
Compositional Security for Reentrant Applications
Ethan Cecchetti

Cornell University
ethan@cs.cornell.edu

Siqiu Yao
Cornell University

yaosiqiu@cs.cornell.edu

Haobin Ni
Cornell University

haobin@cs.cornell.edu

Andrew C. Myers
Cornell University

andru@cs.cornell.edu

Abstract—The disastrous vulnerabilities in smart contracts
sharply remind us of our ignorance: we do not know how to
write code that is secure in composition with malicious code.
Information flow control has long been proposed as a way
to achieve compositional security, offering strong guarantees
even when combining software from different trust domains.
Unfortunately, this appealing story breaks down in the presence of
reentrancy attacks. We formalize a general definition of reentrancy
and introduce a security condition that allows software modules
like smart contracts to protect their key invariants while retaining
the expressive power of safe forms of reentrancy. We present a
security type system that provably enforces secure information
flow; in conjunction with run-time mechanisms, it enforces secure
reentrancy even in the presence of unknown code; and it helps
locate and correct recent high-profile vulnerabilities.

Index Terms—information flow control, language-based security,
integrity, smart contracts

I. INTRODUCTION

Compositional security remains a fundamental concern for
software security. Code might appear secure, yet expose
vulnerabilities when it interacts with other code. Blockchain
smart contracts offer multiple prominent recent examples of
this problem [44, 45, 47], but other instances exist. JavaScript
code is difficult to secure when running on the same web page
as code from a different source [14, 28, 39]. Web browsers
themselves have fallen victim to attacks when executing code on
web pages [1, 2]. In these settings, securing code in isolation is
not sufficient. Reasoning about the behavior of a combination of
interacting systems, however, is notoriously difficult. This work
therefore aims for a way to build software with compositional
security guarantees, meaning the security of an entire system
follows from the security of its components.

Complex control flow, and in particular reentrant executions,
pose a fundamental challenge for compositional security.
Developers are increasingly building applications from separate
communicating services that may belong to different trust
domains [19, 57]. In such architectures, one service waiting
for another to respond must be prepared to handle separate
incoming requests. These reentrant calls effectively interrupt
the execution of the application and, if the developer is not
careful, can catch it in an inconsistent state, creating security
vulnerabilities [3].

Reentrancy security has received much more attention since
July 2016, when the Decentralized Autonomous Organiza-
tion (DAO)—an Ethereum smart contract intended to function
as a distributed venture capital fund—lost $50 million in tokens
to such an attack, making global news [47]. Since then, a variety

of methods have emerged to analyze or eliminate reentrancy
attacks [4, 15, 18, 27, 37], but vulnerabilities continue to appear.
For example, a January 2019 audit uncovered a reentrancy
vulnerability in the Uniswap decentralized exchange [16]. The
attack leveraged a subtle interaction between two contracts
that were secure in isolation, and a third malicious contract.
The first contract implicitly assumed the second would not
call the malicious contract. Because the interface could not
specify this expectation, developers used the exchange for a
token standard that allowed for such calls. This choice led to
the theft of $25 million worth of tokens in April 2020 [45],
over a year after the original vulnerability disclosure.

We follow our previous suggestion [12] and use a general
language-based technique to obtain compositional security even
in the presence of reentrant executions. We define and enforce
security using a semantic specification of trust in the form of
information flow labels. Information flow control (IFC) has
long been an appealing technique for obtaining compositional
security and has proven useful in practice [21]. IFC type
systems can guide software development with compile-time
checking and provably enforce strong security guarantees such
as noninterference. But while IFC is a good starting point
for compositional security, existing approaches break down in
the presence of reentrancy. Standard IFC rules either reject
useful, secure applications by blocking requests from untrusted
sources, or they allow insecure applications that are vulnerable
to reentrancy attacks. We extend standard IFC rules to define a
secure type system that efficiently and provably prevents attacks,
yet is expressive enough to build interesting applications.

This approach addresses fundamental shortcomings of ex-
isting solutions. Current stand-alone reentrancy analyses [4,
27, 37] are non-compositional. That is, analyzing two pieces
of code separately might not yield useful guarantees about
their combination—the exact failing that led to the Uniswap
attack. These tools also focus specifically on blockchain smart
contracts. While smart contracts have provided notable recent
examples of reentrancy vulnerabilities, similar exploits appear
elsewhere [1–3] and there is no reason to limit solutions. The
focus on smart contracts and the absence of trust specifications
forces the tools to rely on contract boundaries—a syntactic
construct—as a proxy for semantic security boundaries. This
choice leads to a reentrancy definition we call object reentrancy
that can judge the security of two semantically equivalent
implementations differently, merely because the code has
different structure.

There exist other language-based approaches that provide

mailto:ethan@cs.cornell.edu
mailto:yaosiqiu@cs.cornell.edu
mailto:haobin@cs.cornell.edu
mailto:andru@cs.cornell.edu

compositional guarantees and consider reentrancy, but they are
again smart-contract focused and use object-based reentrancy
definitions. Moreover, some limit expressiveness by outlawing
reentrancy entirely [15, 18], while others provide only heuristic
reentrancy protection [9, 51, 52]. In addition, they universally
assume that all code is written in the same language. This
strong assumption clearly does not apply to open systems
where anyone can submit code, like Ethereum contracts
or JavaScript on web pages. Even in closed systems with
controlled environments and known code, new code might
need to interact with legacy applications that do not respect
the language rules.

We address these shortcomings by defining a new general-
purpose security type system that tracks the integrity of data
and computation. In addition to providing standard IFC data
security guarantees, the type system combines with a run-time
mechanism to provably eliminate dangerous reentrancy while
allowing safe reentrancy. The guarantees, moreover, continue
to hold even when trusted code interacts with untrusted code
that does not obey the same restrictions.

The remainder of the paper is structured as follows:
• Examples in Section II show the complexity of reentrancy.
• Section III provides background on information flow

control and exposes its failure to handle reentrancy.
• Section IV presents a new definition of security in the

presence of reentrancy.
• Section V defines SeRIF, a core calculus that eliminates

insecure reentrancy by combining a static IFC type system
with a dynamic locking mechanism.

• Section VI shows formally that SeRIF enforces our formal,
compositional security condition.

• Section VII describes a prototype type checker implemen-
tation and our experience using it on realistic programs.

• Section VIII discusses related work in more detail and
Section IX concludes.

II. MOTIVATION

By their very nature, reentrancy vulnerabilities are often hard
to spot. For instance, the attack on Ethereum’s Decentralized
Autonomous Organization (DAO) was considered subtle at
the time [17], despite being one of the simplest examples
of reentrancy. To build intuition, we present three running
examples of applications with reentrancy. Though we have
distilled them to their core components, the vulnerabilities
have undermined security in real-world applications.

A. Uniswap

We begin with the Uniswap/Lendf.me reentrancy vulnerabil-
ity first identified in January 2019 [16] and later exploited in
April 2020 [45]. The vulnerability arises from the combination
of two contracts. Though each may be considered secure in
isolation, they combine in unexpected ways, demonstrating the
need for compositional reentrancy security.

Uniswap is a smart contract platform where users can
exchange one token for another. Figure 1 shows a simpli-
fied portion of the Uniswap contract: the exchange function

1 contract Uniswap {
2 Token tX, tY;
3

4 function sellXForY(uint xSold) returns uint {
5 uint prod = tX.getBal(this) * tY.getBal(this);
6 uint yKept = prod / (tX.getBal(this) + xSold);
7 uint yBought = tY.getBal(this) - yKept;
8

9 assert tX.transferTo(msg.sender, this, xSold);
10 assert tY.transferTo(this, msg.sender, yBought);
11 return yBought;
12 }
13 }
14

15 contract Token {
16 function transferTo(address from, address to,
17 uint amount) returns bool {
18

19
... // check and update balances

20 from.alertSend(to, amount);
21 to.alertReceive(from, amount);
22 return true;
23 }
24 }

Fig. 1. Distilled Solidity [55] code for the Uniswap bug.

sellXForY allows users to sell tokens of type X for tokens of
type Y . Uniswap determines the exchange rate by the amount
of X and Y it currently holds. It holds the product of the two
amounts constant, allowing Uniswap to maintain the same total
asset value as exchange rates fluctuate. The tokens themselves
are implemented by independent contracts.

To perform an exchange, Uniswap queries its balance
with each token, computes how much of token Y the user
bought, and transfers tokens by calling transferTo on each
token contract. Tokens execute transfers by first checking and
updating balances, and then notifying the sender and recipient,
allowing each in turn to execute arbitrary code.

Both contracts appear secure in isolation, following the best-
practice recommendation of modifying state before making
external calls to avoid reentrancy concerns [56]. However,
when combined, they expose a dangerous exploit. Suppose the
exchange begins with 6 units each of X and Y .

1) An attacker A calls sellXForY selling 6 units of X .
2) Uniswap correctly computes prod = 36 and yBought = 3.
3) Uniswap calls token X to transfer 6 units from A.
4) The token notifies A, giving it control of the execution.
5) Before returning, A calls sellXForY again to sell 6 more

units of X , reentering the Uniswap contract.
6) Uniswap now has 12 units of X , but still 6 units of Y ,

so it computes prod = 72, not 36, and yBought = 2.
When the dust settles, Uniswap has 18 units of X and only
1 unit of Y , having given A an extra unit of Y and having
broken the invariant that the product of the balances is 36. If
desired, A can reclaim their original 12 units of X for only 2
units of Y , keeping the other 3 as illicit profit.

The fundamental problem is a mismatch between Uniswap’s
notion of secure behavior and the token’s. The token correctly

2

1 getOrCompute(key, computeFun) {
2 i = _getIdx(key) // index of mapping if it exists
3 if (mappings[i] == null) {
4 mappings[i] = computeFun();
5 }
6 return mappings[i];
7 }

Fig. 2. The getOrCompute function of a key–value store. Here mappings is
an array that the store resizes as mappings are added.

checks that all transfers are valid and authorized and follows
programming patterns that avoid (internal) reentrancy concerns.
No user can transfer more tokens than they have. Uniswap,
however, implicitly assumes that transferTo transfers tokens
and returns without allowing an adversary to call Uniswap
before it reestablishes the invariant that prod = 36.

This insight suggests two approaches to fixing the bug:
(1) token contracts could respect Uniswap’s assumption by not
calling unknown, untrusted code, or (2) Uniswap could stop
relying on the assumption. Current platforms provide no way to
guarantee the first option. Uniswap could state its assumption
in documentation, but there is no technical means of specifying
or enforcing it. Tokens that violate it could continue to freely
interface with Uniswap, with disastrous results. The exchange
can, however, implement the second option by acquiring a
run-time lock on entry to the contract. It could then recognize
the above attack and produce an error at step 5.

Our approach detects this vulnerability and can specify
and correctly analyze either proposed solution. Among ex-
isting tools, only Nomos [18] can express the assumption of
approach (1), which it mandates to statically eliminate all
reentrancy. Other tools either cannot properly secure the appli-
cation [9, 51, 52] or force the use of computationally expensive
dynamic locks even when they are unnecessary [4, 15].

B. Key–Value Store

Smart contracts have made reentrancy concerns highly
visible, but reentrancy is not unique to that domain. It has
led to multiple critical security vulnerabilities in Internet
Explorer [1, 2], and is a known concern for any application
executing user-provided code [3].

For example, key–value stores often compute missing
mappings with user-supplied functions [43, 49]. A careless
implementation of this functionality can enable dangerous
reentrancy. Consider the code in Figure 2, along with a clear
method that frees mappings and installs a new empty array.
An attacker can call getOrCompute, providing as arguments an
unmapped key and a malicious function that calls clear and
then returns a value. First getOrCompute computes i, then it
calls the malicious function, which calls clear and replaces
the mappings array. Finally getOrCompute attempts to write
the attacker-provided value into index i of the new array.

