indeed, if we were to allow

this unification, we’d be treating x as having both type Int and Bool at the two call sites of g.

The same issues arise with other GHC extensions, such as data constructors with existential

variables and higher-rank types [46].

• Local hypotheses. Type signatures with constraint contexts and GADTs both introduce

hypotheses under which we must infer or check types. For instance:

1 elem :: forall a. Eq a => a->[a]->Bool
2 elem x [] = False
3 elem x (y:ys) = if (x == y) then True
4 else elem x ys

The type signature for elem introduces a constraint hypothesis Eq a, on the universally quan-

tified variable a, and that constraint is necessary for using == at line 3.

In Figure 5, relevant axiom schemes and function signatures are shown in comments. Here, the

type family F maps [a], for an arbitrary type a, to a pair type (a,a). The function h is called only

when a = [b]. Hence, the type signature is equivalent to ∀b . (b,b) → b, so the definition of h is

well-typed. On the other hand, expression (g [‘a’]) has a type error: the parameter type [Char] is
not an instance of class Num, as required by the type signature of g.
The informal reasoning above corresponds to a set of constraints, shown on the left bottom

of Figure 5. From the constraints, SHErrLoc builds and saturates a constraint graph (shown on

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, Article 18. Publication date: August 2017.



18:10 D. Zhang et al.

Unification variables α , β,γ Constructors con
Skolem variables a, b, c Functions fun

Quantified variables in hypothesis

a,b, c

G ::= A1 ∧ ... ∧An
(n≥0) A ::= H ⊢ I

H ::= Q1 ∧ ... ∧Qn
(n≥0) Q ::= ∀a . C ⇒ I

C ::= I1 ∧ ... ∧ In
(n≥0) I ::= E1 ≤ E2

E ::= αℓ | aℓ | a | conp E | conipi E | fun E | E1 ⊔ E2 | E1 ⊓ E2 | ⊥ | ⊤

p ::= + | − | ±

Fig. 6. Syntax of SCL constraints.

the right of Figure 5), where Bayesian reasoning is performed on. We will return to the running

example when relevant components are introduced.

4 THE SCL CONSTRAINT LANGUAGE
Central to our approach is a general core constraint language, SCL, that can be used to capture a

large class of program analyses. In this constraint language, constraints are inequalities using an

ordering ≤ that corresponds to a flow of information through a program. The constraint language

also has constructors and destructors corresponding to computation on that information, quantified

axioms, nested universally and existentially quantified variables, and type-level functions.

4.1 Syntax
The syntax of the SCL (for SHErrLoc Constraint Language) is formalized in Figure 6.

A top-level goal G to be solved is a conjunction of assertions A. An assertion has the form H ⊢ I ,
where H is a hypothesis (an assumption) and I is an inequality to be checked under H .

Constraints. A constraintC is a possibly empty conjunction of inequalities E1 ≤ E2 over elements

from the constraint element domain E (e.g., types of the source language), where ≤ defines a

partial ordering on elements. Throughout, we write equalities (E1 = E2) as syntactic sugar for
(E1 ≤E2 ∧ E2 ≤E1), and (H ⊢ E1 = E2) is sugar for two assertions, similarly. We denote an empty

conjunction as ∅, and abbreviate ∅ ⊢ C as ⊢ C .
The ordering ≤ is treated abstractly, but when the usual join (⊔) and meet (⊓) operators are used

in constraints, it must define a lattice. The bottom and top of the element ordering are ⊥ and ⊤.

Quantified axioms in hypotheses. Hypotheses H can contain (possibly empty) conjunctions of

quantified axioms, Q . Each axiom has the form ∀a. C ⇒ I , where the quantified variables a may be

used in constraints C and inequality I . For example, a hypothesis ∀a. a≤A⇒ a≤B states that for

any constraint element a such that (a≤A) is valid, inequality a≤B is valid as well. When both a
and C are empty, an axiom Q is written simply as I .

Handling quantifiers. To avoid notational clutter associated with quantifiers, we do not use

an explicit mixed-prefix quantification notation. Instead, we distinguish universally introduced

variables (a, b, . . .) and existentially introduced variables (α , β , . . .); further, we annotate each

variable with its level, a number that implicitly represents the scope in which the variable was

introduced. For example, we write the formula a1=b1 ⊢ (a1, b1)=α2 to represent ∀a,b.∃α . a=b ⊢
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(a, b)=α . Any assertion written using nested quantifiers can be put into prenex normal form [42]

and therefore can represented using level numbers.

Constructors and functions over constraint elements. An element E may be 1) a variable, 2) an

application conp E of a type constructor con ∈ Con, where the annotation p describes the variance
of the parameters, or 3) an application fun E of a type-function fun ∈ Fun. Constants are nullary
constructors, with arity 0. Since constructors and functions are global, they have no levels.

The partial ordering on two applications of the same constructor is determined by the variances

p of that constructor’s arguments. For each argument, the ordering of the applications is either

covariant with respect to that argument (denoted by +), contravariant with respect to that argument

(-), or invariant (±) with respect to it. For simplicity, we omit the variance p when it is irrelevant to

the context.

The main difference between a type constructor con and a type function fun is that constructors

are injective and can be therefore be decomposed (that is, con τ = con τ ′⇒ τ = τ ′). Type functions
are not necessarily injective: fun τ = fun τ ′ does not entail that τ =τ ′.

Example. To model ML type inference, we can represent the type (int→ bool) as a constructor
application fn(−,+)(int, bool), where int and bool are constants, the first argument is contravariant,

and the second argument is covariant. Its first projection fn
1

(fn(−,+)(int, bool)) is int.
Consider the expressions acc (line 5) and print_string (line 7) in Figure 1. These are branches

of an if statement, so one assertion is generated to enforce that they have the same type: ⊢ acc(5) ≤
unit ∧ unit ≤ acc(5).
Section 5 describes in more detail how assertions are generated for ML, Haskell, Jif, dataflow

analysis and points-to analysis.

4.2 Validity and satisfiability
An assertion A is satisfiable if there is a level-respecting substitution θ for A’s free unification

variables, such that θ [A] is valid.
A substitution θ is level-respecting if the substitution is well-scoped. More formally, ∀αl ∈

dom(θ ), am ∈ fvs(θ [αl ]).m ≤ l . For example, an assertion a1=b1 ⊢ (a1=α2 ∧ α2=b1) is satisfiable
with substitution [α2 7→ a1]. But ⊢ α1=b2 is not satisfiable because the substitution [α1 7→ b2] is not
level-respecting. The reason is that with explicit quantifiers, the latter would look like ∃α∀b. ⊢ α =b
and it would be ill-scoped to instantiate α with b.

A unification-variable-free assertionH ⊢ I is valid if I is entailed byH , according to the entailment

rules in Figure 7, modulo the least equivalence relation that satisfies the commutativity of the

operations ⊔ and ⊓.

The entailment rules are entirely standard. Rule (Axiom) instantiates a (potentially) quantified

axiom in the following way: for any substitution θ that maps quantified variables α to constraint

elements E, substituted constraints θ [C2] are entailed whenever H ⊢ θ [C1]. For example, the

following assertion is valid by rule (≤ Ref) and (Axiom) (substitute α with A): ∀α . α ≤ A⇒ α ≤
B ⊢ A ≤ B. For the special case when both α and C1 are empty, rule (Axiom) simply entails a

constraint already stated in the axioms. For example, A ≤ B ⊢ A ≤ B is (trivially) valid.

The (constructor) composition rule (DComp) checks componentwise relationships according to

components’ variances; the decomposition rule (DeComp) does the opposite: it infers relationships

on components based on their variances.
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(≤ Ref)

H ⊢ E ≤ E
(≤ Tran)

H ⊢ E1 ≤ E2 H ⊢ E2 ≤ E3

H ⊢ E1 ≤ E3

(Axiom)

θ = [a 7→ E] H ⊢ θ [C1]

H ∧ (∀a . C1 ⇒ C2) ⊢ θ [C2]
(DComp)

H ⊢ Ei ≤ E ′i
if pi=+ or pi=±

H ⊢ E ′i ≤ Ei
if pi=− or pi=± 1 ≤ i ≤ n

H ⊢ conp (E1, . . . ,En) ≤ conp (E
′
1
, . . . ,E ′n)

(Decomp)

H ⊢ conp (E1, . . . ,Ea(c)) ≤ conp (E
′
1
, . . . ,E ′a(c))

H ⊢
n∧
i=1

Ei ≤ E ′i
if pi=+ or pi=± ∧ E ′i ≤ Ei

if pi=− or pi=±

(FComp)

H ⊢ Ei ≤ E ′i ∧ H ⊢ E
′
i ≤ Ei 1 ≤ i ≤ n

H ⊢ fun(E1, . . . ,En) ≤ fun(E ′
1
, . . . ,E ′n) ∧ fun(E

′
1
, . . . ,E ′n) ≤ fun(E1, . . . ,En)

(Join1)

H ⊢ E1 ≤ E ∧ H ⊢ E2 ≤ E

H ⊢ E1 ⊔ E2 ≤ E
(Join2)

(H ⊢ E1 ≤ E1 ⊔ E2) ∧ (H ⊢ E2 ≤ E1 ⊔ E2)

(Meet1)

H ⊢ E ≤ E1 ∧ H ⊢ E ≤ E2

H ⊢ E ≤ E1 ⊓ E2
(Meet2)

(H ⊢ E1 ⊓ E2 ≤ E1) ∧ (H ⊢ E1 ⊓ E2 ≤ E2)

Fig. 7. Entailment rules.

5 EXPRESSIVENESS
The constraint language is the interface between various program analyses and SHErrLoc. To use

SHErrLoc, the program analysis implementer must instrument the compiler or analysis to express

a given program analysis as a set of constraints in SCL.

As we now show, the constraint language is expressive enough to capture a variety of different

program analyses. Of course, the constraint language is not intended to express all program analyses,

such as analyses that involve arithmetic. We leave incorporating a larger class of analyses into our

framework as future work.

5.1 ML type inference
ML type inference maps naturally into constraint solving, since typing rules can be usually be

read as equality constraints on type variables. Numerous efforts have been made in this direction

(e.g., [2, 19, 24, 37, 56]).

Most of these formalizations are similar, so we discuss how Damas’s Algorithm T [12] can be

recast into our constraint language, extending the approach of Haack andWells [19]. We follow that

approach since it supports let-polymorphism. Further, our evaluation builds on an implementation

of that approach.

For simplicity, we only discuss the subset of ML whose syntax is shown in Figure 8. However, our

implementation does support a much larger set of language features, including match expressions

and user-defined data types.
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e ::= x | n | e1 + e2 | fn x → e | e1 e2 | let x = e1 in e2
t ::= α | int | t → t

x : ⟨[ ]{x 7→ {αx }},α ,αx = α⟩ n : ⟨[ ],α , int = α⟩

e1 : ⟨Γ1, t1,C1⟩ e2 : ⟨Γ2, t2,C2⟩

e1 + e2 : ⟨Γ1 ∪ Γ2,α , int = t1 ∧ int = t2 ∧ int = α ∧C1 ∧C2⟩

e : ⟨Γ, t,C⟩ Γ(x) = T

fn x→e : ⟨Γ{x 7→∅},α ,
∧
{αx = t ′ | t ′∈T } ∧ α = αx→ t ∧C⟩

e1 : ⟨Γ1, t1,C1⟩ e2 : ⟨Γ2, t2,C2⟩

e1 e2 : ⟨Γ1 ∪ Γ2,α , t1 = t2 → α ∧C1 ∧C2⟩

e1 : ⟨Γ1, t1,C1⟩ e2 : ⟨Γ2, t2,C2⟩ Γ2(x) = {t ′1, . . . , t
′
n}

let x = e1 in e2 : ⟨Γ′1 ∪ Γ2{x 7→ ∅},α ,α = t2 ∧C ∧C ′1 ∧C2⟩

where ⟨Γ1,1, t1,1,C1,1⟩ . . . ⟨Γ1,k , t1,k ,C1,k ⟩, k = max(1,n), are

fresh variants of ⟨Γ1, t1,C1⟩, Γ
′
1
=

⋃
1≤i≤k

Γ1,i , C
′
1
=

∧
1≤i≤k

C1,i and

C = {t1,1 = t ′
1
, . . . , t1,n = t ′n}

Fig. 8. Constraint generation for a subset of ML. α and αx are fresh variables in typing rules.

In this language subset, expressions can be variables (x), integers (n), binary operations (+),

functions abstractions fn x → e, function applications (e1 e2), or let bindings (let x = e1 in e2).
Notice that let-polymorphism is allowed, such as an expression (let id = fn x → x in id 2)

The typing rules that generate constraints are shown in Figure 8. Types t can be type variables

to be inferred (α ), the predefined integer type int, and function types constructed by→.

The typing rules have the form e : ⟨Γ, t ,C⟩. Γ is a typing environment that maps a variable x
to a set of types. Intuitively, Γ tracks a set of types with which x must be consistent. Let [ ] be an

environment that maps all variables to ∅, and Γ{x 7→ T } be a map identical to Γ except for variable

x . Γ1 ∪ Γ2 is a pointwise union for all type variables: ∀x .(Γ1 ∪ Γ2)(x) = Γ1(x) ∪ Γ2(x). As before, C is

a constraint in our language. It captures the type equalities that must be true in order to give e the
type t . Note that a type equality t = t ′ is just a shorthand for the assertion ⊢ t ≤ t ′ ∧ t ′ ≤ t.