If i is large—which is likely if the store previously contained
many mappings—the write would be past the end of the new
empty array. In languages like C/C++ without array bounds
checking, an attacker-provided value would thus be written into

1 contract TownCrier {
2 address[] requesters, callbacks;
3

4 function deliver(uint reqId, bytes data) {
5 if (msg.sender == SERVICE_ADDR
6 && requesters[reqId] != 0) {
7 requesters[reqId] = 0;
8 SERVICE_ADDR.call{value: FEE}("");
9 callbacks[reqId].call(bytes);

10 }
11 }
12

13 function cancel(uint reqId) {
14 if (msg.sender == requesters[reqId]) {
15 requesters[reqId] = 0;
16 msg.sender.call{value: FEE}("");
17 }
18 }
19 }

Fig. 3. Solidity [55] code for simplified partial Town Crier contract. Here
SERVICE_ADDR is TC’s trusted wallet address, and FEE is the request fee.

an arbitrary memory location, enabling remote code execution
or other critical security vulnerabilities. Even memory-safe
languages like Java explicitly recommend developers check for
reentrant modifications and throw exceptions [43].

Notably, while this attack appears very similar to concurrent-
modification attacks on key–value stores, it requires no con-
currency. Single-threaded applications or applications using
simple thread-level locking are still vulnerable.

C. Town Crier

Banning all reentrancy might seem appealing, but this
solution would be overly restrictive. Town Crier (TC) [65] is an
example where safe reentrancy enables important functionality.
TC provides authenticated data to smart contracts upon request.
Users place requests with a smart-contract front end, and TC
processes them asynchronously and delivers the data to user-
specified callbacks when it is available. TC also allows users to
cancel pending requests for a refund. Figure 3 shows simplified
versions of TC’s deliver and cancel methods.

Invoking a user-provided callback in deliver opens the
possibility of reentrant calls. Unlike in the previous examples,
however, these calls are safe. By ensuring that the request
status is updated (lines 7 and 15) before calling untrusted code
(lines 9 and 16), TC prevents attackers from receiving refunds
for canceling requests that are mid-delivery or already canceled.
Honest users, however, can still respond to data they receive
from one request by creating or canceling other requests.

For instance, a user contract may ask TC to function as a
real-world timer and alert it at a specific real-world time. When
woken up, the contract might determine that it needs to wait
longer and request that TC send another alert, say, 2 hours
later. A different user could make multiple parallel requests
to retrieve the same data, e.g., a stock price, from several
sources. Once enough responses have arrived, the user might
wish to cancel the outstanding requests to reduce costs. Both
of these patterns require safe reentrant calls into TC. This work

3

aims to allow this secure reentrancy while still eliminating the
vulnerabilities described above.

III. INFORMATION FLOW CONTROL

To obtain compositional security, it is natural to build on
top of information flow control (IFC), a classic way to obtain
compositional security guarantees such as noninterference [24].
Most IFC work has focused on data confidentiality [50, 59],
but IFC can also protect integrity [8, 61] and availability [66].
As our goal is to guard against attackers performing unexpected
calls into trustworthy code, we track only integrity.

IFC systems assign labels to computation and data within
a system. As information flows through the system, the label
on the destination of information is constrained to be no less
restrictive than the label on its source. Since our goal is to
enforce integrity, less trusted information should be prevented
from influencing more trusted information.

Secure information flow is statically enforceable by a type
system [50]. When linking separate code modules together, the
security guarantees offered by the type system are automatically
compositional, as long as the linked modules agree on types
at interface boundaries and account for the confidentiality
and integrity of the code itself [5]. Of course, real-world
systems often have to interact with user-provided code or
legacy applications that do not obey the rules of the type
system. As we show, such noncompliant code can only violate
the security guarantees of code that expresses trust in it.

A. Label model

We specify integrity using a set of integrity labels L and
give each piece of data x a label ℓx representing its trust level.
The labels have a reflexive, transitive relation ℓ1 ⇒ ℓ2, which
we read “ℓ1 acts for ℓ2,” to denote that ℓ1 is at least as trusted
as ℓ2. That is, anything that can influence data labeled ℓ1 can
also influence data labeled ℓ2.1 Data x can thus safely influence
data y only when ℓx ⇒ ℓy . Influence can be either explicit—by
assigning x directly to y—or implicit—by conditioning on x
and assigning different values to y in each branch. For explicit
flows, a simple check that ℓx ⇒ ℓy at the point of assignment
is sufficient. To control implicit flows, a program counter label,
written pc, tracks the integrity of the computation itself, as
is standard [50]. Inside a branch conditioned on x, the value
of x has influenced control flow, so we require the constraint
ℓx ⇒ pc. Assigning a variable y to some value then requires
pc ⇒ ℓy , ensuring transitively that ℓx ⇒ ℓy .

L must also have some additional structure. Any pair of
labels ℓ1 and ℓ2 must have a join, denoted ℓ1 ∨ ℓ2, and a meet,
denoted ℓ1∧ ℓ2. The join is the least upper bound and the meet
is the greatest lower bound, so

ℓ1 ∨ ℓ2 ⇒ ℓ ⇐⇒ ℓ1 ⇒ ℓ and ℓ2 ⇒ ℓ

ℓ ⇒ ℓ1 ∧ ℓ2 ⇐⇒ ℓ ⇒ ℓ1 and ℓ ⇒ ℓ2.

We can then safely label information influenced by both ℓ1
and ℓ2 with label ℓ1∨ℓ2, for example. Lastly, the join and meet

1Most IFC systems use flows-to, denoted ⊑. We use acts-for as we find it
intuitive, and the two mean the same thing when only tracking integrity.

operators must distribute: ℓ1 ∨ (ℓ2 ∧ ℓ3) = (ℓ1 ∨ ℓ2)∧ (ℓ1 ∨ ℓ3).
These properties collectively make (L,⇒) a distributive lattice.

This additional structure supports the precision and flexibility
of our approach to enforcing reentrancy security, discussed
in Section V-B. Luckily, existing label models are typically
distributive lattices, including two-point lattices, subset lattices
of permissions [62], and free distributive lattices over a set
of principals [6, 40]. In smart-contract systems, for example,
it is natural to view contracts themselves as principals with
different trust relationships among them. We might then employ
decentralized information flow control [41] where labels are
constructed from principals (e.g., contracts) that can influence
data or computation.

B. Endorsement

Strictly enforcing IFC allows systems to enforce strong
security properties like noninterference, which forbids any
influence from untrusted information to trusted information.
Noninterference, however, is too restrictive to build real
applications, so practical IFC systems allow downgrading.
Downgrading integrity, known as endorsement [67], treats
information with a low-integrity label as being more trustworthy
than its source would indicate.

From the IFC perspective, services like smart contracts
endorse frequently, though implicitly. They expose functions
that accept calls from untrusted users, yet modify trusted local
state. In other words, untrusted state affects trusted state, which
an IFC system should only allow via endorsement.

Existing IFC languages support these trusted functions, but
make them explicit. For example, the Jif language [38] supports
autoendorse methods that can be called by an untrusted caller
and that boost the integrity of the pc label on entry.

Viewed from the perspective of pc integrity, reentrancy
attacks all exhibit a distinctive pattern: they involve trusted
(high-integrity) code calling lower-integrity code, which then
calls back into high-integrity code by exploiting endorsement.
However, existing endorsement mechanisms in Jif and other
systems [20, 33, 36, 62] do not prevent this potentially
dangerous control-flow pattern. These IFC systems are thus
vulnerable to reentrancy attacks. Preventing reentrancy attacks
requires new restrictions on endorsement.

IV. REENTRANCY AND SECURITY

The examples in Section II show the need across application
domains to constrain reentrancy without eliminating it entirely.
We build on our previous work [12] to provide flexible
definitions of reentrancy and security based on information
flow control. This choice gives access to existing IFC tools and
techniques with their strong data security guarantees, while
making possible a precise, semantic specification of security.

A. Defining Reentrancy

Prior work [4, 15, 27, 37] focuses on smart contracts and
defines reentrancy in those terms: if contract A calls contract B,
which calls back into contract A, the second call, and thus the
entire execution, is considered reentrant. If no calls to A occur

4

A B

(a) Object reentrancy and ℓ-reentrancy are the same
when object and trust boundaries match.

A B

(b) Partially-trusted objects can
create object reentrancy that is

not ℓ-reentrancy.

A

C

B

(c) Mutually-trusting objects can
create ℓ-reentrancy that is not

object reentrancy.

Fig. 4. Comparing ℓ-reentrancy to object reentrancy. Boxes represent objects,
the blue shaded region is high-integrity code, and arrows represent calls.

before the call to B returns, the execution is non-reentrant. We
refer to this notion of reentrancy as object reentrancy, viewing
contracts as a form of object.

We avoid object reentrancy because it relies on object
boundaries—a fundamentally syntactic construct—to define
security. Instead we define reentrancy with respect to the
integrity level of computation. As integrity levels are part
of a semantic security specification, using them to define a
security-relevant property is sensible. This view leads to the
following informal definition.

Definition 1 (ℓ-Reentrancy (informal)). If computation C1 calls
computation C2, which then (possibly indirectly) calls C3, the
execution is reentrant with respect to label ℓ, or ℓ-reentrant, if
C1 and C3 are trusted at ℓ, but C2 is not.

Note that C1 and C3 may be the same or different, as long
as they are both trusted at ℓ.

Figure 4 depicts how ℓ-reentrancy relates to object reentrancy.
If an entire object is trusted at ℓ and nothing else is (Figure 4a),
ℓ-reentrancy and object reentrancy align. However, object and
trust boundaries may differ, leading to different definitions. If a
trusted operation in A calls untrusted B, a call to an untrusted
portion of A (Figure 4b), would be considered reentrant in
an object-based definition but not ℓ-reentrancy. Such a call
could correspond to a Town Crier user updating a request
callback during data delivery or a web app accessing untrusted
user profile data while modifying a trusted billing key–value
store. These operations are never dangerous, as low-integrity
operations cannot damage high-integrity data. By contrast,
one application may be split across multiple mutually trusting
objects. For example, such a split in Ethereum’s Parity Wallet
led to two famous attacks [10, 44]. For an application split
across A and C, if A calls B, then a call from B into C
(Figure 4c) is a reentrant call into the application. By relying
on trust levels, ℓ-reentrancy properly identifies this pattern as
reentrancy, while object reentrancy does not.

To employ ℓ-reentrancy, each operation needs an integrity
level. Conveniently, the pc label used to control implicit

(a) Vulnerable system (b) Secure system

All behavior

Non-reentrant
behavior

Fig. 5. The set of possible behaviors in a secure vs a vulnerable system. In a
vulnerable system, reentrancy can introduce behaviors not possible without it.
In a secure system, all behaviors are possible in non-reentrant executions.

information flows (Section III-A) provides such a label. It
combines the integrity of the code and the integrity of data
influencing the control flow to specify how trusted an operation
is to execute when it does, making it ideal to define a property
of trusted and untrusted operations calling each other.

B. Reentrancy Security

While ℓ-reentrancy defines reentrancy based on integrity
patterns of the control flow, it does not tell us when it is
secure. An option taken by some work [15, 18] is to declare
all reentrancy (according to their definition) dangerous and to
outlaw it entirely. With an appropriate definition of reentrancy,
this would eliminate vulnerabilities, but safe reentrancy has
legitimate uses, as illustrated by the Town Crier example.

To eliminate the need for difficult manual reentrancy analysis,
we define “secure reentrancy” as reentrancy that programmers
can ignore when analyzing correctness. In general, a safe
way to accomplish this goal is to ensure that reentrancy cannot
enable program behaviors that would not exist without it. These
behaviors could be program invariants, such as Uniswap holding
the product of its asset quantities constant or the key–value
store never writing to unallocated memory; they could be
statements about how state changes, like Town Crier’s request
ID monotonically increasing; or they could be more complex
properties like noninterference.