Most of the typing rules are straightforward. To type-check fn x → e, we ensure that the type of
x is consistent with all appearances in e, which is done by requiring αx = t ′ for all t ′ ∈ Γ(T ). The
mapping Γ(x) is cleared since x is bound only in the function definition. The rule for let-bindings is

more complicated. Because of let-polymorphism, the inferred type of e1 (t1) may contain free type

variables. To support let-polymorphism, we generate a fresh variant of ⟨Γ1, t1,C1⟩, where free type

variables are replaced by fresh ones, for each use of x in e2. These fresh variants are then required

to be equal to the corresponding uses of x .
Creating one variant for each use in the rule for let-bindings may increase the size of generated

constraints, and hence make our error diagnosis algorithm more expensive. However, we find
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performance is still reasonable with this approach. One way to avoid this limitation is to add

polymorphically constrained types, as in [17]. We leave that as future work.

5.2 Information-flow control
In information-flow control systems, information is taggedwith security labels, such as “unclassified”

or “top secret”. Such security labels naturally form a lattice [13], and the goal of such systems is to

ensure that all information flows upward in the lattice.

To demonstrate the expressiveness of our core constraint language, we show that it can express

the information flow checking in the Jif language [41]. To the best of our knowledge, ours is the

first general constraint language expressive enough to model the challenging features of Jif.

Label inference and checking. Jif [41] statically analyzes the security of information flow within

programs. All types are annotated with security labels drawn from the decentralized label model

(DLM) [40].

Information flow is checked by the Jif compiler using constraint solving. For instance, given an

assignment x := y, the compiler generates a constraint L(y) ≤ L(x), meaning that the label of x
must be at least as restrictive as that of y.

The programmer can omit some security labels and let the compiler generate them. For instance,

when the label of x is not specified, assignment x := y generates a constraint L(y) ≤ αx , where αx
is a label variable to be inferred.

Hence, Jif constraints are broadly similar in structure to our general constraint language. However,

some features of Jif are challenging to model.

Label model. The basic building block of the DLM is a set of principals representing users and
other authority entities. Principals are structured as a lattice with respect to a relation actsfor . The
proposition A actsfor B means A is at least as privileged as B; that is, A is at most as restricted in its

activities as B.
For instance, if doctor A actsfor patient B, then doctor A is allowed to read all information that

patient B can read. However, such relation does not grant doctor A to read any information patient

C can read, unless doctor A actsfor patient C too. The actsfor relation can be expressed by the partial

ordering ≤: for example, the relationship A actsfor B is modeled by the inequality B ≤ A.

Security policies on information are expressed as labels that mention these principals. For

example, the confidentiality label {patient→ doctor} means that the principal patient permits

the principal doctor to learn the labeled information. Principals can be used to construct integrity

labels as well.

A (confidentiality) label L contains a set of principals called the owners. For each owner O , the
label also contains a set of principals called the readers. Readers are the principals to whom owner

O is willing to release the information.

For instance, a label {o1 → r1 ⊓ r2; o2 → r2 ⊓ r3} can be read as: principal o1 allows principals
r1 or r2 to read the tagged information, and principal o2 allows principals r2 or r3 to read. Only

the principals in the effective reader set, the intersection of the readers of all owners, may read the

information.

In the presence of the actsfor relation ≤, the effective reader set readers(p,L), the set of principals
that p believes should be allowed to read information with label L, is defined as follows:

readers(p,o → r ) ≜ {q | if p ≤ o then(o ≤ q or r ≤ q)}

When principal p does not trust o (o does not act for p), the effective reader set is all principals,
since p does not credit the policy with any significance. In other words, p has to conservatively
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assume that the information with the label o → r is not protected at all when p does not trust o.
Note that though the effective reader set for p is all principals in this case, p is not allowed to read

the data if neither o ≤ p nor r ≤ p holds. The reason is that p is not in the effective reader set of o.
As we formalize next, information flow is allowed only if a reader is in the effective reader sets of

all principals.
Using the definition of effective reader set, the “no more restrictive than” relation ≤ on confiden-

tiality policies is formalized as:

c ≤ d ⇐⇒ ∀p. readers(p, c) ⊇ readers(p,d)

For example, consider the following Jif code:

1 int {patient→ ⊤} x;
2 int y = x;
3 int {doctor→ ⊤} z;
4 if (doctor actsfor patient) z = y;

The two assignments generate two satisfiable assertions (we use the constructor conf instead of→

here for clarity):

⊢ conf(patient,⊤) ≤ αy

∧ patient ≤ doctor ⊢ αy ≤ conf(doctor,⊤)

The principals patient and doctor are constants, and the covariant constructor conf(p1,p2) repre-
sents confidentiality labels.

Next, we show that encoding a confidential (integrity) policy in Jif as a covariant (contravariant)

constructor in SCL is correct. In particular, we prove that a DLM confidentiality policy can be

treated as a covariant constructor on principals. Integrity policies are dual to confidentiality policies,

so they can be treated as contravariant constructors on principals.

Lemma 1. A confidentiality policy in the DLM model is a covariant constructor on principals, and
an integrity policy in the DLM model is a contravariant constructor on principals.

Proof. It is sufficient to show that a → b ⊑ c → d ⇐⇒ a ≤ c ∧ b ≤ d and a ← b ⊑ c ← d ⇐⇒
c ≤ a ∧ d ≤ b.
=⇒: by definition, readers(a,a → b) ⊇ readers(a, c → d). If a ≰ c , then the second part is

the entire principal space. This is a contradiction since ⊥ < readers(a,a → b). Given a ≤ c ,
d ∈ readers(a, c → d). So d ∈ readers(a,a → b). That is, a ≤ d or b ≤ d . In either case, we have

b ≤ d by noticing that a is an implicit reader of a → b, or, b = a ⊓ . . . ≤ a. The case for integrity
policy is the dual of the prove above.

⇐=: consider any principal p. If p ≰ a, readers(p,a → b) is the entire principal space, hence
result is trivial. Otherwise, p ≤ a ≤ c . Hence, sufficient to show that {q | a ≤ q or b ≤ q} ⊇ {q |
c ≤ q or d ≤ q} which is obvious from assumptions. The case for integrity policy can be proven

similarly. □

Label polymorphism. Label polymorphism makes it possible to write reusable code that is not

tied to any specific security policy. For instance, consider a function foo with the signature int
foo(bool{A→A} b). Instead of requiring the parameter b to have exactly the label {A→A}, the
label serves as an upper bound on the label of the actual parameter.

Modeling label polymorphism is straightforward, using hypotheses. The constraint C b ≤ {A→
A} is added to the hypotheses of all constraints generated by the method body, where the constant

C b represents the label of variable b.
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Method constraints. Methods in Jif may contain “where clauses”, explicitly stating constraints

assumed to hold true during the execution of the method body. The compiler type-checks the

method body under these assumptions and ensures that the assumptions are true at all method call

sites. In the constraint language, method constraints are modeled as hypotheses.

5.3 Dataflow analysis
Dataflow analysis is used not only to optimize code but also to check for common errors such

as uninitialized variables and unreachable code. Classic instances of dataflow analysis include

reaching definitions, live variable analysis and constant propagation.

Aiken [1] showed how to formalize dataflow analysis algorithms as the solution of a set of

constraints with equalities over the following elements (a subclass of the more general set constraints
in [1]):

E ::= A1 | . . . | An | α | E1 ∪ E2 | E1 ∩ E2 |¬E

where A1, . . . ,An are constants, α is a constraint variable, elements represents sets of constants,

and ∪,∩,¬ are the usual set operators.

Consider live variable analysis. Let Sdef and Suse be the set of program variables that are defined

and used in a statement S , and let succ(S) be the statement executed immediately after S . Two
constraints are generated for statement S :

Sin = Suse ∪ (Sout ∩ ¬Sdef)

Sout =
⋃

X ∈succ(S )

Xin

where Sin , Sout ,Xin are constraint variables.

Our constraint language is expressive enough to formalize common dataflow analyses since the

constraint language above is nearly a subset of ours: set inclusion is a partial order, and negation

can be eliminated by preprocessing in the common case where the number of constants is finite

(e.g., ¬Sdef is finite).

5.4 Points-to analysis
Points-to analysis statically computes a set of memory locations that each pointer-valued expression

may point to. The analysis is widely used in optimization and other program analyses. Although

points-to analysis is commonly used as a component of more complex analyses, such as escape

analysis, the fact that a pointer-valued expression points to an unexpected location may lead to

confusing analysis results.

We focus on two commonly used flow-insensitive approaches: the equality-based approach

of Steensgaard [51] and the subset-based approach of Andersen [3].

One subtlety in formalizing points-to analysis as constraint solving is that a reference can behave

both covariantly and contravariantly depending on whether a value is retrieved or set [16]. Mutable

reference type τ can be viewed as an abstract data type with two operations: get: unit→τ and set:
τ→unit, where τ is covariant in get, and contravariant in set. To reflect the get and set operations
of mutable references in typing rules, we follow the approach of Foster et al. [16], who use a

constructor ref(+,−) to choose the flow of information. Here, we demonstrate the expressive power

of SCL by casting the constraint generation algorithm proposed by Foster et al. [16] to equivalent

typing rules generating SCL constraints. However, the use of projections in SCL allows our typing

rules to be simpler. The Andersen-style analysis for an imperative language subset is modeled by

the following typing rules, where the generated SCL constraints are implicitly accumulated:
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n : ⊥ x : ref(+,−)(x, x)
e : τ

&e : ref(+,−)(τ ,τ )

e : τ

∗e : ref
1

(+,−) τ

e1 : τ1 e2 : τ2 ref
1

(+,−) τ2 ≤ ref
2

(+,−) τ1

e1 = e2

Here, constants have no memory locations, hence have the bottom type. The type of a variable is

lifted to a pointer type, where each field is the unique constraint constant representing x ’s memory

location. A reference’s type says &e points to something of the type of e . A dereference retrieves

the get component of the reference to e . The assignment rule asserts that the get component of the

reference to e2 is a subset of the set component of e1’s reference.
A variable x points to variabley if the relationship ref(+,−)(y, y) ≤ x holds. Consider assignments

(x = &a;y = &b; ∗x = y). The first assignment generates the following constraint according to the

type system:

ref
1

(+,−)

(
ref(+,−)(ref(+,−)(a, a), ref(+,−)(a, a))

)
≤ ref

2

(+,−) (ref(+,−)(x, x))

This constraint can be fed into a solver for SCL as is. But for scalability, we can first apply

a straightforward optimization that collapses constraints containing a consecutive destructor

and constructor. Hence, the previous constraint can be simplified to ref(+,−)(a, a) ≤ x. Similarly,

the other two assignments generate two more (simplified) constraints: ref(+,−)(b, b) ≤ y and

y ≤ ref
2

(+,−) x.
Given these three SCL constraints, the points-to analysis already determines that x points

to a (from ref(+,−)(a, a) ≤ x) and y points to b (from ref(+,−)(b, b) ≤ y). Further, we can infer

an extra inequality ref(+,−)(b, b) ≤ a (i.e., a points to b) as follows. Since ref(+,−)(a, a) ≤ x,

and the second component of constructor ref is contravariant, we have ref
2

(+,−) x ≤ a. Hence,

ref(+,−)(b, b) ≤ y ≤ ref
2

(+,−) x ≤ a.
Other language features, such as functions and branches, can be handled by similarly as in [16].

Moreover, a Steensgaard-style analysis [51] can be expressed in SCL by converting all generated

inequality constraints into equality constraints. For a soundness proof of the constraint generation

algorithm, see [16].

Scalability. We observe that the generated constraints fall in an SCL subset that can be solved by

an efficient algorithm for the classic all-pairs CFL-reachability problem [38]. This algorithm is part

of the graph-based constraint analysis component of SHErrLoc (Section 7.1). Moreover, Melski and

Reps [2000] show that CFL-reachability is interconvertible (with the same complexity) with a class

of set constraints without union/intersection/negation, the class generated by the set-constraint-

based points-to analysis [16]. Hence, a SHErrLoc-based points-to analysis (at least the constraint

analysis component) has the same complexity as the set-constraint-based version, which is shown

to achieve running times within a small constant factor of a hand-coded flow-insensitive points-to

analysis [16]. The scalability of SHErrLoc might be an issue for flow-sensitive points-to analysis

on large programs, but we believe most errors relating to points-to analysis can be exposed in the

flow-insensitive version. Although SHErrLoc also performs counterfactual reasoning to identify

the most-likely error cause, which is absent in the set-constraint-based version, counterfactual

reasoning is unlikely to affect the overall scalability, since empirically, constraint analysis is usually

the dominant contributor to computation time (Section 10).

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, Article 18. Publication date: August 2017.



18:18 D. Zhang et al.

Term variables x ,y, z Type classes D

Type variables a,b, c Type families F

Expressions e ::= x | λx . e | e1 e2
| let x :: σ = e1 in e2

Constraints P ::= P1 ∧ P2 | τ1=τ2 | D τ

Signatures σ ::= ∀a . P ⇒ τ

Monotypes τ ::= a | Int | Bool | [τ ] | T τ | F τ

Axiom schemes Q ::= P | Q1 ∧ Q2 | ∀a . P ⇒ D τ |
∀a . F τ =τ ′

Fig. 9. Syntax of a Haskell-like language.