Programmers cannot hope to guarantee properties that un-
known or untrusted code can directly violate, so our definition
ignores such properties entirely. Specifically, ℓ-reentrancy
security considers only properties defined over state trusted at
label ℓ. We refer to these as ℓ-integrity properties, leading to
the following security definition, depicted visually in Figure 5.

Definition 2 (Reentrancy Security (informal)). A program is
ℓ-reentrancy-secure if every ℓ-integrity property, such as a
program invariant, that holds for all non-ℓ-reentrant executions
holds for all executions.

Definition 2 specifies a semantic notion of security and
helps identify safe forms of reentrancy. For instance, a high-
integrity computation making a low-integrity call as its last
operation—in tail position—no longer needs high integrity.
That is, any reentrant call will have the same effect as making
a second, non-reentrant call after the first computation returns.
We refer to this secure form of reentrancy as tail reentrancy.
Tail reentrancy also provides a principled explanation for a
common smart-contract programming best practice: performing

5

all state modifications before calling other contracts [56]. Done
properly, this design pattern ensures that all reentrant calls are
tail-reentrant, and thus safe.

Definition 2 is also flexible. For a specific application, we
could refine it to require only that reentrancy does not violate
particular programmer-specified application properties. To keep
annotation burden low and to avoid the need to specify detailed
program properties, our definition requires that ℓ-reentrant
executions maintain all properties that hold without reentrancy.
However, the later formal definition (Definition 9) allows such
refinement simply by restricting a universal quantifier.

C. Enforcing Reentrancy Security

As described above, ℓ-reentrancy occurs when high-integrity
code calls low-integrity code that then calls back into high-
integrity code before returning. IFC only permits this pattern
through the autoendorse mechanism described in Section III-B.
Many services, including the examples in Section II, require
untrusted users to make requests into trusted code, making
some version of autoendorse necessary. We therefore allow it,
but with additional restrictions.

In particular, endorsement of control flow is restricted by
locking integrity. When a function endorses the integrity of the
control flow to label ℓ, integrity ℓ is locked, preventing further
endorsement up to ℓ until the original call returns. Locking
allows an honest user to invoke a service one or more times
in sequence using a call-and-return pattern, but prevents an
adversary from reentering into high-integrity code.

The semantics of these locks is to prevent autoendorsement
from granting integrity that is locked. A trusted operation is
then always given the chance to reestablish any high-integrity
invariants or properties it may have temporarily invalidated
before an attacker can invoke another trusted operation. To
safely autoendorse from integrity pc1 to integrity pc2, for any
operation pc2 is trusted to perform, either pc1 must already be
trusted at that level or the requisite integrity must be unlocked.
Formally, when integrity ℓL is locked, then for all labels ℓ, if
ℓL ⇒ ℓ and pc2 ⇒ ℓ, then pc1 ⇒ ℓ. The definition of lattice
join quickly shows that this rule is equivalent to pc1 ⇒ pc2∨ℓL.

We could track and enforce locks statically, as part of the
type system, or dynamically in the runtime. Static locking—
proving that a dynamic lock would never prevent execution—
imposes no overhead and avoids unexpected errors at run
time. Unfortunately, purely static locks interact poorly with
code that may not enforce the same guarantees. If some
unknown code might call autoendorse functions—violating
a static lock, meaning a dynamic lock would halt execution—
a sound type system must assume the worst and prevent all
calls to that code when integrity may be locked. This highly
restrictive outcome would violate a core design goal of this
work: providing compositional security even when interacting
with unknown code. Dynamic locks avoid this constraining
over-approximation at the expense of run-time cost.

We therefore take a hybrid approach and separate locked
integrity into a static component and a dynamic one. The type
system automatically adds endorsed control flow to the static

f,m, x ∈ V (variable, method, and field names)
ℓ, pc ∈ L (integrity labels)

t ::= unit | bool | ref τ | C
τ ::= tℓ

CL ::= class C[ℓ] extends C {f :τ ; K ; M}
K ::= C(f :τ) {super(f) ; this.f = f}
M ::= τ m{pc≫pc; ℓ}(x :τ) {e}
v ::= x | () | true | false | ι | null | new C(v)

e ::= v | if{pc} v then e else e
| ref v τ | !v | v := v
| (C)v | v.f | v.m(v)
| endorse v from ℓ to ℓ | lock ℓ in e
| let x = e in e

Fig. 6. Syntax for SeRIF

component, but programmers can explicitly move integrity
from the static component to the dynamic one. This approach
achieves the run-time efficiency and predictability of static
mechanisms when security can be proved statically, while still
supporting safe interaction with unknown or untrusted code
through more expressive dynamic locks.

The calculus does not specify how to implement dynamic
locks. They could be built into the runtime, tracked by a security
monitor, or even implemented as a library. So long as all code
trusted at level ℓ is well-typed and agrees on some protocol
to enforce the dynamic portion of the locks, the system will
preserve ℓ-reentrancy security. There is no requirement that
untrusted check integrity locks statically or dynamically.

V. A CORE CALCULUS FOR SECURE REENTRANCY

We present the Secure-Reentrancy Information Flow Cal-
culus (SeRIF), an object-oriented core calculus that models
how a programming language can implement the above ideas.
Figure 6 gives the syntax for SeRIF. It extends Featherweight
Java (FJ) [31] with information flow labels and, to support
mutation, also reference cells [46, Chapter 13].

SeRIF employs fine-grained IFC, so each type τ consists
of a base type t and an integrity label ℓ. For simplicity, we
limit base types to unit, bool, references, and object types. To
simplify proofs, null references are allowed.

Class and method definitions extend those in FJ with integrity
labels. To model distributed systems, we consider code a form
of data that may come from multiple sources, so each class
definition CL includes a label ℓC for the integrity of the code.

A method definition M contains labels pc1≫pc2; ℓ. Most
IFC systems give functions a single pc label, but SeRIF
has two: pc1 specifies the minimum integrity required to
call m, while pc2 specifies the integrity at which m operates.
Separating these labels supports autoendorsement as described
in Section III-B. If pc1 ̸⇒ pc2, then m is an autoendorse
function. Both pc labels are bounded by ℓC , so code may only
perform operations that ℓC is trusted to perform. The label ℓ
specifies the locks method m promises not to violate.

6

The if syntax includes the pc label used for the branches.
We make this label explicit only to simplify the operational
semantics. In practice, it is easy to infer automatically.

The endorse expression endorses data as in other IFC systems
with downgrading. The term lock ℓ in e converts static locks to
dynamic ones. In the operational semantics, e executes with ℓ
dynamically locked, so the type system can safely release any
static lock on ℓ when type-checking e.

Expression subterms consist mostly of (open) values, not
arbitrary expressions. In particular, let statements are the only
way to sequentially compose computation.

Because SeRIF is object-oriented, it can model interacting
services and reentrancy concerns. An application or contract
implementation is a class, and a contract or instance of that
application is an object of that class type, allowing easy
interaction between different services. Moreover, inheritance
allows applications that share common features to inherit form
a common parent. For instance, a blockchain smart contract
system can be modeled by having all contracts inherit from a
Contract class that implements tracking of currency.

A. SeRIF Operational Semantics

SeRIF has a small-step substitution-based semantics. Most
rules are standard for an object-oriented language with mutable
references [31, 46], with a few additions for security.

Because expressions are built mostly out of values, evaluation
contexts are simple. Indeed, let expressions are the only surface
syntax to serve as evaluation contexts. We introduce three new
syntactic forms as evaluation contexts to enable precise tracking
of function boundaries, execution integrity, and dynamic locks.
These statements are denoted by s.

E ::= [·] | let x = E in e | returnτ E

| E at-pc pc | E with-lock ℓ

s ::= E[e]

Semantic steps are defined on a pair of a statement s
and a semantic configuration: a four-tuple C = (CT , σ,M, L).
Unlike in FJ, the class table CT is explicit, as the security
definitions in Section VI quantify over possible class tables. A
heap σ maps locations to value–type pairs, and Σσ denotes the
location-to-type mapping induced by σ. That is, Σσ(ι) = τ if
and only if σ(ι) = (v, τ) for some v. The final two elements,
M and L are both lists of integrity labels. M tracks the
integrity of executing code, and L tracks the dynamic portion of
the currently-locked integrity. For notational ease, we reference
the components of C freely when only one group is in scope
and we write C[X/L] to denote (CT , σ,M, X), and similarly
for σ and M.

Figure 7 presents selected semantic rules. The complete
semantics is in Figure 9 (Appendix A). In the semantic rules,
v refers to a closed value, not a variable. In addition to many
standard rules, the rules E-LOCK and E-UNLOCK dynamically
lock and unlock labels. The semantics abstracts out the many
possible lock implementations, merely tracking the set of
locked labels and defining where to check them. The rules for
conditionals (E-IFT and E-IFF) now include tracking terms.

[E-IFT]
⟨if{pc} true then e1 else e2 | C⟩ −→ ⟨e1 at-pc pc | C⟩

[E-ATPC]
⟨v at-pc pc | C⟩ −→ ⟨v | C⟩

[E-REF]
ι /∈ dom(σ) Σσ ⊢ v : τ M = M′, ℓm ℓm ◁ τ

⟨ref v τ | C⟩ −→ ⟨ι | C[σ[ι 7→ (v, τ)]/σ]⟩

[E-ASSIGN]
Σσ(ι) = τ Σσ ⊢ v : τ M = M′, ℓm ℓm ◁ τ

⟨ι := v | C⟩ −→ ⟨() | C[σ[ι 7→ (v, τ)]/σ]⟩

[E-CALL]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)

M = M′, ℓ′m ℓ′m ⇒ pc1
∧
ℓ∈L

(pc1 ⇒ pc2 ∨ ℓ)

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

⟨new C(v).m(w) | C⟩
−→ ⟨returnτ (e′ at-pc pc2) | C[M, ℓm/M]⟩

[E-RETURN]
Σσ ⊢ v : τ M = M′, ℓm

⟨returnτ v | C⟩ −→ ⟨v | C[M′/M]⟩

[E-LOCK]
⟨lock ℓ in e | C⟩ −→ ⟨e with-lock ℓ | C[L, ℓ/L]⟩

[E-UNLOCK]
L = L′, ℓ

⟨v with-lock ℓ | C⟩ −→ ⟨v | C[L′/L]⟩

Fig. 7. Selected small-step semantic rules for SeRIF.

The key rule is E-CALL. It looks up the definition of
a method with mbody (Appendix A) and performs several
dynamic checks: it verifies that the arguments all have the
correct types, that the caller has sufficient integrity to invoke
the function, and that calling the method does not violate any
dynamically locked label ℓ ∈ L.

Dynamic Security Checks: Four rules—E-REF, E-ASSIGN,
E-CALL, and E-RETURN—contain dynamic checks for type
safety and information security. These checks prevent untrusted
code from placing ill-typed values in the heap or passing them
to trusted code. They similarly prevent untrusted code from
modifying trusted heap locations in any way. Such checks are
critical for trusted code to safely interact with ill-typed attacker
code in any information flow system. While we do not detail
how to implement dynamic typing or label checks here, there
is considerable research into both. Gradually typed languages
do run-time type checking [54], and distributed IFC systems
include run-time label checks [e.g., 23, 36, 63]. Moreover,
when all high-integrity code is well-typed, it is sufficient to
isolate memory between objects, as in Ethereum contracts [58],
and to execute run-time checks when entering trusted code.

B. Type System for SeRIF

The type system for SeRIF contains two different forms for
typing judgments: one for values and one for expressions. The
typing judgment for values is straightforward for a stateful
language. It takes the form Σ;Γ ⊢ v : τ where Σ is a heap type
mapping references to types and Γ is a typing environment
mapping variables to types. We write Σ ⊢ v : τ when Γ is
empty, as we did in Section V-A.

7

[IF]

Σ;Γ ⊢ v : boolℓ ℓ ⇒ pc ℓ ◁ τ
Σ;Γ; pc;λI ⊢ e1 : τ ⊣ λO Σ;Γ; pc;λI ⊢ e2 : τ ⊣ λO

Σ;Γ; pc;λI ⊢ if{pc} v then e1 else e2 : τ ⊣ λO
[ASSIGN]

Σ;Γ ⊢ v1 : (ref τ)ℓ

Σ;Γ ⊢ v2 : τ ℓ ◁ τ

Σ;Γ; ℓ;λI ⊢ v1 := v2 : unitℓ
′
⊣ λO

[CALL]

mtype(C,m) = τa
pc1≫pc2;λO−−−−−−−−→ τ0 Σ;Γ ⊢ v : Cℓ Σ;Γ ⊢ va : τa

ℓ ⇒ pc1 pc1 ⇒ pc2 ∨ λI τ0 <: τ pc2 ∨ ℓ ◁ τ

Σ;Γ; pc1;λI ⊢ v.m(va) : τ ⊣ λO ∨ pc2
[LOCK]

Σ;Γ; pc;λ′
I ⊢ e : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc;λI ⊢ lock ℓ in e : τ ⊣ λO

[METHOD-OK]

λI ⇒ pc2 ℓC ⇒ pc2 λI ∨ λ′
O ⇒ λO pc1 ◁ τa Σ;x :τa, this :C

pc2 ; pc2;λI ⊢ e : τ ⊣ λ′
O

CT (C) = class C[ℓC] extends D {· · ·} (D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc1≫pc2;λO−−−−−−−−→ τ

Σ ⊢ τ m{pc1≫pc2;λO}(x :τa) {e} ok in C

Fig. 8. Selected typing rules for SeRIF

Values specify no computation so they require no security
reasoning. Typing judgments for expressions are more complex,
including a standard pc label to track the integrity of the control
flow. To secure reentrancy with static locks when possible, they
also include a label λ representing locked integrity.

Allowing tail reentrancy while eliminating other forms of
ℓ-reentrancy requires treating calls in tail position differently
from calls in other positions. We accomplish this goal not
by restricting when a given call can occur, but instead by
restricting what can occur after the call returns. Instead of
one lock label, this strategy uses two: an input lock λI that an
expression must maintain to safely execute outside tail position,
and an output lock λO specifying the locks the expression
actually maintains. The typing judgment now takes the form
Σ;Γ; pc;λI ⊢ e : τ ⊣ λO.

For an expression e to type-check with input lock λI, each
subexpression of e outside tail position must maintain λI. As
non-value expressions only appear outside of tail position in let
expressions, the following typing rule enforces this restriction.

[LET]

Σ;Γ; pc;λI ⊢ e1 : τ1 ⊣ λ′
O λ′

O ⇒ λI
Σ;Γ, x :τ1; pc;λI ⊢ e2 : τ2 ⊣ λO

Σ;Γ; pc;λI ⊢ let x = e1 in e2 : τ2 ⊣ λO

This rule is standard except that it requires λ′
O ⇒ λI, capturing

the intuition above: e1 must maintain at least lock λI, as it
is outside tail position. Because e2 is in tail position in this
expression, there is no similar restriction on λO.

Figure 8 contains selected typing rules for SeRIF. The
notation ℓ ◁ τ indicates that data of type τ is no more trusted
than ℓ; that is, ℓ ◁ tℓ

′
if and only if ℓ ⇒ ℓ′. The rules also use

auxiliary lookup functions fields and mtype and a subtyping
relation <: that includes both standard object subtyping and
safe relabeling—tℓ <: tℓ

′
if and only if ℓ ⇒ ℓ′. The complete

type system is in Figure 10 (Appendix A).
Most typing rules (e.g., IF and ASSIGN) are standard for

an information flow calculus [50]. The only non-standard
rules are those that directly reference or constrain static
locks: sequential composition (LET), method calls (CALL),
and dynamic locking (LOCK).

Most premises of CALL are standard. They check that
the object and arguments have appropriate types and ensure
information security of the return type and control flow of the

call. They also check that the call does not violate any static
locks (pc1 ⇒ pc2∨λI) and that it attenuates trust in the output
by the integrity of both the object and the method (pc2 ∨ ℓ ◁ τ).

This rule has two notable features. The first is not what
it requires, but rather what it does not require. There is no
relation between the static input locks λI of the surrounding
environment and λO, the locks maintained by the method itself.
This lack of constraint is precisely what enables tail reentrancy.
A call in tail position need not maintain any locks, so it may
result in reentrancy. Outside tail position, however, the LET rule
requires that the output locks of the call expression—bounded
by the locks maintained by the method—must act for λI. CALL
and LET therefore combine to enable safe tail reentrancy while
ruling out other potentially dangerous reentrancy.

The second feature is that CALL does not maintain locks λO—
the locks maintained by the method—but instead only λO ∨pc2.
This adjustment enables safe interaction with untrusted code
that might not enforce the same guarantees as SeRIF. Such code
may claim to maintain locks, but fail to do so. Our safeguard
follows the principle of decentralized IFC [41]: you can only
be hurt by an adversary you trust. We therefore attenuate the
claimed lock label λO by the integrity of the code.

Due to SeRIF’s inheritance structure, however, there is
no way to determine the exact integrity of the code. The
implementation of m may come from C or any of its
superclasses or subclasses. We instead need a bound on the
implementation’s integrity. The class typing rule METHOD-OK
requires that the code’s integrity act for pc2 to define or override
a method with integrity pc2. As a result, pc2 is the most precise
bound on the code’s integrity available to the type system.

To understand the LOCK rule, recall that the lock term is
designed to convert static locks to dynamic ones. The type
system must ensure that λI, the previous input locks, remain
locked in some manner, but it can safely release the portion that
is dynamically checked. In particular, LOCK splits λI into ℓ
and some λ′

I such that λ′
I ∧ ℓ ⇒ λI. Now λI will remain locked

as long as e type-checks with static input lock λ′
I. Similarly,

lock ℓ in e actually maintains locks on both λ′
O—the locks e

maintains—and ℓ. It is thus safe to trust λO up to λ′
O ∧ ℓ ⇒ λO.

Notably, allowing these arbitrary label divisions is only secure
because the label lattice is distributive. Otherwise, separately
locking λ′

I and ℓ could be insufficient to lock λI, and similarly

8

for λ′
O and λO.

Finally, METHOD-OK defines when a method is well-typed.
This rule implements the idea that autoendorse methods
statically lock integrity by default. Specifically, it requires
λI ⇒ pc2, so any expression outside tail position must
respect locks on the new, higher integrity of control flow.
The integrity of the code must also act for the integrity with
which the function executes (ℓC ⇒ pc2), ensuring code cannot
do anything its source is not trusted to do. Next, the locks
the method claims to enforce (λO) must be maintained both
initially (λI) and throughout (λ′

O). The last information-security
check (pc1 ◁ τa) guarantees that any code trusted to call the
method is also trusted to provide its arguments.

C. Modeling Application Operation

We aim to model applications that, like smart contracts,
service user requests and may persist state across requests.
We represent the current state of the world by a set of class
definitions in a class table CT and a state map σ. A single
user interaction, which we term an invocation I , is a label
specifying the user’s integrity and a call to a single method of
an object stored in σ.

Execution of an invocation I = (ι,m(v), ℓ) with state
σ starts from a semantic configuration with the expression,
integrity ℓ, and no locks, and step it to completion. The
notation (I,CT , σ) ⇓ σ′ signifies that it terminates in updated
state σ′. The following rule formalizes this idea, using !ι.m(v)
as shorthand for let o = !ι in o.m(v).

[E-INVOKE]
⟨!ι.m(v) | (CT , σ, ℓ, ·)⟩ −→∗ ⟨w | (CT , σ′, ℓ, ·)⟩

(I,CT , σ) ⇓ σ′

The same notation denotes running a list of invocations I in
sequence, using the output state from one as the input state from
the next. That is, if I = I1, . . . , In and (Ii,CT , σi−1) ⇓ σi

for each 1 ≤ i ≤ n, then we write (I,CT , σ0) ⇓ σn.
To type-check an invocation, the expression used in the

evaluation must be well-typed in the evaluation environment:

[INVOKE]
Σ; ·; ℓ;λI ⊢ !ι.m(v) : τ ⊣ λO

Σ ⊢ (ι,m(v), ℓ)

D. Examples Revisited

We now revisit the examples from Section II to see how
SeRIF detects application vulnerabilities while permitting
secure implementations.

Uniswap: The vulnerability (Section II-A) stems from an
unexpected interaction between an exchange, tokens, and a
malicious user. While they may all have different integrity,
for simplicity, we give the exchange and the tokens the same
trusted label T and the user an untrusted label U with U ̸⇒ T .

Anyone can call sellXForY, but it computes how much of
asset Y to move and transfers tokens, so it must have label
U ≫T ;λO for some λO. Similarly, the token’s transferTo
method modifies high-integrity records, so it needs label
pc≫T ;λ′

O for some labels pc and λ′
O.

The METHOD-OK rule requires sellXForY to type-check
with some λI where λI ⇒ T . Because we sequence two calls to
transferTo, LET requires either λ′

O ⇒ λI ⇒ T , or a dynamic
lock on label T around (at least) the first transfer. These options
correspond precisely to the solutions suggested in Section II-A.
Requiring λ′

O ⇒ T is a statement that Uniswap expects the
tokens not to call untrusted code. A dynamic lock, by contrast,
secures the exchange without assuming any particular token
behavior and correspondingly allows any value of λ′

O.
Notably, transferTo can type-check with λ′

O ⇒ T in
either of two ways: it can decline to call unknown code (i.e.,
remove lines 20 and 21 in Figure 1), or the token itself could
acquire a dynamic lock while making the calls. The first option
straightforwardly eliminates the vulnerability. By locking T ,
the second option dynamically prevents reentrant calls during
a transfer to either the token or the exchange.

Key–value store: We use the same labeling scheme: the key–
value store application gets a trusted label T while the user gets
an untrusted label U . Because anyone can call getOrCompute
but it modifies trusted data, it must have label U ≫T ;λO for
some λO. The user-provided computation function is not trusted,
so it gets label pc≫U ;λ′

O for some labels pc and λ′
O.

As in the Uniswap example above, METHOD-OK requires
getOrCompute to type-check with some λI ⇒ T . Because the
user-provided fallback function executes in sequence before
another trusted operation, LET and CALL combine to require
either a dynamic lock or λ′

O ∨ U ⇒ λI ⇒ T . This second
option, however, is impossible because U ̸⇒ T .

This forced reliance on a dynamic lock stems from the
type system not trusting the user-provided callback to even
type-check. In a modified type system that separated trust in
the code’s execution from trust that it type-checks, it would
be sufficient to require that it type-check with high-integrity
and some λ′

O ⇒ T . This solution would correspond to a static
guarantee that the user-provided callback does not invoke clear
or any other method modifying the store’s internal state.

Town Crier: As described in Section II-C and the original pa-
per [65], Town Crier is secure despite using (object) reentrancy,
and the type system can verify that. Using the same labels again,
we label Town Crier and the trusted service address T and the
user U . We can give the functions the following signatures.

int request{U ≫T ;T}(params:tU, callback:addressU)

void cancel{U ≫T ;U}(id:intU)

void deliver{T ≫T ;U}(id:intT , data:bytesT)

The request method—which just records the request parame-
ters and updates a counter—type-checks simply. The cancel
method type-checks with an endorsement on the condition
on line 14 of Figure 3. Type-checking deliver relies on TC
trusting SERVICE_ADDR not to call attackers when receiving
money. However, SERVICE_ADDR is a hard-coded wallet address
with no code that is already trusted to provide data to deliver,
so the operation sending it money can safely have the signature
T ≫T ;T . These labels allow deliver to type-check as written.