5.5 GHC type inference
Haskell is recognized as having a particularly rich type system, and hence makes an excellent test

case for the expressiveness of SCL. We demonstrate this constructively, by giving an algorithm to

generate suitable constraints directly from a Haskell-like program. In particular, we show that SCL

is expressive enough to encode all Haskell features we introduced in Section 3.

5.5.1 Syntax. Figure 9 gives the syntax for a Haskell-like language. It differs from a vanilla ML

language in four significant ways:

• A let-binding has a user-supplied type signatures (σ ) that may be polymorphic. For example,

let id :: (∀a . a → a) = (λx.x) in ...

declares an identity function with a polymorphic type.

• A polymorphic type σ may include constraints (P ), which are conjunctions of type equality

constraints (τ1 = τ2) and type class constraints (D τ ). Hence, the language supports multi-

parameter type classes. The constraints in type signatures are subsumed by SCL, as we see

shortly.

• The language supports type families: the syntax of types τ includes type families (F τ ). A
type can also be quantified type variables (a) and regular types (Int, Bool, [τ ]) that are no
different from some arbitrary data constructor T.
• An axiom scheme (Q) is introduced by a Haskell instance declaration, which we omit in

the language syntax for simplicity. An axiom scheme can be used to declare relations on

types such as type class instances, and type family equations. For example, the following

declaration introduces an axiom (∀a . Eq a ⇒ Eq [a]) into the global axiom schemes Q:

instance Eq a => Eq [a] where { ... }

Implicit let-bound polymorphism. One further point of departure from Hindley-Milner (but not

GHC) is the lack of let-bound implicit generalization. We decided not to address this feature in the

present work for two reasons:

(1) Implicit generalization brings no new challenges from a constraint-solving perspective, the

focus of this paper,

(2) It keeps our formalization closer to GHC, which departs from implicit generalization any-

way [54].
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Constraint translation [[P]] : C

[[D τ ]] := τ ≤ D [[D τ ]] := (tupn τ ) ≤ D

[[P1 ∧ P2]] := [[P1]] ∧ [[P2]] [[τ1=τ2]] := (τ1=τ2)

Type inference rules H ; Γ |=ℓ e : τ { G

(v : ∀a . P ⇒ τ ) ∈ Γ αℓ fresh

H ; Γ |=ℓ v : [a 7→ αℓ]τ { H ⊢ [a 7→ αℓ][[P]]
(VarCon)

H ; Γ, (x : αℓ) |=ℓ+1 e : τ2 { G αℓ fresh

H ; Γ |=ℓ λx . e : αℓ → τ2 { G
(Abs)

H ; Γ |=ℓ e1 : τ1 { G1

H ; Γ |=ℓ e2 : τ2 { G2 αℓ fresh

H ; Γ |=ℓ e1 e2 : αℓ { G1∧G2∧(H ⊢ τ1= (τ2 → αℓ))
(App)

H ∧ H ′; Γ |=ℓ+1 e1 : τ1 { G1

H ; Γ,x : σ |=ℓ e2 : τ2 { G2

G ′ = (H ∧ H ′ ⊢ (τ1=τ
′))

σ = (∀a . P ⇒ τ )
aℓ fresh skolems

τ ′ = [a 7→ aℓ]τ
H ′ = [a 7→ aℓ][[P]]

H ; Γ |=ℓ let x :: σ = e1 in e2 : τ2 { G1∧G2∧G
′

(Sig)

Fig. 10. Constraint generation.

5.5.2 Constraint generation. Following prior work on constraint-based type inference [44, 47, 53],
we formalize type inference as constraint solving, generating SCL constraints using the algorithm

in Figure 10.

The constraint-generation rules have the form H ; Γ |=ℓ e : τ { G, read as follows: “given

hypotheses H , in the typing environment Γ, we may infer that an expression e has a type τ and

generates assertionsG”. The level ℓ associated with each rule is used to track the scope of unification
(existential) and skolem (universal) variables. Here, both H and G follow the syntax of SCL.

Rule (VarCon) instantiates the polymorphic type of a variable or constructor, and emits an

instantiated constraint of that type under the propagated hypothesis. Rule (Abs) introduces a

new unification variable at the current level, and checks e with an increased level. Rule (App) is

straightforward. Rule (Sig) replaces quantified type variables in type signature with fresh skolem

variables. Term e1 is checked under the assumption (H ′) that the translated constraint in the

type signature (P ) holds, under the same replacement. The assumption is checked at the uses of x
(Rule (VarCon)). The quantifier level is not increasedwhen e2 is checked, since all unification/skolem
variables introduced for e1 are invisible in e2.

Constraints are generated for a top-level expression under the global axiom schemes Q, under

the translation below.

Type classes. How can we encode Haskell’s type classes in SCL constraints? The encoding is

shown in Figure 10: we express a class constraint (D τ ) as an inequality (τ ≤ D), where D is a

unique constant for class D. The intuition is that τ is a member of the set of instances of D. For a
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multi-parameter type class, the same idea applies, except that we use a constructor tupn to construct
a single element from the parameter tuple of length n.
For example, consider a type classMul with three parameters (the types of two operands and

the result of multiplication). The classMul is the set of all type tuples that match the operators and

result types of a multiplication. Under the translation above, [[Mul τ1 τ2 τ3]] = (tup3 τ1 τ2 τ3 ≤ Mul).

Example. Return to the running example in Figure 5. The shaded constraints are generated for

the expression (g [‘a’]) in the following ways. Rule (VarCon) instantiates d in the signature of

g at type δ0, and generates the third constraint (recall that (Num δ0) is encoded as (δ0 ≤ Num)).
Instantiate the type of character ‘a’ at type α0; hence α0=Char. Finally, using (App) on the call (g
[‘a’]) generates a fresh type variable γ0 and the fifth constraint ([α0]→γ0) = (δ0→Bool). These
three constraints are unsatisfiable, revealing the type error for g [‘a’]. On the other hand, the first

two (satisfiable) constraints are generated for the implementation of function g. The hypotheses of
these two constraints contain a0= [b0], added by rule (Sig).

5.6 Errors and explanations
Recall that the goal of this work is to diagnose the cause of errors. Therefore we are interested not

just in the satisfiability of a set of assertions, but also in finding the best explanation for why they

are not satisfiable. Failures can be caused by both incorrect constraints and missing hypotheses.

Incorrect constraints. One cause of unsatisfiability is the existence of incorrect constraints ap-

pearing in the conclusions of assertions. Constraints are generated from program expressions, so

the presence of an incorrect constraint means the programmer wrote the wrong expression.

Missing hypotheses. A second cause of unsatisfiability is the absence of constraints in the hypoth-

esis. The absence of necessary hypotheses means the programmer omitted needed assumptions.

In our approach, an explanation for unsatisfiability may consist of both incorrect constraints and

missing hypotheses. To find good explanations, we proceed in two steps. The system of constraints

is first converted into a representation as a constraint graph (Section 6). This graph is then saturated

(Section 7) and paths are classified as either satisfiable or unsatisfiable (Section 8). The graph is then

analyzed using Bayesian principles to identify the explanations most likely to be correct (Section 9).

6 CONSTRAINT GRAPH
The SCL language has a natural graph representation that enables analyses of the system of

constraints. In particular, the satisfiability of the constraints can be tested via novel algorithms

based on context-free-language reachability in the graph.

6.1 Constraint graph construction in a nutshell
A constraint graph is generated from assertionsG as follows. As a running example, Figure 5 shows

part of the generated constraint graph for the constraints in the center column of the same figure.

(1) For each assertion H ⊢ E1 ≤ E2, create black nodes for E1 and E2 (if they do not already exist),

and an edge LEQ{H } between the two. For example, nodes for δ0 → Bool and [α0] → γ0 are
connected by LEQ{H }.

(2) For each constructor node (con E) in the graph, create a black node for each of its immediate

sub-elements Ei (if they do not already exist); add a labeled constructor edge consi from the

sub-element to the node; and add a labeled decomposition edge consi in the reverse direction.

For example, δ0 and Bool are connected to (δ0 → Bool) by edges (→1) and (→2) respectively;

and in the reverse direction by edges→
1

and→
2

respectively.
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ty1 bool

fn(ty1,bool)

fn– 1 fn+ 2

!

+LEQ
–LEQ

fn+ 2fn– 1

(a) Constructor edges

ty1 bool

fn(ty1,bool)

fn– 1 fn+ 2

! "+LEQ{ty1≤ty2}

–LEQ{ty1≤ty2}

+LEQ–LEQ

fn+ 2fn– 1

ty2 int

fn(ty2,int)

fn– 1 fn+ 2

–LEQ+LEQ

fn+ 2
fn– 1

(b) Full constraint graph

Fig. 11. Detailed constraint graph handling variance.

Repeat step 2 until no more edges or nodes are added.

We address the creation of dashed edges and white nodes in Sections 7.1 and 7.4 respectively.

6.2 Constructor edge and variance
In general, a constructor edge connecting a constructor node and its components include the

following annotations: the constructor name, the argument position, and the variance of the

parameter (covariant, contravariant or invariant). For simplicity, we omit the variance component

for covariant arguments (e.g., in Figure 5), or when the variance is irrelevant in the context.

To illustrate the use of constructor edge to its full extent, we use the following set of constraints:

⊢ α ≤ fn(−,+)(ty1, bool) ∧ ty1 ≤ ty2 ⊢ β ≤ α ∧ ⊢ fn(−,+)(ty2, int) ≤ β

In this example, we interpret ≤ as the subtyping relation. The constructor fn(−,+)(E1,E2) represents
the function type E1 → E2. Note that the constructor fn is contravariant in its first argument and

covariant in its second. The identifiers ty1, ty2, bool, int are distinct constants and α , β are type

variables to be inferred. The constraint graph generated using all three assertions from the example

is shown in Figure 11(b), excluding the dashed arrow.

In Figure 11, the edge labeled (−fn1) connects the first (contravariant) argument to the constructor

application. Aswe illustrated in Figure 5, for each constructor edge there is also a dual decomposition

edge that connects the constructor application back to its arguments. It is distinguished by an

overline above the constructor name in the graph, and has the same variance: for example, (−fn
1

).

To simplify reasoning about the graph with variance, LEQ edges are also duplicated in the reverse

direction, with negative variance
2
. Thus, the first assertion in the example, ⊢ α ≤ fn(−,+)(ty1, bool),

generates a (+LEQ) edge from α to fn(−,+)(ty1, bool), and a (−LEQ) edge in the other direction, as

illustrated in Figure 11(a).

6.3 Formal construction of the constraint graph
Figure 12 formally presents a function A[[]] that translates a goal G in SCL (i.e., a set of assertions

A1 ∧ . . . ∧ An) into a constraint graph with annotated edges. The graph is represented in the

translation as a set of edges defined by the set Edge, as well as a set of nodes, defined by the set

Node, which consists of the legal elements E modulo the least equivalence relation ∼ that satisfies

the commutativity of the operations ⊔ and ⊓, and that is preserved by the productions in Figure 6.

Most rules are straightforward, but some points are worth noting. First, for each assertion

H ⊢ E1 ≤ E2, the hypothesis H is merely recorded in the edge labels, to be used by later stages of

2
This is intentionally omitted in our running example (Figure 5) for readability.
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n : Node (Node = Element/∼)
e : Edge ::= (pLEQ){H }(n1 7→ n2)

| (pi consi )(n1 7→ n2) | (
pi consi )(n1 7→ n2)

Graph = (℘(Node), ℘(Edge))
A[[G]] : Graph E[[E]]H : Graph

A[[A1 ∧ . . . ∧An ]] =
⋃

i ∈1..n
A[[Ai ]]

A[[H ⊢ E1 ≤ E2]] = E[[E1]]H ∪ E[[E2]]H ∪ (∅, {(
+LEQ){H }(E1 7→ E2), (

−LEQ){H }(E2 7→ E1)})

E[[αℓ]]H = ({αℓ}, ∅)

E[[aℓ]]H = ({aℓ}, ∅)

E[[⊥]]H = ({⊥}, ∅)

E[[⊤]]H = ({⊤}, ∅)

E[[conp (E)]]H = ({con(E)}, ∅)∪⋃
i ∈1..n

(
E[[Ei ]]H ∪ (∅, {(

pi coni )(Ei 7→con(E)), (pi coni )(con(E) 7→ Ei )})
)

E[[conipi (E)]]H = ({con
i (E)}, ∅) ∪ E[[E]]H ∪ (∅, {(pi coni )(coni (E) 7→ E), (pi coni )(E 7→ coni (E)))

E[[fun(E)]]H = ({fun(E)}, ∅) ∪
⋃

i ∈1..n
E[[Ei ]]H

E[[E1 ⊔ E2]]H = ({E1 ⊔ E2}, ∅)∪⋃
i ∈1..2

(
E[[Ei ]]H ∪ (∅, {(

+LEQ){H }(Ei 7→ E1 ⊔ E2), (
−LEQ){H }(E1 ⊔ E2 7→ Ei )})

)
E[[E1 ⊓ E2]]H = ({E1 ⊓ E2}, ∅)∪⋃

i ∈1..2

(
E[[Ei ]]H ∪ (∅, {(

+LEQ){H }(E1 ⊓ E2 7→ Ei ), (
−LEQ){H }(Ei 7→ E1 ⊓ E2)})

)
Fig. 12. Construction of the constraint graph

constraint analysis (Section 8). Second, while components of a constructor application are connected

to the application by constructor/decomposition edges, neither of these edges are added for function
applications, because function applications cannot be decomposed: (fun A= fun B)⇏A=B.