9

VI. FORMALIZING SECURITY GUARANTEES

We now have the tools needed to formalize reentrancy and
security from Section IV.

A. Attacker Model

Proving a security guarantee requires a well-defined at-
tacker. As ℓ-reentrancy is parameterized on a label, we
also parameterize attackers over what they compromise. We
assume that an attacker A controls some collection of system
components, including anything that trusts any combination
of those components. For simplicity, we require a label ℓA
representing the combined attacker power and a label ℓt
representing the minimum honest integrity, where every label
is either attacker-controlled or honest. That is, for all ℓ ∈ L,
either ℓA ⇒ ℓ or ℓ ⇒ ℓt, but not both.2 We prove that, for any
such ℓt and ℓA, if all code trusted at ℓt abides by the static
and dynamic locking requirements, the system is ℓ-reentrancy
secure whenever ℓ ⇒ ℓt. This parameterization of the attacker
ensures that only someone you trust can damage your security.

Notably, the requiring ℓt and ℓA to exist means that, to
guaranteeing security at ℓ1 ∧ ℓ2, one or both of ℓ1 and ℓ2 must
act for ℓt, and therefore be honest. In other words, trusting the
combined power of two labels is a statement that you believe
at least one of those labels is honest, though you may not know
which. Combined with trust in ℓ1 ∨ ℓ2 expressing trust in both
ℓ1 and ℓ2, this idea supports modeling complex assumptions
like “at least k of n nodes are honest.”

Because reentrancy attacks stem from attacker code perform-
ing unexpected operations, we grant attackers considerable
power. Specifically, attackers can modify or replace any code
that executes with low integrity—that is, any code where
ℓA ⇒ pc. Allowing attackers to modify high-integrity code
executing with a low-integrity pc may seem unrealistic, but
experience has shown that code bases contain “gadgets” that
attackers can combine to achieve arbitrary functionality [48, 53].
This expansive power conservatively models the ability to
exploit such gadgets without modeling the gadgets explicitly.

To model the attacker’s ability to sidestep static security
features, we introduce a new term to ignore static lock labels.

e ::= · · · | ignore-locks-in e

E ::= · · · | ignore-locks-in E

[E-IGNORELOCKS] ⟨ignore-locks-in v | C⟩ −→ ⟨v | C⟩

[IGNORELOCKS]
Σ;Γ; pc;λ′

I ⊢ e : τ ⊣ λ′
O

Σ;Γ; pc;λI ⊢ ignore-locks-in e : τ ⊣ λO

Reasoning explicitly about ill-typed code is challenging, so
the formal model requires all code to type-check, but allows
low-integrity code to use this new term. Using ignore-locks-in
may not appear to grant the full power of ignoring the type
system. After all, the type system limits the location of method
calls and state modifications based on the pc label, which

2Our results hold for any partition of L into a downward-closed sublattice T
and an upward-closed sublattice A, letting ℓ be “trusted” if ℓ ∈ T . If T and A
are complete, this formulation is equivalent with ℓt =

∨
T and ℓA =

∧
A.

attackers cannot modify. However, low-integrity code can only
interact with high-integrity code in three ways: calling high-
integrity methods, returning values to high-integrity contexts,
or writing to memory that high-integrity code will later read. In
each case, the operational semantics includes dynamic checks
to ensure memory safety and to ensure that method calls and
state modifications are only performed by sufficiently trusted
code—exactly what the type system asks.

Indeed, the only constraint the type system imposes that
these dynamic checks do not enforce is the static locking that
ignore-locks-in is designed to avoid. Modeling well-typed high-
integrity code and unknown attacker code is therefore as simple
as demanding that all code type-checks and high-integrity code
does not use ignore-locks-in, formalized as follows.

Definition 3 (Lock Compliance). A class table CT complies
with locks in ℓt-code if, whenever

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}

and ℓC ⇒ ℓt, then ignore-locks-in does not appear syntactically
in the body of any method m ∈ M .

Strong object-level memory isolation, like that in Ethereum,
reduces the information security checks of the semantics to type-
checking high-integrity code. Forcing dynamic lock checks,
however, requires direct support in the system runtime. As such
features are uncommon, we model a system where attackers
can freely ignore dynamic locks. Specifically, we extend the
operational semantics with a second rule for function calls,
E-CALLATK, which enables calls to attacker-controlled code
without checking dynamic label locks.

[E-CALLATK]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)
M = M′, ℓ′m ℓ′m ⇒ pc1 ℓA ⇒ pc2

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

⟨new C(v).m(w) | C⟩
−→ ⟨returnτ (e′ at-pc pc2) | C[M, ℓm/M]⟩

This rule is identical to E-CALL, except instead of checking
dynamic locks, it checks that pc2 is untrusted (ℓA ⇒ pc2).

Interestingly, in systems that require even untrusted calls
to check dynamic locks—admitting only E-CALL and not
E-CALLATK—trust of ℓ1 ∧ ℓ2 can be safe even when neither
ℓ1 nor ℓ2 is honest. Such systems enforce ℓt-reentrancy security
whenever CT complies with locks in ℓt-code. There can even
exist labels ℓ1 and ℓ2 where CT does not comply with locks
in ℓ1-code or ℓ2-code, but ℓ1 ∧ ℓ2 ⇒ ℓt, meaning ℓA cannot
be a well-defined label. The proofs in the technical report [13]
consider both system and attacker models.

Attacker-provided code: In addition to having ill-typed code,
attackers can tailor their attacks to the specific application. We
therefore define security with respect to any system with the
same high-integrity code. Specifically, we employ a notion of
ℓt-equivalent code that allows an attacker to add, remove, or
replace code whenever pc ̸⇒ ℓt.

We formalize the equivalence using erasure on the code
in a class table CT . Let CT |ℓt denote CT , but erasing any
class C with low-integrity code (ℓC ̸⇒ ℓt), any method m that

10

executes with low integrity (pc2 ̸⇒ ℓt), and the branches of if
statements executing with low integrity (pc ̸⇒ ℓt). Two class
tables are then ℓt-equivalent if they erase to the same thing.

CT ≈ℓ CT
′ △⇐⇒ CT |ℓt = CT ′|ℓt

Attackers can also freely modify low-integrity locations
in the heap, so we define ℓt-equivalent heaps using similar
erasure. As a heap σ is a partial function from locations to
value–type pairs, memory is erased to σ|ℓt simply by erasing
mappings with low-integrity types. Formally, σ|ℓt(ι) = σ(ι) if
σ(ι) = (v, tℓ) with ℓ ⇒ ℓt, and it is undefined otherwise. As
with code, the equivalence follows directly from this erasure:

σ ≈ℓ σ
′ △⇐⇒ σ|ℓt = σ′|ℓt .

B. Noninterference

A typical goal for security in IFC systems, including our core
calculus, is noninterference [24], which for integrity means
untrusted data should not influence trusted data at all. As
we argued in Section III-B, noninterference is too restrictive,
and indeed, endorsement exists to violate it. However, explicit
endorsement should be the only way to violate noninterference.

To state this, we first need a notion of a class table CT
being endorsement-free for a label ℓ.

Definition 4 (Endorsement-Free). CT is ℓ-endorsement-free
if, for all classes C and methods m such that

class C[ℓC] extends D {f :τf ; K ; M} ∈ CT

τ m{pc1≫pc2;λO}(x :τa) {e} ∈ M

the following two properties hold. (1) Either pc1 ⇒ ℓ or
pc2 ̸⇒ ℓ, and (2) for any subexpression of e of the form
endorse v from ℓ1 to ℓ2, similarly, either ℓ1 ⇒ ℓ or ℓ2 ̸⇒ ℓ.

Intuitively, this definition says that CT is ℓ-endorsement-
free if CT contains no means of endorsing either control flow
or data from a label that ℓ does not trust to one that it does.

This condition is sufficient to prove a strong notion of
noninterference at ℓ. Because the SeRIF semantics are non-
deterministic with respect to selection of location names
(E-REF), we use a modified equivalence ≃ℓ that allows
renaming locations in addition to erasing low-integrity state.
See Appendix B for the formal definition of this equivalence.

For partial functions f and f ′, we write f ⊆ f ′ to mean
dom(f) ⊆ dom(f ′) and f(x) = f ′(x) wherever f is defined.

Theorem 1 (Noninterference). Let CT be a class table where
Σ ⊢ CT ok is ℓ-endorsement-free. For any well-typed heaps
σ1 and σ2 such that Σ ⊆ Σσi

and any invocation I such that
Σ ⊢ I and (I,CT , σi) ⇓ σ′

i, if σ1 ≃ℓ σ2, then σ′
1 ≃ℓ σ

′
2.

Theorem 1 follows by a complicated induction on the
operational semantics, erasing untrusted values in the heap.
See the technical report [13] for details.

Note also that the theorem says nothing about lock compli-
ance, only endorsement freedom. Indeed, reentrancy locks are
unnecessary to enforce noninterference.

C. Formalizing Reentrancy
Definition 1 in Section IV-A informally defines ℓ-reentrancy

as a trusted computation calling an untrusted one, which then
calls a trusted computation before returning. We also noted
that the pc label specifies the integrity of the control flow and
is therefore ideal for defining reentrancy.

Because SeRIF’s semantics has no explicit call stack, it must
insert at-pc tracking terms in the only places where the pc label
of the currently-executing code can change: conditionals and
method calls. The terms surround the body of the condition
or method and remain until execution returns to the previous
pc label. Nested tracking terms appear precisely when code in
one conditional or method body calls a second before returning.
We therefore formalize ℓ-reentrancy as three nested at-pc terms
where ℓ trusts the label of the first and third, but not the second.
As each condition or call may still have pending computation,
we allow arbitrary evaluation contexts at each integrity level.

Definition 5 (ℓ-Reentrancy). A statement s is ℓ-reentrant if,
for some evaluation contexts E0, E1, E2,

s = E0

[
E1

[
E2[s

′ at-pc pc3] at-pc pc2
]
at-pc pc1

]
where pc1, pc3 ⇒ ℓ but pc2 ̸⇒ ℓ.

We say an invocation I = (ι,m(v), ℓ′) is ℓ-reentrant in σ if
⟨!ι.m(v) | (CT , σ, ℓ′, ·)⟩ −→∗ ⟨s | C⟩ where s is ℓ-reentrant.

With a definition of reentrancy and a formal attacker
model, we can formalize the notion of security described in
Section IV-B. Recall that “secure reentrancy” meant that any
program behavior possible with reentrancy is also possible with-
out reentrancy. Equivalently, state changes made by reentrant
executions must be possible using non-reentrant ones.

We describe the properties a program maintains using a
modified Hoare logic [29]. Because high-integrity code may
interact with arbitrary attacker code, we consider all possible
invocations with ℓ-equivalent code. Specifically, the high-
integrity component of CT maintains a property defined by a
predicate pair (P,Q) if, whenever P holds on the input state,
Q must hold on the output state.

Definition 6 (Predicate Satisfaction). Given a class table CT ,
a heap type Σ, and state predicates P and Q, we say that CT
satisfies (P,Q) at ℓ in Σ, denoted Σ ⊨ℓ {P} CT {Q}, if, for
any CT ′ such that CT ≈ℓ CT

′, any well-typed state σ1 where
Σ ⊆ Σσ1

, and any invocation sequence I such that Σσ1
⊢ I

and (I,CT ′, σ1) ⇓ σ2, then P (σ1) implies Q(σ2).

To simplify proofs, the definition requires invocations to be
well-typed. The requirement does not, however, weaken the
security guarantee. In a system like Ethereum without a strong
type system, a high-integrity contract would need to examine
its arguments to ensure they are well-typed. We assume this
facility is built into the runtime.

The predicates P and Q can capture a variety of program
properties. A simple example is program invariants—such as
Uniswap’s invariant on the product of the token balances—in
which case P and Q would be the same. Quantifying over a po-
tentially infinite set of predicates, as the security definition does

11

below, allows for arbitrarily complex properties. For example,
requiring a specific high-integrity output state for each possible
high-integrity input state would enforce noninterference. A
demonstration of interference would demonstrate that one such
predicate pair is not satisfied.

Our goal, however, is not to guarantee any specific properties,
but to formalize the idea that reentrancy should not introduce
new behavior. Definition 6 says nothing about reentrancy. It
captures the entire set of possible behaviors, including the
reentrant ones. Saying that a complete set of behaviors is
equivalent to the non-reentrant behaviors requires a definition
of non-reentrant behaviors. For that, we simply restrict our
previous definition to executions that are not ℓ-reentrant.

Definition 7 (Single-Entry Predicate Satisfaction). Given a
class table CT , a heap type Σ, and state predicates P and Q,
we say that CT single-entry satisfies (P,Q) at ℓ in Σ, denoted
Σ ⊨1

ℓ {P} CT {Q}, if CT satisfies (P,Q) at ℓ in Σ when
restricted to invocation sequences I that are not ℓ-reentrant.

These two definitions combine to specify the difference
between non-reentrant program behavior and all program
behavior. To compare them, note that a program satisfies
predicate pair (P,Q) precisely when no behavior violates
it. Therefore, if reentrancy can exhibit new behaviors—the
program is insecure—there should be a predicate pair that is
single-entry satisfied, but not satisfied in general.

Because attackers can arbitrarily modify low-integrity state,
any changes to low-integrity state are possible without ℓ-reen-
trancy. We correspondingly restrict our security notion to
predicates that are unaffected by low-integrity state.

Definition 8 (ℓ-integrity Predicate). We say a predicate P is
ℓ-integrity if, for all pairs of states σ1 and σ2,

σ1 ≈ℓ σ2 =⇒ P (σ1) ⇔ P (σ2).

We now define ℓ-reentrancy security formally.

Definition 9 (Reentrancy Security (formal)). We say a
class table CT is ℓ-reentrancy secure in Σ if for all pairs
(P,Q) of ℓ-integrity predicates, Σ ⊨1

ℓ {P} CT {Q} implies
Σ ⊨ℓ {P} CT {Q}.

Definition 9 is the core security definition SeRIF enforces.

Theorem 2. For any label ℓ, class table CT , and heap type Σ,
if ℓ ⇒ ℓt and Σ ⊢ CT ok complies with locks in ℓt-code, then
CT is ℓ-reentrancy secure in Σ.

Theorem 2 follows from two core results. First, all reentrancy
allowed by SeRIF is tail reentrancy. That is, if an invocation
passes through an ℓ-reentrant state, then the outer high-integrity
call (E1 at-pc pc1 in Definition 5) must be in tail position.

Theorem 3. For a label ℓ, class table CT , and well-typed
heap σ1, if ℓ ⇒ ℓt and Σσ1

⊢ CT ok complies with locks in
ℓt-code, then for any invocation I and heap σ2 where Σσ1

⊢ I
and (I,CT , σ1) ⇓ σ2, all ℓ-reentrant states in the execution
are ℓ-tail-reentrant.

Proof Sketch. The theorem follows from two facts. First, if a
statement s steps to a call to a method that grants integrity ℓ,
then s cannot maintain a lock on ℓ. Second, any statement
executing with integrity ℓ must maintain a lock on ℓ (either
statically or dynamically) unless it is in tail position. We provide
a complete proof in our technical report [13].

Once we know that all reentrant executions are tail-reentrant,
we need only show that tail reentrancy is secure. The following
theorem formalizes this idea by proving that, if all ℓ-reentrant
states are ℓ-tail-reentrant, then single-entry predicate satisfac-
tion translates to predicate satisfaction.

Theorem 4. Let CT be a class table, σ1 and σ2 be well-typed
heaps, and I be an invocation such that (I,CT , σ1) ⇓ σ2

where all ℓ-reentrant states are ℓ-tail-reentrant. For any
ℓ-integrity predicates P and Q, if Σσ1 ⊨1

ℓ {P} CT {Q} and
P (σ1), then Q(σ2).

Proof Sketch. Examine the execution of I and build a CT ′

and I that produce a ℓ-equivalent final state with no reentrancy.
Whenever a high-integrity environment transitions to a low-
integrity one in CT , replace the low-integrity code in CT ′

with code that returns the same value as a hard-coded constant
and makes no calls to high-integrity code. For each call from
a low-integrity environment to a high-integrity method, add
an invocation to I that makes the same call with the same
arguments. Add additional invocations between each high-
integrity call to update the low-integrity state to match the
low-integrity state in the original execution when the call
occurred. The result is clearly a non-reentrant set of executions.
Because all ℓ-reentrant states are ℓ-tail-reentrant in the original
execution, placing a reentrant call sequentially after the call it
was originally inside produces the same result.

Since the start and end states σ′
1 and σ′

2 of this new execution
are ℓ-equivalent to σ1 and σ2 and Σσ1

⊨1
ℓ {P} CT {Q},

P (σ1) ⇐⇒ P (σ′
1) =⇒ Q(σ′

2) ⇐⇒ Q(σ2).

See the technical report [13] for details.

From here, we have enough to prove our desired result.

Proof of Theorem 2. For a class table CT ′, invocation I , and
heaps σ1 and σ2 such that CT ≈ℓ CT

′ and (I,CT ′, σ1) ⇓ σ2,
Theorem 3 says all ℓ-reentrant states are ℓ-tail-reentrant. For
ℓ-integrity predicates P and Q such that Σσ1

⊨1
ℓ {P}CT {Q},

Theorem 4 says that if P (σ1) then Q(σ2), which is precisely
the definition of Σσ1 ⊨ℓ {P} CT {Q}.

VII. IMPLEMENTATION

We implemented a type checker for SeRIF in 4,200 lines of
Java, using JFlex [32] and CUP [30]. We employ the SHErrLoc
constraint solver [64] to analyze information flow constraints,
infer missing integrity labels, and identify likely error locations.

We ran the type checker on four examples: the three from
Section II, but without simplifying Town Crier, and one we
call Multi-DAO. Multi-DAO is a multi-contract version of the
vulnerable portion of Ethereum’s DAO contract [47]. It is one

12

Application LoC
type-check

time (s)
necessary

annotations
Uniswap 1 57 4.1 11
Uniswap 2 49 4.0 9

Uniswap 3∗ 53 4.3 9
Town Crier 1 133 6.3 17

Town Crier 2∗ 133 6.5 17
Town Crier 3∗ 133 6.4 17

KV Store 1 38 2.1 10
KV Store 2∗ 35 2.0 9
Multi-DAO 1 38 3.5 8
Multi-DAO 2 36 3.3 7

Multi-DAO 3∗ 36 3.3 7

TABLE I. Evaluation of SeRIF type checker. Asterisks indicate vulnerable
implementations.

application split across multiple contracts that synchronize on
each transaction. This structure allows for the DAO’s original
reentrancy vulnerability, as well as a second attack where
the attacker reenters the application by leaving one contract
and entering another before they synchronize. By definition,
this attack is not object reentrancy, but as long as the Multi-
DAO contracts trust each other, it is ℓ-reentrancy. As with the
original DAO, the exploits can be patched either with dynamic
locks or by performing local state changes and inter-contract
synchronization operations before external calls.

For each example, the type checker correctly identified
vulnerabilities in the initial versions presented in Section II. It
also accepted as secure patched implementations following the
suggested fixes, both with and without dynamic locks.

Developer Overhead: Table I presents several metrics for
developer overhead. As each example application is designed to
distill complex security logic into minimal code, the examples
are all relatively short—ranging from 35 to 133 lines of code.
On these examples, the type checker is able to run in a few
seconds on a consumer desktop from 2015 with an Intel i7-4790
CPU. Because the type system and the associated guarantees
are compositional, modules can be checked independently, so
running time should scale well as the code grows.

Another important practical concern is the annotation burden
of adding information flow labels to the code. Labels on classes,
fields, methods, and data endorsements are necessary to define
the security of a program. Though SeRIF requires explicit labels
elsewhere to ease formal reasoning, many of these—such as
the pc labels on if statements—are simple to infer. Considering
only the labels with no obvious inference mechanism, we found
that 13% of the lines required explicit labels in Town Crier.
The other examples required more annotations per line as their
distilled nature led to more function declarations and explicit
endorsements. As even Town Crier is a short application with
complex security concerns, we expect many applications would
have lower annotation burdens.

Finally, SHErrLoc is capable of localizing errors, helping
guide development. To see its utility, we look at the Uniswap
example in more detail. As in Section V-D, we use two labels:
U and T . Recall that the exchange must either utilize a lock or
state its assumption that the token will not call untrusted code.
The following signature for the token’s transferTo method

makes the assumption explicit, where H is a token holder class.

boolT transferTo{T ≫T ;T}(from:HT , to:HT , amount:intT)

To model the alert functions in H being unknown code from
unknown sources, the interface can state the following entirely-
untrusted signatures.

void alertSend{U ≫U ;U}(to:HU, amount:intU)
void alertReceive{U ≫U ;U}(from:HU, amount:intU)

With these signatures, the calls to the alert functions in
transferTo on lines 20 and 21 of Figure 1 cannot type-check
without a dynamic lock. SHErrLoc helpfully identifies line 21
as the most likely error. The type checker correctly identifies
the program as secure if we either wrap both alerts in a dynamic
lock or remove them entirely.

VIII. RELATED WORK

We now discuss other work on reentrancy security, secure
smart contracts, and information flow control.

Formal Reentrancy Security: Grossman et al. [27] define
Effectively Callback-Free (ECF) executions, the only other
formal definition of reentrancy security of which we are aware.
An ECF execution is one where the operations can be reordered
to produce the same result without callbacks (reentrancy).
Their definition is object-based, which we have argued fails
to separate the security specification from the program design,
and they focus on dynamic analysis of individual executions.

Albert et al. [4] present a static analysis tool to check if code
produces only ECF executions. The authors advertise the tool
as providing modular guarantees, but define “modular” to mean
that a contract remains secure against any possible outside code.
Our approach provides the same guarantees when applied to a
single program with no assumptions on others, but also enables
developers to safely compose independently-checked modules
by stating assumptions on each other’s behavior. Furthermore,
Albert et al.’s analysis relies on an SMT solver, limiting its
scalability. In comparison, SeRIF only relies on checking acts-
for relationships of information flow labels.

We previously proposed the intuition of using information
flow control with a mix of static and dynamic locks to enforce
ℓ-reentrancy [12]. In this work we add a core calculus with
static and dynamic semantics, formal definitions, proofs, and
an evaluation.

Reentrancy-aware Languages: Several languages—all smart-
contract oriented—attempt to guard against reentrancy using a
variety of techniques.

Scilla [52] constrains programming style by removing the
call-and-return model of contract interaction. Instead, it queues
requests and executes them when the caller completes. While
this structure makes object-level reentrancy difficult, it prevents
contracts from using the return values from remote calls.
Moreover, by allowing multiple unconstrained requests, it fails
to detect or eliminate bugs like Uniswap (see Section II-A).

Obsidian [15] and Flint [51] ease reasoning about contract
behavior using typestate. Obsidian includes a dynamic check
that prevents (object) reentrancy entirely, while Flint has no

13

such check. Both languages and Move [9] have a notion of
linear assets that cannot be created or destroyed. Asset linearity
prevents attacks like the DAO, but fails to address the challenges
of Uniswap. The errant send in Uniswap does not create or
destroy tokens; it merely sends the wrong number because the
invariant it relies on is broken.