Third, constructor edges are generated by the rules E[[conp (E)]]H and E[[conipi (E)]]H , which con-

nect a constructor application to its arguments with proper variance annotated on the constructed

edges. Invariant arguments generate edges as though they were both covariant and contravariant,

so twice as many edges are generated.

Example. Figure 5 (excluding the white nodes, the dashed edges and nodes F [a], (ξ2, ξ2)) shows
the constructed constraint graph for the three shaded constraints on the bottom left of the same

figure. For simplicity, edges for reasoning about variance are omitted. Here, the edge from δ0 to
Num is generated from the constraint H ⊢ δ0 ≤ Num, according to the rule for ≤. Bi-directional

edges between α0 and Char are generated from the constraint H ⊢ α0 = Char. The rest of the
graph is generated from the constraint H ⊢ [α0] → γ0 = δ0 → Bool. Note that according to the

rule for constructors, the sub-elements of a constructor are connected to the constructor node

with constructor edges. For example, the edges between [α0] and α0 as well as the ones between
[α0] → γ0 and [α0] are all introduced by the constraint element [α0] → γ0.
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(pLEQ{H1 ∧ H2}) ::= (
pLEQ{H1}) (

pLEQ{H2})

(+LEQ{H }) ::= (pconi ) (pLEQ{H }) (pconi )

(−LEQ{H }) ::= (pconi ) (pLEQ{H }) (pconi )

LEQ{H }(con(n) 7→con(n′)) ::= LEQ{H }(ni 7→n′i ),∀ 1≤ i ≤ |n |

LEQ{H }(fun(n)↔ fun(n′)) ::= LEQ{H }(ni↔n′i ),∀ 1≤ i ≤ |n |

where con ∈ Con, fun ∈ Fun, p ∈ {+,−}, + = − and − = +. First two rules apply for

consecutive edges.

Fig. 13. Context-free grammar for (+LEQ) inference. New edges (left) are inferred based on existing edges
(right).

7 GRAPH SATURATION
The key ingredient of graph-based constraint analysis is graph saturation: inequalities that are
derivable from a constraint system are added as new edges in the graph. We first describe a basic

algorithm for constraints where the hypotheses are simply inequalities (i.e., assume A ::= I in
Figure 6). Next, we discuss the challenge of analyzing the complete SCL constraints, and then

propose a novel algorithm that tackles these challenges.

7.1 Inferring node orderings for simple hypothesis
The basic idea of graph saturation is to construct a context-free grammar, shown in Figure 13,

whose productions correspond to inference rules for “≤” relationships.

To perform inference, each production is interpreted as a reduction rule that replaces the right-

hand side with the single LEQ edge appearing on the left-hand side. For instance, the transitivity of

≤ is expressed by the first grammar production, which derives (pLEQ{H1 ∧ H2}) from consecutive

LEQ edges (pLEQ{H1}) and (
pLEQ{H2}), where p is some variance. The inferred LEQ edge has

hypotheses H1 and H2 since the inferred partial ordering is valid only when both H1 and H2 hold.

The power of context-free grammars is needed in order to handle reasoning about constructors.

In our example using variance (Figure 11), applying transitivity to the constraints yields ty1 ≤
ty2 ⊢ fn(ty2, int) ≤ fn(ty1, bool). Then, because fn is contravariant in its first argument, we

derive ty1 ≤ ty2. Similarly, we can derive int ≤ bool, the dashed arrow in Figure 11(b).

To capture this kind of reasoning, we use the first two productions in Figure 13. In our example

of Figure 11(b), the path from ty1 to ty2 has the following edges: (−fn1) (−LEQ) (−LEQ{ty1 ≤

ty2}) (−LEQ) (−fn
1

). These edges reduce via the first and then the second production to an edge

(+LEQ{ty1 ≤ ty2}) from ty1 to ty2. Note that the variance is flipped because the first constructor
argument is contravariant. Similarly, we can infer another (+LEQ{ty1 ≤ ty2}) edge from int to
bool.
The third grammar production in Figure 13 is the dual of the second production, ensuring the

invariant that each (+LEQ) edge has an inverse (−LEQ) edge. In our example of Figure 11(b), there

is also an edge (−LEQ{ty1 ≤ ty2}) from ty2 to ty1, derived from the following edges: (−fn1)

(+LEQ) (+LEQ{ty1 ≤ ty2}) (+LEQ) (−fn
1

). These edges reduce via the first and then the third

production to an edge (−LEQ{ty1 ≤ ty2}) from ty2 to ty1.
The last rule applies for function applications, reflecting the entailment rule (FComp) in Figure 7.

Computing all inferable (+LEQ) edges according to the context-free grammar in Figure 13 is an

instance of context-free-language reachability, which is well-studied in the literature [6, 38] and has
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been used for a number of program-analysis applications [49]. We adapt the dynamic programming

algorithm of Barrett et al. [6] to find shortest (+LEQ) paths. We call such paths supporting paths
since the hypotheses along these paths justify the inferred (+LEQ) edges. We extend this algorithm

to also handle join and meet nodes.

Take join nodes, for instance (meet is handled dually). The rule (Join2) in Figure 7 is already

handled when we construct edges for join elements (Figure 12).

To handle the rule (Join1), we use the following procedure when a new edge (+LEQ){H }(n1 7→
n2) is processed: for each join element E where n1 is an argument of the ⊔ operator, we add an

edge from E to n2 if all arguments of the ⊔ operator have a (+LEQ) edge to n2.

7.2 Limitations of pure CFL-reachability analysis
However, graph saturation as described so far is insufficient to handle the full SCL language. We

can see this by considering the constraint graph of the running example, in Figure 5. Excluding the

white nodes and the edges leading to and from them, this graph is fully saturated according to the

rules in Figure 13. For example, the dashed edges between δ0 and [α0] can be derived by the second

production. However, a crucial inequality (edge) is missing in the saturated graph: ([Char] ≤ Num),
which can be derived from the shaded constraints in Figure 5. Since this inequality reveals an error

in the program being analyzed (that [Char] is not an instance of class Num), failure to identify it

means an error is missed. Moreover, the edges between (ξ2, ξ2) and (F a0) are mistakenly judged as

unsatisfiable, as we explain in Section 8.1.

7.3 Expanding the graph
The key insight for fixing the aforementioned problems is to expand the constraint graph during

graph saturation. Informally, nodes are added to the constraint graph so that the fourth and fifth

rules in Figure 13 can be applied.

The (full) constraint graph in Figure 5 is part of the final constraint graph after running our

complete algorithm. The algorithm expands the original constraint graph with a new node [Char].
Then, the dashed edge from [Char] to [α0] is added by the fourth production in Figure 13, and then

the dashed edge from [Char] to Num by the first production. Therefore, the unsatisfiable inequality

([Char] ≤ Num) is correctly identified by the complete algorithm. Moreover, the same mechanism

determines that (F a0)= (b0, b0) can be entailed from hypothesis H ′, as we explain in Section 8.

Hence, edges from and to (F a0) are correctly classified as satisfiable.

The key challenge for the expansion algorithm is to explore useful nodes without creating the

possibility of nontermination. For example, starting from α0=Char, a naive expansion algorithm

based on the insight above might apply the list constructor to add nodes [α0], [Char], [[α0]],
[[Char]] and so on infinitely.

7.4 The complete algorithm
To ensure termination, the algorithm distinguishes two kinds of graph nodes: black nodes are
constructed directly from the system of constraints (i.e., nodes added by the rules in Figure 12);

white nodes are added during graph expansion.

The algorithm is shown in Figure 14. The top-level procedure expand&saturate first initializes

the trace for each black node, and then fully expands and saturates a constraint graph. The procedure

saturate adds (only) new edges to the constraint graph G by using the rules shown in Figure 13.

The most interesting part is the procedure expand, which actively adds (only) new white nodes

to the graph, so the saturation procedure may saturate the graph further. As depicted in Figure 15,

this procedure looks for an LEQ edge between some elements E and E ′ in the graphG . IfG contains
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Trace : (Node, Subst, . . . , Subst) Subst : (Element ↪→ Element)

Procedure expand&saturate(G : Graph)
foreach Element E in G do initialize T(E) with (E, ∅)
call saturate(G) and expand(G,T) until G is unmodified

Procedure saturate(G : Graph)
Add new edges to G according to the rules in Figure 13

Procedure expand(G : Graph,T : Element→ Trace)
For a matched pattern shown in Figure 15, say Eold is in G already.

Add Enew to G as a white node. Let E ≤ E ′ be an edge between

the corresponding sub-elements of Eold and Enew:
1 if (E ↪→ E ′) < T(Eold) then
2 initialize T(Enew) with (append (T (Eold),(E ↪→E ′)))

end

Fig. 14. Graph saturation and expansion algorithm.

Fig. 15. Graph-expanding patterns. If only one gray node is in the graph, the other one is added as a white
node.

only one of con (E1, .,E, .,En) and con (E1, .,E ′, .,En), the other element is added as a white node.

A similar procedure applies to function applications as well. The added nodes enable more edges to

be added by procedure saturate (e.g., the dashed edges in Figure 15).

To ensure termination, the expansion procedure places two restrictions on the edges and nodes

that trigger expansion. First, both of E and E ′ must be black nodes. Second, a trace T is kept for

each element. A trace is a single black node along with a sequence of substitutions in the form

(Element ↪→ Element). Intuitively, a trace records how a constraint element can be derived

by applying substitutions to an element from the original constraint system (a black node). For

example, ((x ,y), (x ↪→ Int), (y ↪→ Bool)) is a possible trace for constraint element (Int,Bool). For
a black node, the sequence only contains the node itself. It is required that a single substitution

cannot be applied twice (line 1). When a white node is added, a substitution (E ↪→ E ′) is appended
to the trace of T(Eold) (line 2).

Returning to our running example in Figure 5, the LEQ edge from α0 to Char, as well as the node
[α0], match the pattern in Figure 15. In this example, the white node [Char] is added to the graph. As
an optimization, no constructor/decomposition edges are added, since these edges are only useful

for finding α0=Char, which is in the graph already. Moreover, T([Char]) = ([α0], (α0 ↪→ Char)).

7.5 Termination
The algorithm in Figure 14 always terminates, because the number of nodes in the fully expanded

and saturated graph must be finite. This is easily shown by observing that |T (Enew)| = |T (Eold)|+1,
and trace size is finite (elements in a substitution must be black). Here is a formal proof of this fact.

Lemma 2. The algorithm in Figure 14 always terminates.
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HGraph = (Graph,R) R = ℘(Q) Q[[H ]] : HGraph
N : the constraint graph w/o edges A[[G]] : as defined in Figure 13

Q[[Q1 ∧ . . . ∧Qn ]] = (N , ∅) ∪
⋃

i ∈1..n
Q[[Qi ]]

Q[[I ]] = (A[[∅ ⊢ I ]], ∅) Q[[∀a . C ⇒ I ]] = (∅, {∀a . C ⇒ I })

Fig. 16. Construction of the hypothesis graph.

Proof. We only need to prove that the number of nodes in the fully expanded and saturated graph

is finite. To prove this, we notice that the algorithm in Figure 14 maintains an important invariant:

|T (E)|= |T (E ′)| + 1 where E is added. This is true because T(E) = T(E ′) ∪ {LEQ{H }(E1 7→ E2)}
(line 2) and the recursion check at line 1.

Therefore, let N be the number of black nodes, SE be the number of edges whose both end nodes

are black, and sizei be the number of graph nodes whose trace size is exactly i . It is easy to show

sizei ≤ N ×SEi−1 by induction. Moreover, for any element E, |T (E)| ≤ SE+1 because T(E) may

only contain substitutions arising from edges whose both end nodes are black. So sizei = 0 when

i >SE. Hence, node size is finite. □

8 CLASSIFICATION
Each LEQ edge LEQ{H }(E1 7→ E2) in the saturated constraint graph corresponds to an entailment

constraint, H ⊢ E1 ≤ E2, that is derivable from the constraints being analyzed. For example, in

Figure 5, the LEQ edge from (b0, b0) to (F a0) corresponds to the following entailment:

(∀a. F [a]= (a,a))∧
([Int]≤Num) ∧ (a0= [b0])

⊢ (b0, b0)≤ F a0

Now, the question is: is this entailment satisfiable?
To answer this question, SHErrLoc builds and saturates hypothesis graphs for the hypotheses

recorded on the LEQ edges. The idea is to infer derivable inequalities fromH , so that the satisfiability

of E1 ≤ E2 can be simply judged by its existence in the hypothesis graph. Although hypothesis

graphs share some similarities with the constraint graph, we note that hypothesis graphs are

separate graphs, so building and saturating them does not affect the constraint graph.

8.1 Hypothesis graph
For each hypothesis H shown on LEQ edges in the saturated constraint graph, we construct and

saturate a hypothesis graph so that derivable inequalities from H become present in the saturated

hypothesis graph.

The construction of a hypothesis graph is shown in Figure 16. For an entailment H ⊢E1 ≤E2, the
constructed graph of H includes both E1 and E2. These nodes are needed as guidance for graph

saturation. Otherwise, consider an assertion a0 = b0 ⊢ [[a0]] = [[b0]]. Without nodes [[a0]] and
[[b0]], we face a dilemma: either we need to infer (infinite) inequalities derivable from a0=b0, or
we may miss a valid entailment. As an optimization, all nodes (but not edges) in the constraint

graph (N ) are added to the constructed graph as well. The benefit is that we need to saturate a

hypothesis graph just once for all edges that share the hypothesis graph.

The function Q[[H ]] translates a hypothesis H into a graph representation associated with a rule

set R. Hypotheses in the degenerate form (I ) are added directly; others are added to the rule set R,

which is part of a hypothesis graph. Returning to our running example, Figure 17 (excluding the
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(a) Hypothesis graph for H
in Figure 5.

(b) Hypothesis graph for H ′ in Figure 5.

Fig. 17. Hypothesis graphs for the running example.

Procedure saturate(G : Graph)
1 Add new edges to G according to the rules in Figure 13

2 foreach H = (∀a . I1 ∧ . . . ∧ In⇒E1 ≤ E2) ∈R do
3 if ∃θ : a 7→ Node . ∀1 ≤ i ≤ n . θ [Ii ] ∈ G then
4 if θ [E1] and θ [E2] are both in G then
5 add edge from E1 to E2 if not in G already

end
end

end

Fig. 18. Hypothesis graph saturation for axioms.

white node and dashed edges) shows (part of) the constructed hypothesis graphs for hypotheses H
and H ′.
The hypothesis graph is then expanded and saturated similarly to the constraint graph. The

difference is that axioms are applied during saturation, as shown in Figure 18. In other words, the

new algorithm supercedes that in Figure 14 in the extra capability of handling axioms, which are

absent in the constraint graph. At line 3, an axiom ∀a. C⇒ I is applied when it can be instantiated

so that all inequalities in C are in G already (i.e., H entails these inequalities). Then, an edge

corresponding to the inequality in conclusion is added to G (line 5).

Consider the hypothesis graph in Figure 17(b). The node F [b0] is added by expand in Figure 14.

Moreover, the quantified axiom (∀a . F [a] = (a,a)) is applied, under the substitution (a 7→ b0).
Hence, the algorithm adds the dashed edges between F [b0] and (b0, b0) to the hypothesis graph.
The final saturated hypothesis graph contains edges between F a0 and (b0, b0) as well, by transitivity.
Notice that without graph expansion, this relationship will not be identified in the hypothesis

graph, so the edges from and to (F a0) in Figure 5 are mistakenly classified as unsatisfiable.

8.2 Classification
An entailment H ⊢E1 ≤E2 is classified as satisfiable iff there is a level-respecting substitution θ such

that the hypothesis graph for H contains an LEQ edge from θ [E1] to θ [E2]. Such substitutions are

searched for in the fully expanded and saturated hypothesis graph.

Returning to the running example in Figure 5, our algorithm correctly classifies the LEQ edges

between (b0, b0) and (F a0) as satisfiable, since the corresponding edges are in Figure 17(b). Our

algorithm correctly classifies LEQ edges between (ξ2, ξ2) and (F a0) as satisfiable as well, with

substitution ξ2 7→ b0. On the other hand, the LEQ edge from [Char] to Num is (correctly) judged
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as unsatisfiable, since the inequality is not present in the fully expanded and saturated hypothesis

graph for H .

To see why the level-respecting substitution requirement is needed, consider the following

example, adapted slightly from the introduction:

(λx. let g::(∀a . a → (a, a)) =
λy. (x, y) in ...)

This program generates an assertion ∅ ⊢ (β2 → (α0, β2))= (a1 → (a1, a1)), which requires that

the inferred type for the implementation of g be equivalent to its signature. The final constraint

graph for the assertion contains two LEQ edges between nodes α0 and a1. These edges are correctly
classified as unsatisfiable, since the only substitution candidate, α0 7→ a1, is not level-respecting.

If the signature of g is (∀a . a= Int⇒a→(a,a)), the program is well-typed, since the parameter

of g must be Int. This program generates the same assertion as the previous example, but with

a hypothesis a1 = Int. This assertion is correctly classified as satisfiable, via a level-respecting

substitution α0 7→ Int.

8.3 Informative paths
When either end node of a satisfiable (+LEQ) edge is a unification variable, its satisfiability is trivial

and hence not informative for error diagnosis. Moreover, when either end node of an (+LEQ) edge
is a ⊔ (⊓) node where at least one argument of ⊔ (⊓) is a variable, the edge is trivially satisfiable

too. For simplicity, we ignore such edges and refer subsequently only to informative (+LEQ) edges.
When the partial ordering on the end nodes of a path is invalid, we say that the path is end-to-end

unsatisfiable. End-to-end unsatisfiable paths are helpful because the constraints along the path

explain why the inconsistency occurs.

Also useful for error diagnosis is the set of satisfiable paths: paths where there is a valid partial

ordering on any two nodes on the path for which a (+LEQ) relationship can be inferred.

Any remaining paths are ignored in our error diagnosis algorithm, since by definition they must

contain at least one end-to-end unsatisfiable subpath. For brevity, we subsequently use the term

unsatisfiable path to mean a path that is end-to-end unsatisfiable.

8.4 Redundant edges
The introduction of white nodes introduces redundant edges, whose satisfiability is determined by

other edges in the graph. Consider Figure 5, the satisfiability of the edge between [α0] and [Char]
merely repeats the edge between α0 and Char; the fact that end-nodes can be decomposed is also

uninformative because white nodes are constructed this way. In other words, this edge provides

neither positive nor negative evidence that the constraints it captures are correct. It is redundant.
We can soundly capture a large class of redundant edges:

Definition 1. An edge is redundant if

(1) both end-nodes are constructor applications of the same constructor, and at least one node is
white; or

(2) both end-nodes are function applications to the same function, and for each simple edge along
this edge, at least one of its end-nodes is white.

Otherwise, an edge is non-redundant.

The following lemma shows that if an edge is redundant according to the previous definition

then it does not add any positive or negative information in the graph—it is equivalent to some

other set of non-redundant edges.
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Lemma 3. For any redundant edge from E1 to E2, there exist non-redundant edges say Pi from Ei1
to Ei2, so that E11 ≤ E12 ∧ . . . ∧ En1 ≤ En2 ⇔ E1 ≤ E2.

We first prove some auxiliary results.

Lemma 4 (Edge Simulation). For any single edge LEQ(E 7→ E ′) in a fully saturated and expanded
graph G. If at least one node is white, and

(1) E = con τ and E ′ = con τ ′ for some constructor con, or
(2) E = fun τ and E ′ = fun τ ′ for some function fun,

then for any pair of corresponding parameters τi and τ ′i , either τi = τ
′
i , or there is an edge LEQ(τi 7→ τ ′i )

in G.

Proof. Assume E is a white node without losing generality. By construction, E ∈ E ′[E1/E2] for
some elements E1 and E2.
For any pair of corresponding parameters τi and τ ′i , the interesting case is when τi , τ ′i . As-

sume T(E) = (E0, s1, s2, . . . , sn), where si ’s are substitutions. Since component substitution does

not change the top-level structure, the black node E0 must have the form con τ0 (or fun τ0). By
construction, τ0i is a black node in G. Hence, the algorithm also adds τi by applying the same

substitutions on τ0i , as well as τ
′
i by applying one more substitution τ0i [E1/E2]. LEQ(τi 7→ τ ′i ) is

also added by saturation rules. □

Lemma 5 (Path simulation-Cons). For any LEQ path from E1 to E2 in a fully saturated and
expanded graph G where E1 = con τ1 and E2 = con τ2 for some constructor con. If at least one end
node is white, then for any pair of corresponding parameters τi and τ ′i , either τi = τ

′
i , or there is a path

from τi to τ ′i in G.

Proof. We prove by induction on the path length. The base case (length=1) is trivial by Lemma 4.

Assume the conclusion holds for any path whose length ≤ k . Consider a path with length k + 1.
Without losing generality, we assume E1 is a white node.

Since a white node only connects elements with same top-level constructor, the path from E1
to E2 has the form: con τ1 − con τ0 − con τ2 for some τ0. Result is true by Lemma 4 and induction

hypothesis unless both con τ0 and con τ2 are black nodes.

When both con τ0 and con τ2 are black, all of their parameters are black by graph construction.

Moreover, there is a path on each pair (τ0i ,τi2) by the second production in Figure 13. By Lemma 4,

there is an edge connecting τi1 and τ0i . Therefore, there is a path from τi1 to τi2 if they are different. □

Lemma 6 (Path simulation-Funs). For any LEQ path from E1 to E2 in a fully saturated and
expanded graphG where E1 = fun τ1 and E2 = fun τ2 for some function fun. If for any edge along the
path, at least one end node is white, then for any pair of corresponding parameters τi and τ ′i , either
τi = τ

′
i , or there is a path from τi to τ ′i in G.

Proof. We prove by induction on the path length. The base case (length=1) is trivial by Lemma 4.

Assume the conclusion holds for any path whose length ≤ k . Consider a path with length k + 1.
By assumption, every edge has at least one white node. Since a white node only connects elements

with same top-level functions, the path from E1 to E2 has the form: fun τ1 − fun τ ′− fun τ2 for some

τ ′. Result is true by Lemma 4 and induction hypothesis. □

Proof of Lemma 3. For any redundant path from E1 to E2, there exist non-redundant paths in G,
say Pi from Ei1 to Ei2, so that E11 ≤ E12 ∧ . . . ∧ En1 ≤ En2 ⇔ E1 ≤ E2.

Proof.
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(1) When E1 = con τ1 and E2 = con τ2 for some constructor con.
We construct the desired set of non-redundant paths, say P, as follows. For each parameter

pair τ1i and τ2i , either τ1i = τ2i or there is a path from τ1i to τ2i in G. We add nothing to P if

τ1i = τ2i . Otherwise, we add the path to P if it is non-redundant. If the path is redundant, we

recursively add all non-redundant paths that determines τ1i ≤ τ2i to P. Easy to check P has

the desired property and the recursion terminates since all elements are finite.

(2) When E1 = fun τ1 and E2 = fun τ2 for some constructor fun.
Similar to the case above, except we use Lemma 6 instead of Lemma 5 in the proof.

□

Since redundant edges provides neither positive nor negative evidence for error explanation, for

brevity, we subsequently use the term path to mean a path that is non-redundant.

9 BAYESIAN MODEL FOR RANKING EXPLANATIONS
The observed symptom of errors is a fully analyzed constraint graph (Section 8), in which all

informative LEQ edges are classified as satisfiable or unsatisfiable. For simplicity, in what follows

we write “edge” to mean “informative and non-redundant edge”.

Although the information along unsatisfiable paths already captures why a goal is unsatisfiable,

reporting all constraints along a path may give more information than the programmer can digest.

Our approach is to use Bayesian reasoning to identify programmer errors more precisely.

9.1 A Bayesian interpretation
The cause of errors can be wrong constraints, missing hypotheses, or both. To keep our diagnostic

method as general as possible, we avoid building in domain-specific knowledge about mistakes

programmers tend to make. However, the framework does permit adding such knowledge in a

straightforward way.

The language-level entity about which errors are reported can be specific to the language. OCaml

reports typing errors in expressions, whereas Jif reports errors in information-flow constraints. To

make our diagnosis approach general, we treat entities as an abstract set Ω and assume a mapping Φ
from entities to constraints. We assume a prior distribution on entities PΩ , defining the probability

that an entity is wrong. Similarly, we assume a prior distribution PΨ on hypotheses Ψ, defining the

probability that a hypothesis is missing.

Given entities E ⊆ Ω and hypothesesH ⊆ Ψ, we are interested in the probability that E andH are

the cause of the error observed. In this case, the observation o is the satisfiability of informative paths

within the program. We denote the observation as o = (o1,o2, . . . ,on), where oi ∈ {unsat, sat}
represents unsatisfiability or satisfiability of the corresponding path. The observation follows some

unknown distribution PO .
We are interested in finding a subset E of entities Ω and a subset H of hypotheses Ψ for which

the posterior probability P(E,H |o) is large, meaning that E and H are likely causes of the given

observation o. In particular, a maximum a priori estimate is a pair (E,H ) at which the posterior

probability takes its maximum value; that is, at argmaxE⊆Ω,H ⊆Ψ P(E,H |o).
By Bayes’ theorem, P(E,H |o) is equal to

PΩ×Ψ(E,H )P(o |E,H )/PO (o)

The factor PO (o) does not vary in the variables E and H , so it can be ignored. Assuming the prior

distributions on Ω and Ψ are independent, a simplified term can be used:

PΩ(E)PΨ(H )P(o |E,H )
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PΩ(E) is the prior knowledge of the probability that a set of entities E is wrong. In principle, this

term might be estimated by learning from a large corpus of buggy programs or using language-

specific heuristics. For simplicity and generality, we assume that each entity is equally likely to be

wrong. We note that incorporating language-specific knowledge to refine the prior distribution

PΩ(E) (e.g., assigning weights to different kinds of constraints) will likely improve the accuracy of

SHErrLoc, but we leave that to future work.