Nomos [18] enforces security using resource-aware session
types. Since linearity of session types is insufficient to eliminate
reentrancy, it uses the resources tracked by the session types to
prevent attackers from acquiring permission to call an in-use
contract—again, eliminating all (object) reentrancy.

Smart Contract Analysis Tools: There are many static
analysis tools for blockchain smart contracts. Some tools
operate as unsound best-effort bug finding tools. OYENTE [37]
searches for anti-patterns in code, TEETHER [34] automatically
generates exploits based on commonly-exploitable operations,
and Ethainter [11] uses information flow taint analysis to
attempt to locate a predefined set of security concerns, such
as tainted owner variables and access to self-destruct.

Other tools use formal analysis techniques to soundly analyze
contracts. Bhargavan et al. [7] prove functional correctness
through translation to F⋆. MAIAN [42] and ETHBMC [22]
prove security against specific classes of vulnerabilities using
symbolic execution and bounded model checking, respectively.
EtherTrust [25] allows developers to specify program properties
as Horn clauses and verify them using a formal semantics for
EVM [26]. SOLYTHESIS [35] combines static and dynamic
mechanisms It statically determines what checks are necessary
for correctness and compiles them into run-time checks.

These tools are valuable for securing smart contracts, but
they all analyze individual contracts, and their analyses often
fail to compose. As a result, they are unable to verify security
of applications like Uniswap that span multiple contracts.

Information Flow Control: Several distributed and decen-
tralized systems enforce security using IFC. Fabric [36] is
a system and language for building distributed systems that
allows secure data and code sharing between nodes despite
mutual distrust. DStar [63] uses run-time tracking at the OS
level to control information flow in a distributed system. These
previous systems have the same limitation of information flow
systems that is described in Section I: they do not defend against
reentrancy attacks. The IFC-based instruction set of Zagieboylo
et al. [60] restricts endorsement of pc labels using a purely
dynamic mechanism that appears to prevent all ℓ-reentrancy.
However, this property is neither stated nor proved.

IX. CONCLUSION

Despite decades of work on techniques for making software
more secure and trustworthy, recent smart contract bugs have
vividly shown that avoiding critical security vulnerabilities can
be difficult even in very short programs. The essential challenge
is composition of code with complex control flow across trust
boundaries. Prior static information flow analyses provide
compositional guarantees, but are missing a key ingredient:
security against reentrant executions. Smart contracts have

produced the most salient reentrancy vulnerabilities to date
due to their structure of interacting service in different trust do-
mains. As more applications adopt distributed service-oriented
architectures mirroring this design, we expect reentrancy to
become more of a concern elsewhere.

This paper provides a flexible general-purpose security
definition that permits secure forms of reentrancy and a fine-
grained static mechanism to reason about reentrancy security.
We presented SeRIF, a core calculus that combines static and
dynamic locking to provably enforce reentrancy security in
addition to providing standard information flow assurances. We
further showed that SeRIF is expressive enough to implement
and analyze various challenging examples. SeRIF’s lightweight,
inferable annotations support an independently-useful verifica-
tion process while complementing other verification methods.

We hope these foundational results will aid the development
of practical secure languages. To ensure usability, languages
will need to infer labels wherever possible and use sensible
defaults in many other areas. They might further require
polymorphic, finer-grained locks that we believe can fit into
the structure of a distributive lattice. Finally, while we focused
entirely on single-threaded reentrancy, concurrency is common
in real-world languages and applications. The relationship be-
tween reentrancy and concurrency controls/consistency models
is unclear and, we believe, a promising area for future work.

ACKNOWLEDGMENTS

We would first like to thank our anonymous reviewers for
their thoughtful comments and suggestions. Additional thanks
to Tom Magrino for help clarifying and explaining earlier
versions of this work, and to Rachit Nigam, Rolph Recto, and
Drew Zagieboylo for help editing.

This work was funded in part by a National Defense Science
and Engineering Graduate (NDSEG) Fellowship, NSF grants
1704615 and 1704788, and a gift from Ripple. Any opinions,
findings, conclusions, or recommendations expressed here are
those of the authors and may not reflect those of these sponsors.

REFERENCES

[1] “CVE-2014-1772,” http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-1772, 29 Jan. 2014, accessed
March 2021.

[2] “CVE-2018-8174,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-8174, 14 Mar. 2018, accessed
March 2021.

[3] “CWE-1265: Unintended reentrant invocation of non-
reentrant code via nested calls,” https://cwe.mitre.org/
data/definitions/1265.html, 20 Dec. 2018, accessed March
2021.

[4] E. Albert, S. Grossman, N. Rinetzky, C. Rodríguez-
Núñez, A. Rubio, and M. Sagiv, “Taming callbacks for
smart contract modularity,” Proc. ACM on Programming
Languages, vol. 4, no. OOPSLA, Nov. 2020.

[5] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov,
and A. C. Myers, “Sharing mobile code securely with

14

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174
https://cwe.mitre.org/data/definitions/1265.html
https://cwe.mitre.org/data/definitions/1265.html

information flow control,” in IEEE Symp. on Security and
Privacy, May 2012, pp. 191–205.

[6] O. Arden, J. Liu, and A. C. Myers, “Flow-limited autho-
rization,” in 28th IEEE Computer Security Foundations
Symp. (CSF), Jul. 2015, pp. 569–583.

[7] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Golla-
mudi, G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi,
T. Sibut-Pinote, N. Swamy et al., “Formal verification
of smart contracts: Short paper,” in 11th ACM SIGPLAN
Workshop on Programming Languages and Analysis for
Security (PLAS), Oct. 2016, pp. 91–96.

[8] K. J. Biba, “Integrity considerations for secure computer
systems,” USAF Electronic Systems Division, Bedford,
MA, Tech. Rep. ESD-TR-76-372, Apr. 1977, (Also
available through National Technical Information Service,
Springfield Va., NTIS AD-A039324.).

[9] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer,
T. Nowacki, A. Pott, S. Qadeer, Rain, D. Russi, S. Sezer,
T. Zakian, and R. Zhou, “Move: A language with
programmable resources,” https://developers.diem.com/
docs/technical-papers/move-paper/, May 2020, accessed
March 2021.

[10] L. Breidenbach, P. Daian, A. Juels, and E. G.
Sirer, “An in-depth look at the parity multisig bug,”
https://hackingdistributed.com/2017/07/22/deep-dive-
parity-bug/, 22 Jul. 2017, accessed March 2021.

[11] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and
Y. Smaragdakis, “Ethainter: A smart contract security
analyzer for composite vulnerabilities,” in 41st ACM
SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Jun. 2020, p. 454–469.

[12] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers, “Securing
smart contracts with information flow,” in 3rd Int’l Symp.
on Foundations and Applications of Blockchain (FAB),
Apr. 2020.

[13] ——, “Compositional security for reentrant applications,”
Cornell University Computing and Information Science,
Tech. Rep. arXiv:2103.08577, Mar. 2021.

[14] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged
information flow for JavaScript,” in ACM SIGPLAN
Conf. on Programming Language Design and Implemen-
tation (PLDI), Jun. 2009.

[15] M. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker,
Y. Bloem, B. A. Myers, J. Sunshine, and J. Aldrich,
“Obsidian: Typestate and assets for safer blockchain
programming,” ACM Trans. on Programming Languages
and Systems, vol. 42, no. 3, Nov. 2020.

[16] ConsenSys Diligence, “Uniswap audit,”
https://github.com/ConsenSys/Uniswap-audit-report-
2018-12#31-liquidity-pool-can-be-stolen-in-some-
tokens-eg-erc-777-29, Jan. 2019, accessed March 2021.

[17] P. Daian, “Analysis of the DAO exploit,”
https://hackingdistributed.com/2016/06/18/analysis-
of-the-dao-exploit/, 18 Jun. 2016, accessed March 2021.

[18] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and
I. Santurkar, “Resource-aware session types for digital

contracts,” in 34th IEEE Computer Security Foundations
Symp. (CSF). IEEE, 2019.

[19] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices:
yesterday, today, and tomorrow,” in Present and Ulterior
Software Engineering. Springer, 2017, pp. 195–216.

[20] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris, “Labels and event processes in the Asbestos
operating system,” in 20th ACM Symp. on Operating
System Principles (SOSP), Oct. 2005.

[21] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner,
F. Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han,
P. Vines, and E. X. Wu, “Collaborative verification of
information flow for a high-assurance app store,” in 21st

ACM Conf. on Computer and Communications Security
(CCS), Nov. 2014, pp. 1092–1104.

[22] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A
bounded model checker for smart contracts,” in 29th

USENIX Security Symp., Aug. 2020.
[23] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,

J. C. Mitchell, and A. Russo, “Hails: Protecting data
privacy in untrusted web applications,” in 10th USENIX
Symp. on Operating Systems Design and Implementation
(OSDI). USENIX Association, 2012, pp. 47–60.

[24] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in IEEE Symp. on Security and Privacy,
Apr. 1982, pp. 11–20.

[25] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foun-
dations and tools for the static analysis of Ethereum
smart contracts,” in International Conference on Computer
Aided Verification (CAV). Springer, 2018, pp. 51–78.

[26] ——, “A semantic framework for the security analysis of
Ethereum smart contracts,” in Int’l Conf. on Principles of
Security and Trust (POST). Springer, 2018, pp. 243–269.

[27] S. Grossman, I. Abraham, G. Golan-Gueta,
Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar,
“Online detection of effectively callback free objects
with applications to smart contracts,” Proc. ACM on
Programming Languages, vol. 2, no. POPL, pp. 1–28,
Dec. 2017.

[28] D. Hedin and A. Sabelfeld, “Information-flow security
for a core of JavaScript,” in 25th IEEE Computer Security
Foundations Symp. (CSF), Jun. 2012.

[29] C. A. R. Hoare, “Proof of correctness of data represen-
tations,” Acta Informatica, vol. 1, no. 4, pp. 271–281,
1972.

[30] S. Hudson, F. Flannery, C. S. Ananian, and M. Petter,
“CUP 0.11b: Construction of Useful Parsers,” Jun. 2014,
software release, http://www2.cs.tum.edu/projects/cup.

[31] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight
Java: A minimal core calculus for Java and GJ,” ACM
Trans. on Programming Languages and Systems, vol. 23,
no. 3, pp. 396–450, 2001.

[32] G. Klein, S. Rowe, and R. Decamp, “JFlex 1.8.2,” May
2020, software release, https://jflex.de.

15

https://developers.diem.com/docs/technical-papers/move-paper/
https://developers.diem.com/docs/technical-papers/move-paper/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://www2.cs.tum.edu/projects/cup
https://jflex.de

[33] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information flow control
for standard OS abstractions,” in 21st ACM Symp. on
Operating System Principles (SOSP), 2007.

[34] J. Krupp and C. Rossow, “TEETHER: Gnawing at
ethereum to automatically exploit smart contracts,” in
27th USENIX Security Symp., Aug. 2018.

[35] A. Li, J. A. Choi, and F. Long, “Securing smart contract
with runtime validation,” in 41st ACM SIGPLAN Conf. on
Programming Language Design and Implementation
(PLDI), Jun. 2020, pp. 438–453.

[36] J. Liu, O. Arden, M. D. George, and A. C. Myers,
“Fabric: Building open distributed systems securely by
construction,” J. Computer Security, vol. 25, no. 4–5, pp.
319–321, May 2017.

[37] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in ACM Conf. on
Computer and Communications Security (CCS), 2016,
pp. 254–269.

[38] T. Magrino, J. Liu, O. Arden, C. Isradisaikul, and
A. C. Myers, “Jif 3.5: Java information flow,” Jun. 2016,
software release, https://www.cs.cornell.edu/jif.