We also assume the probability of each entity being the cause is independent.
3
Hence, PΩ(E) is

estimated by P |E |
1

, where P1 is a constant representing the likelihood that a single entity is wrong.

PΨ(H ) is the prior knowledge of the probability that hypotheses H are missing. Of course, not all

hypotheses are equally likely to be wrong. For example, the hypothesis ⊤ ≤ ⊥ is too strong to be

useful: it makes all constraints succeed. The likely missing hypothesis is both weak and small. Our

general heuristics for obtaining this term are discussed in Section 9.3.

P(o |E,H ) is the probability of observing the constraint graph, given that entities E are wrong and

hypotheses H are missing. To estimate this factor, we assume that the satisfiability of the remaining

paths is independent (again, refining this simplifying assumption will likely improve the accuracy

of SHErrLoc). This allows us to write P(o |E,H ) =
∏

i P(oi |E,H ). The term P(oi |E,H ) is calculated
using two heuristics:

(1) For an unsatisfiable path, either something along the path is wrong, or adding H to the

hypotheses on the path makes the partial ordering on end nodes valid. So when neither pi has
an entity in E, nor adding H to hypotheses on pi makes it satisfiable, P(oi = unsat|E,H ) = 0

and P(oi = sat|E,H ) = 1.

(2) A satisfiable path is unlikely (with some constant probability P2 < 0.5) to contain a wrong

entity. Therefore, if path pi contains a constraint generated by some entity in E, we have
P(oi = sat|E,H ) = P2 and P(oi = unsat|E,H ) = 1 − P2.

The first heuristic suggests we only need to consider the entities and hypotheses that explain all

unsatisfiable paths (otherwise P(oi |E,H ) = 0 for some oi = unsat by heuristic 1). We denote this

set by G. Suppose entities E appear on NE paths in total, among which kE paths are satisfiable by

definition. We say entities E cut a path p iff p contains some entity in E; hypotheses H explain a

path p iff adding H to the hypotheses on p makes the partial ordering on end nodes valid. Then,

based on the simplifying assumptions made, we have

argmax

E⊆Ω,H ⊆Ψ
PΩ(E)PΨ(H )P(o |E,H )

= argmax

E⊆Ω,H ⊆Ψ
P |E |
1

PΨ(H )ΠiP(oi |E,H )

= argmax

E⊆Ω,H ⊆Ψ
P |E |
1

PΨ(H )(Πi :E cut piP(oi |E,H ) · Πi :¬(E cut pi )∧¬(H explain pi )P(oi |E,H )

· Πi :¬(E cut pi )∧(H explain pi )P(oi |E,H ))

= argmax

E⊆Ω,H ⊆Ψ
P |E |
1

PΨ(H )P
kE
2
(1 − P2)

NE−kEΠi :¬(E cut pi )∧¬(H explain pi )P(oi |E,H )

= argmax

(E,H )∈G
P |E |
1
(P2/(1 − P2))

kE (1 − P2)
NEPΨ(H )

3
It seems likely that the precision of our approach could be improved by refining this assumption, since the (rare) missed

locations in our evaluation usually occur when the programmer makes a similar error multiple times.
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In the third equation, we drop the case ¬(E cuts pi ) ∧ (H explains pi ) because H always explain

a path that is already satisfiable. Therefore, H being missing hypotheses does not affect the prior

distribution P(oi |E,H ) in this case.

For simplicity, we approximate the most likely error causes by assuming NE is roughly the same

for all candidates in set G. Hence, if C1 = − log P1 and C2 = − log(P2/(1 − P2)), maximizing the

likelihood is equivalent to minimizing the ranking metric |E | + (C2

C1

)kE . An intuitive understanding

is that the cause must explain all unsatisfiable edges; the wrong entities are likely to be small (|E | is
small) and not used often on satisfiable edges (since C2 > 0 by heuristic 2); the missing hypothesis

is likely to be weak and small, as defined in Section 9.3, which maximizes the term PΨ(H ).
Notice that other than |E | and kE , the ranking metric only depends on the ratio between C2 and

C1. Empirical results show that the ranking of expression sets according to this metric is insensitive

to the value of C2/C1 for both OCaml (Section 10.2.3) and Haskell (Section 10.3.3) programs. This

result suggests that SHErrLoc is likely to provide precise error locations for various applications

without language-specific tunings.

9.2 Inferring likely wrong entities

The term P |E |
1
(P2/(1 − P2))

kE
can be used to calculate the likelihood that a subset of entities is the

cause. However, its computation for all possible sets of entities can be impractical. Therefore, we

propose an instance of A
∗
search [22], based on novel heuristics, to calculate optimal solutions in a

practical way.

A
∗
search is a heuristic search algorithm for finding minimum-cost solution nodes in a graph of

search nodes. In our context, each search node n represents a set of entities deemed wrong, denoted

En . A solution node is one that explains all unsatisfiable paths—the corresponding entities appear

in all unsatisfiable paths. An edge corresponds to adding a new entity to the current set.

The key to making A
∗
search effective is a good cost function f (n). The cost function is the sum

of two terms: д(n), the cost to reach node n, and h(n), a heuristic function estimating the cost from

n to a solution.

Before defining the cost function f (n), we note that maximizing the likelihood P |E |
1
(P2/(1−P2))

kE

is equivalent to minimizingC1 |E | +C2kE , whereC1 = − log P1 andC2 = − log(P2/(1− P2)) are both
positive constants because 0 < P1 < 1 and 0 < P2 < 0.5. Hence, the cost of reaching n is

д(n) = C1 |En | +C2kEn

To obtain a good estimate of the remaining cost—that is, the heuristic function h(n)—our insight
is to use the number of entities required to cover the remaining unsatisfiable paths, denoted as Prm,

since C1 is usually larger than C2. More specifically, h(n) = 0 if Prm = ∅. Otherwise, h(n) = C1 if

Prm is covered by one single entity; h(n) = 2C1 otherwise.

An important property of the heuristic function is its optimality: all and only the most likely

wrong subsets of entities are returned. This result is proven in Lemma 7. The heuristic search

algorithm is also efficient in practice: on current hardware, it takes about 10 seconds even when

the size of the search space is 2
1000

. More performance details are given in Section 10.

Lemma 7. The heuristic search algorithm is optimal.

Proof. Since the heuristic search algorithm is based on A
∗
search, we only need to show h(n) is

consistent. That is, for every node n and every successor n′ of n, we have h(n) ≤ c(n,n′) + h(n′),
where c(n,n′) is the cost from n to n′.

Since the successor always contains one more program entity, we have C1 ≤ c(n,n′). When

0 ≤ h(n) ≤ C1, we have h(n) ≤ C1 + 0 ≤ c(n,n)+h(n′) for all n,n′. When h(n) = 2C1, we know that
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h(n′) ≥ C1 for any successor n′ of n by the design of h(n). Hence, h(n) = C1 +C1 ≤ c(n,n′) + h(n′)
when h(n) = 2C1. □

Algorithm. The algorithm maintains a priority queue Q , a set of solutions S , and the minimum

solution costmin. To avoid duplicated search states, we assume without loss of generality that

entities in Ω are associated with unique identifiers. The algorithm works as follows. Notice that

the algorithm returns all optimal explanations.

(1) Initially, Q contains a single node n0 representing the empty set, S = ∅, andmin is set to

infinity.

(2) At each step, the algorithm removes a node n with the smallest cost from Q , w.r.t. the cost
function f (n) = д(n) + h(n) that we have define above, and tests whether En covers all

unsatisfiable paths.

(a) If En is a cover, add En to S if f (n) ≤ min, and set min to f (n) when min is infinity. If

f (n) > min, goto step 3.

(b) Otherwise, for each entity e ∈ Ω with an ID larger than any element in En , create a node
n′ where En′ = En ∪ {e

′}, and add n′ to Q . Then repeat step 2.

(3) Return set S .

9.3 Inferring missing hypotheses
Another factor in the Bayesian interpretation is the likelihood that hypotheses (assumptions)

are missing. Recall that a path from element E1 to E2 in a constraint graph is unsatisfiable if the

conjunction of hypotheses along the path is insufficient to prove the partial ordering E1 ≤ E2. So
we are interested in inferring a set of missing hypotheses that are sufficient to repair unsatisfiable

paths in a constraint graph.

9.3.1 Motivating example. Consider the following assertions:

(Bob ≤ Carol ⊢ Alice ≤ Bob)

∧(Bob ≤ Carol ⊢ Alice ≤ Carol)

∧(Bob ≤ Carol ⊢ Alice ≤ Carol ⊔ ⊥)

Since the only hypothesis we have is Bob ≤ Carol (meaning Carol is more privileged than Bob),

none of the three constraints in the conclusion holds. One trivial solution is to add all invalid

conclusions to the hypothesis. This approach would add Alice ≤ Bob ∧ Alice ≤ Carol ∧ Alice ≤
Carol ⊔ ⊥ to the hypotheses. However, this naive approach is undesirable for two reasons:

(1) An invalid hypothesis may invalidate the program analysis. For instance, adding an insecure

information flow to the hypotheses can violate security. The programmer has the time-

consuming, error-prone task of checking the correctness of every hypothesis.

(2) A program analysis may combine static and dynamic approaches. For instance, although most

Jif label checking is static, some hypotheses are checked dynamically. So a large hypothesis

may also hurt run-time performance.

It may also be tempting to select the minimal missing hypothesis, but this approach does not work

well either: a single assumption ⊤ ≤ ⊥ is always a minimal missing hypothesis for all unsatisfiable

paths. Given ⊤ ≤ ⊥, any partial order E1 ≤ E2 can be proved since E1 ≤ ⊤ ≤ ⊥ ≤ E2. However,
this assumption is obviously too strong to be useful.

Intuitively, we are interested in a solution that is both weakest andminimal. In the example above,

our tool returns a hypothesis with only one constraint Alice ≤ Bob: both weakest and minimal.
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We now formalize the minimal weakest missing hypothesis, and give an algorithm for finding

this missing hypothesis.

9.3.2 Missing hypothesis. Consider an unsatisfiable path P that supports an (+LEQ) edge e =
(+LEQ){H }(n1 7→ n2). For simplicity, we denote the hypothesis of P as H(P) = H , and the

conclusion C(P) = n1 ≤ n2.
We define a missing hypothesis as follows:

Definition 2. Given unsatisfiable paths P = {P1, P2, . . . , Pn}, a set of inequalities S is a missing
hypothesis for P iff ∀Pi ∈ P . H(Pi ) ∧∧I ∈S I ⊢ C(Pi ).

Intuitively, adding all inequalities in the missing hypothesis to the assertions’ hypotheses removes

all unsatisfiable paths in the constraint graph.
4

Example. Returning to the example in Section 9.3.1, it is easy to verify that Alice ≤ Bob is a

missing hypothesis that makes all of the assertions valid.

9.3.3 Finding a minimal weakest hypothesis. We are not interested in all missing hypotheses;

instead, we want to find one that is both minimal and as weak as possible.
To simplify the notation, we further define the conclusion set of unsatisfiable paths P as the

union of all conclusions: C(P) =
⋃
{C(Pi ) | Pi ∈ P}.

The first insight is that the inferred missing hypothesis should not be too strong.

Definition 3. For a set of unsatisfiable paths P, a missing hypothesis S is no weaker than S ′ iff

∀I ′ ∈ S ′ . ∃P ∈ P . H(P) ∧
∧
I ∈S

I ⊢ I ′

That is, S is no weaker than S ′ if all inequalities in S ′ can be proved from S , using at most one

existing hypothesis.

Given this definition, the first property we show is that every subset of C(P) that forms a missing

hypothesis is maximally weak:

Lemma 8. ∀S ⊆C(P). S is a missing hypothesis⇒ no missing hypothesis is strictly weaker than S .

Proof. Suppose there exists a strictly weaker missing hypothesis S ′. Since S ′ is a missing hypothesis,

H(Pi )∧
∧

I ′∈S ′ I
′ ⊢ C(Pi ) for all i . Since S ⊆ C(P), ∀I ∈ S .H(Pi )∧∧I ′∈S ′ I

′ ⊢ I . So S ′ is no weaker
than S . Contradiction. □

The lemma above suggests that subsets of C(P) may be good candidates for a weak missing

hypothesis. However, they are not necessarily minimal. For instance, the entire set C(P) is a

maximally weak missing hypothesis.

To remove the redundancy in this weakest hypothesis, we observe that some of the conclusions

are subsumed by others. To be more specific, we say a conclusion ci subsumes another conclusion
c j = C(Pj ) if ci ∧H(Pj ) ⊢ c j . Intuitively, if ci subsumes c j , then adding ci to the hypothesis of Pj
makes Pj satisfiable.

Example. Return to the example in Section 9.3.1. The missing hypothesis Alice ≤ Bob is both
the weakest and minimal.

Based on Lemma 8 and the definition above, finding a minimal weakest missing hypothesis in

C(P) is equivalent to finding the minimum subset of C(P) which subsumes all c ∈ C(P). This
gives us the following algorithm:

4
A more general form of missing hypothesis might infer individual hypotheses for each path. But it is less feasible to do so.
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Algorithm. Given a set of unsatisfiable paths P = {P1, P2, . . . , Pn}:

(1) Construct the set C(P) from the unsatisfiable paths.

(2) For all ci , c j in C(P), add c j to set Si , the set of conclusions subsumed by ci , if ci subsumes c j .
(3) Find the minimum coverM of C(P), where S = {S1, . . . , Sn} andM ⊆ S.
(4) Return {ci | Si ∈ M}.

A brute force algorithm for finding the minimal weakest missing hypothesis may check all

possible hypotheses. That is on the order of 2
N 2

(the number of all subsets of ≤ orderings on

elements) where N is the total number of elements used in the constraints. While the complexity

of our algorithm is exponential in the number of unsatisfiable paths in the constraint graph, this

number is usually small in practice. So the computation is still feasible.

10 EVALUATION
10.1 Implementation
We implemented our general error diagnostic tool SHErrLoc in Java. SHErrLoc reads in constraints

following the syntax of Figure 6, and computes constraints most likely to have caused errors in the

constraint system being analyzed. The implementation includes about 8,000 lines of source code,

excluding comments and blank lines. The SHErrLoc tool is released as open source [50].

To evaluate our error diagnostic tool on real-world program analyses, we modified several

compilers to generate constraints in our constraint language format: Jif, EasyOCaml [15], and

GHC [35]. EasyOCaml is an extension of OCaml 3.10.2 that generates the labeled constraints defined

in [19].

Generating constraints in our constraint language format involved only at most modest effort.

For Haskell type inference, little effort was required. We modified the GHC compiler (version

7.8.2), which already generates and solves constraints during type inference, to emit unsimplified,

unsolved constraints. The modification is minimal: only 50 LOC (lines of code) are added or modified.

Constraints in GHC’s format are then converted by a lightweight Perl script (about 400 LOC) into

the syntax of our error diagnosis tool.

Changes to the Jif compiler include about 300 LOC above more than 45,000 LOC in the unmodified

compiler. Changes to EasyOCaml include about 500 LOC above the 9,000 LOC of the EasyOCaml

extension. Slightly more effort is required for EasyOCaml because that compiler did not track the

locations of type variables; this functionality had to be added so constraints could be traced back to

the corresponding source code.

10.2 Case study: OCaml error reporting
To evaluate the quality of our ranking algorithm on OCaml, we used a corpus of previously collected

OCaml programs containing errors, collected by Lerner et al. [31]. The data were collected from

a graduate-level programming-language course for part-time students with at least two years

professional software development experience. The data came from 5 homework assignments and

10 students participating in the class. Each assignment requires students to write 100–200 lines of

code.

From the data, we analyzed only type mismatch errors, which correspond to unsatisfiable

constraints. Errors such as unbound values or too many arguments to a constructor are more easily

localized and are not our focus.

We also exclude programs using features not supported by EasyOCaml and files where the user’s

fix is unclear. After excluding these files, 336 samples remain.
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10.2.1 Evaluation setup. Analyzing a file and the quality of error report message manually can

be inherently subjective. We made the following efforts to make our analysis less subjective:

(1) Instead of judging which error message is more useful, we judged whether the error locations

the tools reported were correct.

(2) To locate the actual error in the program, we use the user’s changes with larger timestamps

as a reference. Files where the error location is unclear are excluded in our evaluation.

To ensure the tools return precisely the actual error, a returned location is judged as correct only

when it is a subset of the actual error locations.

One subtlety of judging correctness is that multiple locations can be good suggestions, because

of let-bindings. For instance, consider a simple OCaml program: let x = true in x + 1.

Even if the programmer later changed true to be some integer, the error suggestion of the

let-binding of x and the use of x are still considered to be correct since they bind to the same

expression as the fix. However, the operation + and the integer 1 are not since the fix is not related.

Since the OCaml error message reports an expression that appears to have the wrong type, to

make the reports comparable, we use expressions as the program entities on which we run our

inference algorithm—our tool reports likely wrong expressions in evaluation. Recall that our tool

can also generate reports of why an expression has a wrong type, corresponding to unsatisfiable

paths in the constraint graph. Using such extra information might improve the error message, but

we do not use that capability in the evaluation.

Another mismatch is that our tool inherently reports a small set of program entities (expressions

in this case) with the same estimated quality, whereas OCaml reports one error at one time. To

make the comparison fair, we make the following efforts:

(1) For cases where we report a better result (our tools finds the error location that OCaml

misses), we ensure that all locations returned are correct.

(2) For other cases, we ensure that the majority of the suggestions are correct.

Moreover, the average top rank suggestion size is smaller than 2. Therefore, our evaluation

results should not be affected much by the fact that our tool can offer multiple suggestions.

10.2.2 Error report accuracy. For each file we analyze, we consider both the error location

reported by OCaml and the top-ranked suggestion of our tool (based on the setting P1 = (P2/1−P2)
3
).

We reused the data offered by the authors of the Seminal tool [31], who labeled the correctness of

Seminal’s error location report.

We classify the files into one of the following five categories and summarize the results in

Figure 19:

(1) Our approach suggests an error location that matches the programmer’s fix, but the other

tool’s location misses the error.

(2) Our approach reports multiple correct error locations that match the programmer’s fix, but

the other tool only reports one of them.

(3) Both approaches find error locations corresponding to the programmer’s fix.

(4) Both approaches miss the error locations corresponding to the programmer’s fix.

(5) Our tool misses the error location but the other tool captures it.

For category (2), we note that SHErrLoc and Seminal can report multiple suggested error locations,

while OCaml reports one error location. We report a file in category (2) if the programmer’s fix

consists of multiple locations, and only SHErrLoc correctly localizes multiple of them.

The result shows that OCaml’s reports find about 75% of the error locations but miss the rest.

Seminal’s reports on error locations are slightly better, finding about 80% of the error locations.
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Fig. 19. Results organized by homework assignment. From top to bottom, columns represent programs where
(1) our tool finds a correct error location that the other tool misses. (2) both approaches report the correct
error location, but our tool reports multiple (correct) error locations; (3) both approaches report the correct
error location; (4) both approaches miss the error location; (5) our tool misses the error location while the
other tool identifies one of them. For every assignment, our tool does the best job of locating the error.

Compared with both OCaml and Seminal, our tool consistently identifies a higher percentage of

error locations across all homeworks, with an average of 96% (categories (1), (2) and (3)).

In about 10% of cases, our tool identifies multiple errors in programs. According to the data, the

programmers usually fixed these errors one by one since the OCaml compiler only reports one at a

time. Reporting multiple errors at once may be more helpful.

10.2.3 Sensitivity. Recall that maximizing the likelihood of entities E being an error is equivalent

to minimizing the term C1 |E | + C2kE , where C1 = − log P1 and C2 = − log(P2/(1 − P2)) (see,
Section 9.2). Hence, the ranking is only affected by the ratio between C1 and C2.

To test how sensitive our tool is to the choice of C1/C2, we collect two important statistics for a

wide range of the ratio values:

(1) the accuracy of SHErrLoc (number of programs where the actual error is found in top-rank

suggestions/336 programs),

(2) the average number of suggestions in the top rank.

The result is summarized in Table 1.

We arrange the columns in Table 1 such that the ratios betweenC1 andC2 increases linearly. That

is, for any 0 < P2 < 0.5, P1 decreases exponentially from left to right. The last column corresponds

to the special case when C2 = 0 (i.e., P2 = 0.5).
Empirically, the overall suggestion quality is best when C1/C2 = 3. However, the quality of the

suggestions is close for any C1 and C2 s.t. 2 ≤ C1/C2 ≤ 6; the results are not very sensitive to the

choice of these parameters.

If satisfiable paths are ignored (C2 = 0, that is, P2 = 0.5), the number of suggestions in the top

rank is much larger, and more errors are missing. Hence, using satisfiable paths is important to

suggestion quality. Intuitively, feedback from satisfiable paths helps to prioritize suggestions with

the same size (i.e., suggestions containing the same number of program expressions). Moreover,
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Accuracy 94% 95% 96% 95% 95% 95% 94% 93%

Avg. # Sugg. 1.86 1.80 1.72 1.69 1.70 1.69 1.67 5.58

Table 1. The quality of top-ranked suggestions with various ratios between C1 and C2.
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Fig. 20. Performance on the OCaml benchmark.

considering satisfiable paths improves accuracy for programs with multiple errors, since the top-

ranked suggestions may not have the minimal size (due to the C2kE component).

The quality of the error report is also considerably worse whenC1/C2 = 1. This result shows that

unsuccessful paths are more important than successful paths, but that ascribing too importance to

the unsuccessful paths (e.g., at C1/C2 = 10) also hurts the quality of the error report.

Limitations. Of course, our tool sometimes misses errors. We studied programs where our tool

missed the error location, finding that in each case it involved multiple interacting errors. In some

cases the programmer made a similar error multiple times. For those programs, our tool reports

misleading locations (usually, one single location) that are not relevant to any of the error locations.

One possible reason is that those programs violate the assumption of error independence. As our

result suggests, this situation is rare.

The comparison between the tools is not completely apples-to-apples. We only collect type

mismatch errors in the evaluation. OCaml is very effective at finding other kinds of errors such as

unbound variables or wrong numbers of arguments, and Seminal not only finds errors but also

proposes fixes.

10.2.4 Performance. We measured the performance of our tool on a Ubuntu 11.04 system using

a dual core at 2.93GHz with 4G memory. Results are shown in Figure 20. We separate the time

spent generating and inferring LEQ edges in the graph from that spent computing rankings.

The results show how the running time of both graph building time and ranking time scale with

increasing constraint graph size. Interestingly, graph building, including the inference of (+LEQ)
relationships, dominates and is in practice quadratic in the graph size. The graph size has less

impact on the running time of our ranking algorithm. We suspect the reason is that the running

time of our ranking algorithm is dominated by the number of unsatisfiable paths, which is not

strongly related to total graph size.
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Considering graph construction time, all programs finish in 79 seconds, and over 95% are done

within 20 seconds. Ranking is more efficient: all programs finish in 10 seconds. Considering the

human cost to identify error locations, the performance seems acceptable.

10.3 Case study: Haskell type inference
To evaluate the quality of our ranking algorithm on Haskell, we used two sets of previously collected

Haskell programs containing errors. The first corpus (the CE benchmark [10]) contains 121 Haskell

programs, collected from 22 publications about type-error diagnosis. Although many of these

programs are small, most of them have been carefully chosen or designed in the 22 publications to

illustrate important (and often, challenging) problems for error diagnosis.

The second benchmark, the Helium benchmark [20], contains over 50,000 Haskell programs

logged by Helium [23], a compiler for a substantial subset of Haskell, from first-year undergraduate

students working on assignments of a programming course offered at the University of Utrecht

during course years 2002–2003 and 2003–2004. Among these programs, 16,632 contain type errors.

10.3.1 Evaluation setup. To evaluate the quality of an error report, we first need to retrieve the

true error locations of the Haskell programs being analyzed, before running our evaluation.

The CE benchmark contains 86 programs where the true error locations are well-marked. We

reused these locations in evaluation. Since not all collected programs are initially written in Haskell,

the richer type system of Haskell actually makes 9 of these programs type-safe. Excluding these

well-typed programs, 77 programs are left.

The Helium benchmark contains programs written by 262 groups of students taking the course.

To make our evaluation objective, we only considered programs whose true error locations are

clear from subsequences of those programs where the errors are fixed. Among those candidates, we

picked one program with the latest time stamp (usually the most complex program) for each group

to make our evaluation feasible. Groups were ignored if either they contain no type errors, or the

error causes are unclear. In the end, we used 228 programs. The programs were chosen without

reference to how well various tools diagnosed their errors.

We compared the error localization accuracy of our tool to GHC 7.8.2 and Helium [25]; both

represent the state of the art for diagnosing Haskell errors. A tool accurately locates the errors in a

program if and only if it points to at least one of the true error locations in the program.

One difference from GHC and Helium is that sometimes, our tool reports a small set of top-rank

source locations, with the same likelihood. For fairness, we ensure that the majority of suggestions

are correct when we count our tool as accurate. Average suggestion size is 1.7, so we expect a

limited effect on results for offering multiple suggestions.

10.3.2 Error report accuracy. Figure 21 shows the error report accuracy of our tool, compared

with GHC and Helium. For the CE benchmark, our tool provides strictly more accurate error reports

for 43% and 26% of the programs, compared with GHC and Helium respectively. Overall, GHC,

Helium and our tool find the true error locations for 48%, 68% and 88% of programs respectively.

Clearly, our tool, with no Haskell-specific heuristics, already significantly improves accuracy

compared with tools that do.

On the Helium benchmark, the accuracy of GHC, 68%, is considerably better than on the CE

benchmark; our guess is the latter offers more challenging cases for error diagnosis. Nevertheless,

our tool still outperforms GHC by 21%. Compared with Helium, our tool is strictly better for 21% of

the programs. Overall, the accuracy of our tool is 89% for the Helium benchmark, a considerable

improvement compared with both GHC (68%) and Helium (75%).
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(b) Helium benchmark
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Accuracy 89% 89% 89% 89% 88% 87%

Avg. Sugg. Size 1.71 1.73 1.73 1.73 1.68 2.52

Table 2. The quality of top-ranked suggestions with various ratios between C1 and C2.

Limitations. Our tool sometimes does miss error causes identified by other tools. For 14 programs,

Helium finds true error locations that our tool misses. Among these programs, most (12) contain

the same mistake: students confuse the list operators for concatenation (++) and cons (:). To find

these error causes, Helium uses a heuristic based on the knowledge that this particular mistake is

common in Haskell. It is likely that our tool, which currently uses no Haskell-specific heuristics,

can improve accuracy further by exploiting knowledge regarding common mistakes. However, we

leave integration of language-specific heuristics to future work.

Comparison with CF-typing. [10] evaluated their CF-typing method on the CE benchmark. For the

86 programs where the true error locations are well-marked, the accuracy of their tool is 67%, 80%,

88% and 92% respectively, when their tool reports 1, 2, 3 and 4 suggestions for each program; the

accuracy of our tool is 88% with an average of 1.62 suggestions
5
. When our tool reports suboptimal

suggestions, the accuracy becomes 92% , with an average suggestion size of 3.2.

5
A slight difference is that we excluded 9 programs that are well-typed in Haskell. However, we confirmed that the accuracy

of CF-typing on the same 77 programs changes by 1% at most [8].
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Fig. 22. Performance on the Helium benchmark.

10.3.3 Sensitivity. Recall (Section 9) that the only tunable parameter that affects ranking of error

diagnoses is the ratio between C2 and C1. To see how the ratio affects accuracy, we measured the

accuracy of our tool with different ratios (from 0.2 to 5), as summarized in Table 2. The result is

that accuracy and average suggestion size of our tool change by at most 1% and 0.05 respectively.

Hence, the accuracy of our tool does not depend on choosing the ratio carefully.

If only unsatisfiable paths are used for error diagnosis (i.e., C2 = 0), the top-rank suggestion size

is much larger (over 2.5 for both benchmarks, compared with ∼1.7). Hence, satisfiable paths are
important for error diagnosis.

10.3.4 Performance. We evaluated the performance of our tool on a Ubuntu 14.04 system with a

dual-core 2.93GHz Intel E7500 processor and 4GB memory. We separate the time spent into that

taken by graph-based constraint analysis (Section 6) and by ranking (Section 9).

The CE benchmark. Most programs in this benchmark are small. The maximum constraint

analysis and ranking time for a single program are 0.24 and 0.02 seconds respectively.

The Helium benchmark. Figure 22 shows the performance on the Helium benchmark. The results

suggest that both constraint analysis and ranking scale reasonably with increasing size of Haskell

program being analyzed. Constraint analysis dominates the running time of our tool. Although the

analysis time varies for programs of the same size, in practice it is roughly quadratic in the size of

the source program.

Constraint analysis finishes within 35 seconds for all programs; 96% are done within 10 seconds,

and the median time is 3.3 seconds. Most (on average, 97%) of the time required is used by graph

saturation rather than expansion. Ranking is more efficient: all programs take less than one second.

We note that the results only apply to Haskell programs up to 600 LOC; the scalability of SHErrLoc

might be a concern for larger programs. We leave optimizing SHErrLoc as future work.

10.4 Case study: Jif hypothesis inference
We also evaluated how helpful our hypothesis inference algorithm is for Jif. In our experience with

using Jif, we have found missing hypotheses to be a common source of errors.

A corpus of buggy programs was harder to find for Jif than for OCaml and Haskell. We obtained

application code developed for other, earlier projects using either Jif or Fabric (a Jif extension).

These applications are interesting since they deal with real-world security concerns.
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Secure Tie Better Worse Total

Number 12 17 11 0 40

Percentage 30% 42.5% 27.5% 0% 100%

Table 3. Hypothesis inference result.

To mimic potential errors programmer would meet while writing the application, we randomly

removed hypotheses from these programs, generating, in total, 40 files missing 1–5 hypotheses

each. The frequency of occurrence of each application in these 40 files corresponds roughly to the

size of the application.

For all files generated in this way, we classified each file into one of four categories, with the

results summarized in Table 3:

(1) The program passed Jif/Fabric label checking after removing the hypotheses: the programmer

made unneeded assumptions.

(2) The generated missing hypotheses matched the one we removed.

(3) The generated missing hypotheses provides an assumption that removes the error, but that

is weaker than the one we removed (in other words, an improvement).

(4) Our tool fails to find a suggestion better than the one removed.

The number of redundant assumptions in these applications is considerable (30%). We suspect

the reason is that the security models in these applications are nontrivial, so programmers have

difficulty formulating their security assumptions. This observation suggests that the ability to

automatically infer missing hypotheses could be very useful to programmers.

All the automatically inferred hypotheses had at least the same quality as manually written

ones. This preliminary result suggests that our hypothesis inference algorithm is very effective and

should be useful to programmers.

10.5 Case study: combined errors
To see how useful our diagnostic tool is for Jif errors that occur in practice, we used a corpus of

buggy Fabric programs that a developer collected earlier during the development of the “FriendMap”

application [4]. As errors were reported by the compiler, the programmer also clearly marked the

nature and true location of the error. This application is interesting for our evaluation purposes

since it is complex—it was developed over the course of six weeks by two developers—and it

contains both types of errors: missing hypotheses and wrong expressions.

The corpus contains 24 buggy Fabric programs. One difficulty in working on these programs

directly was that 9 files contained many errors. This happened because the buggy code was

commented out earlier by the programmer to better localize the errors reported by the Fabric

compiler. We posit that this can be avoided if a better error diagnostic tool, like ours, is used. For

these files, we reproduced the errors the programmer pointed out in the notes when possible and

ignored the rest. Redundancy—programs producing the same errors—was also removed. Result for

the remaining 16 programs are shown in Table 4.

Most files contain multiple errors. We used the errors recorded in the note as actual errors, and

an error is counted as being identified only when the actual error is suggested among top rank

suggestions.

The first approach (Separate) measures errors identified if the error type is known ahead, or both

hypothesis and expression suggestions separately computed are used. The result is comparable to

the result in Sections 10.2 and 10.4, where error types are known ahead.
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Errors Separate Combined Interactive

Missing hypothesis 11 10 7 11

Wrong expression 5 4 4 4

Total 16 14 11 15

Percentage 100% 87.5% 68.75% 93.75%

Table 4. Jif case study result. (1) Separate: top rank of both separately computed hypothesis and expression
suggestions (2) Combined: top rank combined result only (3) Interactive approach.

Providing a concise and correct error report whenmultiple errors interact can bemore challenging.

We evaluated the performance of two approaches providing combined suggestions. The combined

approach simply ranks the combined suggestions by size. Despite its simplicity, the result is still

useful since this approach is automatic.

The interactive approach calculates missing hypotheses and requires a programmer to mark

the correctness of these hypotheses. Then, correct hypotheses are used and wrong entities are

suggested to explain the remaining errors. We think this approach is the most promising, since it

involves limited manual effort: hypotheses are usually facts of properties to be checked, such as

“is a flow from Alice to Bob secure?”. We leave a more comprehensive study of this approach to

future work.

11 RELATEDWORK
Program analyses, constraints and graph representations. Modeling program analyses via con-

straint solving is not a new idea. The most related work is on set constraint-based program analy-

sis [1, 2] and type qualifiers [17]. However, these constraint languages do not model hypotheses,

which are important for some program analyses, such as information flow.

Program slicing, shape analysis, and flow-insensitive points-to analysis are expressible using

graph-reachability [49]. Melski and Reps [38] show the interchangeability between context-free-

language reachability (CFL-reachability) and a subset of set constraints [1]. But only a small set

of constraints—in fact, a single variable—may appear on the right hand side of a partial order.

Moreover, no error diagnostic approach is proposed for the graphs.

Error diagnoses for type inference and information-flow control. Dissatisfaction with error reports

has led to earlier work on improving the error messages of both ML-like languages and Jif.

Efforts on improving type-error messages in ML-like languages can be traced to the early work

of Wand [55] and of Johnson and Walz [27]. These two pieces of work represent two directions in

improving error messages: the former traces everything that contributes to the error, whereas the

latter attempts to infer the most likely cause. We only discuss the most related among them, but

Heeren’s summary [24] provides more details.

In the first direction, several efforts [11, 17, 19, 48, 52] improve the basic idea of Wand [55] in

various ways. Despite the attractiveness of feeding a full explanation to the programmer, the reports

are usually verbose and hard to follow [24].

In the second direction, one approach is to alter the order of type unification [9, 30, 36]. But

since the error location may be used anywhere during the unification procedure, any specific order

fails in some circumstance. Some prior work [21, 24, 27, 34, 45] also builds on constraints, but these

constraint languages at most have limited support for sophisticated features such as type classes,

type signatures, type families, and GADTs. Most of these approaches also use language-specific

heuristics to improve report quality. For example, the accuracy of MinErrLoc [45] depends on the

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, Article 18. Publication date: August 2017.



18:44 D. Zhang et al.

application-specific weight assigned to each constraint, while the accuracy of Mycroft [34] depends

on the identification of certain hard constraints (i.e., constraints that should never be blamed) for

OCaml type inference. As reported by Loncaric et al. [34], SHErrLoc achieves at least comparable

accuracy on OCaml programs while treating all constraints as equally likely to be wrong.

A third approach is to generate fixes for errors by searching for similar programs [31, 37] or

type substitutions [10] that do type-check. Unfortunately, we cannot obtain a common corpus to

perform direct comparison with McAdam [37]. We are able to compare directly with the work

of [31]; the results of Section 10.2 suggest that SHErrLoc improves on accuracy of [31] by 10%.

Moreover, the results on the CE benchmark (Section 10.3.2) suggest that our tool localizes true error

locations more accurately than the prior approach of Chen and Erwig [10]. Although SHErrLoc

currently does not provide suggested fixes, accurate error localization is likely to provide good

places to search for fixes. Combining these two techniques may be a fruitful area for future work.

For information-flow control, King et al. [28] propose to generate a trace explaining the information-

flow violation. Although this approach also constructs a diagnosis from a dependency graph, only a

subset of the DLM model is handled. As in type-error slicing, reporting whole paths can yield very

verbose error reports. Recent work by Weijers et al. [57] diagnoses information-flow violations in a

higher-order, polymorphic language. But the mechanism is based on tailored heuristics and a more

limited constraint language. Moreover, the algorithm in [57] diagnoses a single unsatisfiable path,

while our algorithm diagnoses multiple errors.

Probabilistic inference. Applying probabilistic inference to program analysis has appeared in

earlier work, particularly on specification inference [29, 33]. Our contribution is to apply prob-

abilistic inference to a general class of static analyses, allowing errors to be localized without

language-specific tuning. Also related is work on statistical methods for diagnosing dynamic errors

(e.g., [32, 60]). These algorithms rely on a different principle—statistical interpretation—and do not

handle important features for static analysis, such as constructors and hypotheses.

The work of Ball et al. [5] on diagnosing errors detected by model checking has exploited a

similar insight by using information about traces for both correct execution and for errors to localize

error causes. Beyond differences in context, that work differs in not actually using probabilistic

inference; each error trace is considered in isolation, and transitions are not flagged as causes if

they lie on any correct trace.

Missing hypothesis inference. The most related work on inferring likely missing hypotheses

is the recent work by Dillig et al. [14] on error diagnosis using abductive inference. This work

computes small, relevant queries presented to a user that capture exactly the information a program

analysis is missing to either discharge or validate the error. It does not attempt to identify incorrect

constraints.

With regard to hypothesis inference, the Dillig algorithm infers missing hypotheses for a single

assertion, whereas our tool finds missing hypotheses that satisfy a set of assertions. Further, the
Dillig algorithm infers additional invariants on variables (e.g., x ≤ 3 for a constraint variable x),
while our algorithm also infers missing partial orderings on constructors (such as Alice ≤ Bob in
Section 9.3.1).

Recent work by Blackshear and Lahiri [7] assigns confidence to errors reported by modular

assertion checkers. This is done by the computation of an almost-correct specification that is used

to identify errors likely to be false positives. This idea is largely complementary to our approach:

although their algorithm returns a set of high-confidence errors, it does not attempt to infer their

likely cause. At least for some program analyses, the heuristics they develop might also be useful for

classifying whether errors result from missing hypotheses or from wrong constraints. As with the
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comparison to Dillig et al. [14], our algorithm also infers missing partial orderings on constructors,

not just additional specifications on variables.

12 CONCLUSION
Better tools for helping programmers locate the errors detected by type systems and other program

analyses should help adoption of the many powerful program analyses that have been developed.

The science of diagnosing programmer errors is still in its infancy, but this article takes a step

towards improving the situation. Our analysis of program constraint graphs offers a general,

principled way to identify both incorrect expressions and missing assumptions. Results on three

very different languages, OCaml, Haskell and Jif, with no language-specific customization, suggest

this approach is promising and broadly applicable.

There are many interesting directions to take this work. Though we have shown that the

technique works well on three very different type systems, it would likely be fruitful to apply these

ideas to other type systems and program analyses, such as dataflow analysis and points-to analysis

as we sketched in this article, and to explore more sophisticated ways to estimate the likelihood of

different error explanations by incorporating prior knowledge about likely errors.
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