[39] L. A. Meyerovich and B. Livshits, “ConScript: Specifying
and enforcing fine-grained security policies for JavaScript
in the browser,” in IEEE Symp. on Security and Privacy,
May 2010.

[40] A. C. Myers and B. Liskov, “Complete, safe information
flow with decentralized labels,” in IEEE Symp. on Security
and Privacy, May 1998, pp. 186–197.

[41] ——, “Protecting privacy using the decentralized label
model,” ACM Transactions on Software Engineering and
Methodology, vol. 9, no. 4, pp. 410–442, Oct. 2000.

[42] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at
scale,” in Proceedings of the 34th Annual Computer
Security Applications Conference, Dec. 2018, pp. 653–
663.

[43] Oracle Corporation, “Java SE version 15 API specification.
java.util.Map#computeIfAbsent,” https://docs.oracle.com/
en/java/javase/15/docs/api/java.base/java/util/Map.html#
computeIfAbsent(K,java.util.function.Function), Sep.
2020, accessed March 2021.

[44] Parity Technologies, “A postmortem on
the parity multi-sig library self-destruct,”
https://www.parity.io/a-postmortem-on-the-parity-
multi-sig-library-self-destruct/, 15 Nov. 2017, accessed
March 2021.

[45] PeckShield, “Uniswap/Lendf.Me hacks: Root cause and
loss analysis,” https://medium.com/@peckshield/uniswap-
lendf-me-hacks-root-cause-and-loss-analysis-
50f3263dcc09, Apr. 2020, accessed March 2021.

[46] B. C. Pierce, Types and programming languages. MIT
press, 2002.

[47] N. Popper, “A hacking of more than $50 million dashes
hopes in the world of virtual currency,” The New York
Times, 17 Jun. 2016.

[48] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,
“Return-oriented programming: Systems, languages, and
applications,” ACM Trans. Inf. Syst. Secur. (TISSEC),
vol. 15, no. 1, Mar. 2012.

[49] “The Rust standard library, version 1.48.0. Enum
std::collections::hash_map::Entry.or_insert_with,”
https://doc.rust-lang.org/std/collections/hash_map/enum.
Entry.html#method.or_insert_with, Nov. 2020, accessed
March 2021.

[50] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan.
2003.

[51] F. Schrans, S. Eisenbach, and S. Drossopoulou, “Writing
safe smart contracts in Flint,” in Conference Companion
of the 2nd International Conference on Art, Science, and
Engineering of Programming, 2018, pp. 218–219.

[52] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov,
and K. C. G. Hao, “Safer smart contract programming
with Scilla,” Proc. ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 1–30, Oct. 2019.

[53] H. Shacham, “The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the x86),”
in 14th ACM Conf. on Computer and Communications
Security (CCS), Oct. 2007, p. 552–561.

[54] J. Siek and W. Taha, “Gradual typing for objects,” in 21st

European Conf. on Object-Oriented Programming, Jul.
2007, pp. 2–27.

[55] “Solidity documentation. Release 0.7.5,” https://docs.
soliditylang.org/en/v0.7.5/, Nov. 18 2020, accessed De-
cember 2020.

[56] “Solidity security considerations,” https://solidity.
readthedocs.io/en/latest/security-considerations.html#
use-the-checks-effects-interactions-pattern, 2021,
accessed March 2021.

[57] The Open Group, “SOA standards,” https://publications.
opengroup.org/standards/soa, accessed December 2020.

[58] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, 2014.

[59] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language
for automatically enforcing privacy policies,” in 39th ACM
Symp. on Principles of Programming Languages (POPL),
2012, pp. 85–96.

[60] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using
information flow to design an ISA that controls timing
channels,” in 32nd IEEE Computer Security Foundations
Symp. (CSF), Jun. 2019.

[61] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers,
“Secure program partitioning,” ACM Trans. on Computer
Systems, vol. 20, no. 3, pp. 283–328, Aug. 2002.

[62] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maz-
ières, “Making information flow explicit in HiStar,” in
7th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2006, pp. 263–278.

[63] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Se-
curing distributed systems with information flow control,”

16

https://www.cs.cornell.edu/jif
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with
https://docs.soliditylang.org/en/v0.7.5/
https://docs.soliditylang.org/en/v0.7.5/
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://publications.opengroup.org/standards/soa
https://publications.opengroup.org/standards/soa

in 5th USENIX Symp. on Networked Systems Design and
Implementation (NSDI), 2008, pp. 293–308.

[64] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton Jones,
“SHErrLoc: A static holistic error locator,” ACM Trans.
on Programming Languages and Systems, vol. 39, no. 4,
p. 18, Aug. 2017.

[65] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and
E. Shi, “Town Crier: An authenticated data feed for
smart contracts,” in 23rd ACM Conf. on Computer and
Communications Security (CCS), ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 270–282.

[66] L. Zheng and A. C. Myers, “End-to-end availability
policies and noninterference,” in 18th IEEE Computer
Security Foundations Workshop (CSFW), Jun. 2005, pp.
272–286.

[67] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic, “Us-
ing replication and partitioning to build secure distributed
systems,” in IEEE Symp. on Security and Privacy, May
2003, pp. 236–250.

APPENDIX A
FULL SERIF RULES

The full operational semantics for SeRIF are given in
Figure 9 and the full typing rules are given in Figure 10.

APPENDIX B
LOCATION–NAME ISOMORPHISM

The E-REF operational semantic rule allows for selection
of any unmapped location name when creating a new location.
This makes the SeRIF operational semantics nondeterministic
in its choice of location names. However, this is the only source
of nondeterminism in the semantics. That is, for any pair of
statement-heap pairs that are equivalent up to location names,
if one steps, then the other steps and the results are again
equivalent up to location names.

To reason about these differences, we define an equivalence
relation that relates statements and heaps that differ only in
their location names. Formally, we define a location name
permutation θ as an injective map from locations to locations.
We extend it to values by permuting location names, recursively
permuting constructor arguments of objects, and leaving other
values unmodified. We further extend it to statements by
recursively applying to each sub-statement and to heaps as
follows.

θ(σ)(ι) ≜ (θ(v), τ) where σ(θ−1(ι)) = (v, τ)

This permutation supports the requisite equivalence relation.

Definition 10 (Location–name isomorphism). Statements s1
and s2 are location–name isomorphic, denoted s1 ≃ s2, if
there exists some θ such that s1 = θ(s2). Similarly, for heaps
σ1 and σ2, σ1 ≃ σ2

△⇐⇒ ∃θ. σ1 = θ(σ2).
We write (s1, σ1) ≃ (s2, σ2) to mean there is a θ such that

(s1, σ1) = (θ(s2), θ(σ2)) and similarly for (s1, C1) ≃ (s2, C2).

[E-EVAL]
⟨s | C⟩ −→ ⟨s′ | C′⟩

⟨E[s] | C⟩ −→ ⟨E[s′] | C′⟩

[E-LET]
⟨let x = v in e | C⟩ −→ ⟨e[x 7→ v] | C⟩

[E-IFT]
⟨if{pc} true then e1 else e2 | C⟩ −→ ⟨e1 at-pc pc | C⟩

[E-IFF]
⟨if{pc} false then e1 else e2 | C⟩ −→ ⟨e2 at-pc pc | C⟩

[E-ATPC]
⟨v at-pc pc | C⟩ −→ ⟨v | C⟩

[E-REF]
ι /∈ dom(σ) Σσ ⊢ v : τ M = M′, ℓm ℓm ◁ τ

⟨ref v τ | C⟩ −→ ⟨ι | C[σ[ι 7→ (v, τ)]/σ]⟩

[E-DEREF]
σ(ι) = (v, τ)

⟨!ι | C⟩ −→ ⟨v | C⟩

[E-ASSIGN]
Σσ(ι) = τ Σσ ⊢ v : τ M = M′, ℓm ℓm ◁ τ

⟨ι := v | C⟩ −→ ⟨() | C[σ[ι 7→ (v, τ)]/σ]⟩

[E-CAST]
D <: C

⟨(C)(new D(v)) | C⟩ −→ ⟨new D(v) | C⟩

[E-FIELD]
⟨new C(v).fi | C⟩ −→ ⟨vi | C⟩

[E-CALL]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)

M = M′, ℓ′m ℓ′m ⇒ pc1
∧
ℓ∈L

(pc1 ⇒ pc2 ∨ ℓ)

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

⟨new C(v).m(w) | C⟩
−→ ⟨returnτ (e′ at-pc pc2) | C[M, ℓm/M]⟩

[E-CALLATK]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)
M = M′, ℓ′m ℓ′m ⇒ pc1 ℓA ⇒ pc2

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

⟨new C(v).m(w) | C⟩
−→ ⟨returnτ (e′ at-pc pc2) | C[M, ℓm/M]⟩

[E-RETURN]
Σσ ⊢ v : τ M = M′, ℓm

⟨returnτ v | C⟩ −→ ⟨v | C[M′/M]⟩

[E-LOCK]
⟨lock ℓ in e | C⟩ −→ ⟨e with-lock ℓ | C[L, ℓ/L]⟩

[E-UNLOCK]
L = L′, ℓ

⟨v with-lock ℓ | C⟩ −→ ⟨v | C[L′/L]⟩

[E-ENDORSE]
⟨endorse v from ℓ′ to ℓ | C⟩ −→ ⟨v | C⟩

[E-IGNORELOCKS]
⟨ignore-locks-in v | C⟩ −→ ⟨v | C⟩

Fig. 9. Full small-step operational semantics for SeRIF.

17

Value Typing

[VAR]
Γ(x) = τ

Σ;Γ ⊢ x : τ
[UNIT]

Σ;Γ ⊢ () : unitℓ
[TRUE]

Σ;Γ ⊢ true : boolℓ
[FALSE]

Σ;Γ ⊢ false : boolℓ

[NEW]

fields(C) = f :τ
Σ;Γ ⊢ v : τ

Σ;Γ ⊢ new C(v) : Cℓ
[LOC]

Σ(ι) = τ

Σ;Γ ⊢ ι : (ref τ)ℓ
[NULL]

Σ;Γ ⊢ null : (ref τ)ℓ
[SUBTYPEV]

Σ;Γ ⊢ v : τ ′ τ ′ <: τ

Σ;Γ ⊢ v : τ

Core Expression Typing

[VAL]
Σ;Γ ⊢ v : τ

Σ;Γ; pc;λI ⊢ v : τ ⊣ λO
[ENDORSE]

Σ;Γ ⊢ v : tℓ
′

Σ;Γ; ℓ;λI ⊢ endorse v from ℓ′ to ℓ : tℓ ⊣ λO

[CAST]
Σ;Γ ⊢ v : Dℓ

Σ;Γ; pc;λI ⊢ (C)v : Cℓ ⊣ λO

[FIELD]

Σ;Γ ⊢ v : Cℓ

fields(C) = f :τ
τi <: τ ℓ ◁ τ

Σ;Γ; pc;λI ⊢ v.fi : τ ⊣ λO
[CALL]

mtype(C,m) = τa
pc1≫pc2;λO−−−−−−−−→ τ0

Σ;Γ ⊢ v : Cℓ Σ;Γ ⊢ va : τa
ℓ ⇒ pc1 pc1 ⇒ pc2 ∨ λI

τ0 <: τ pc2 ∨ ℓ ◁ τ

Σ;Γ; pc1;λI ⊢ v.m(va) : τ ⊣ λO ∨ pc2
[IF]

Σ;Γ ⊢ v : boolℓ ℓ ⇒ pc ℓ ◁ τ
Σ;Γ; pc;λI ⊢ e1 : τ ⊣ λO

Σ;Γ; pc;λI ⊢ e2 : τ ⊣ λO

Σ;Γ; pc;λI ⊢ if{pc} v then e1 else e2 : τ ⊣ λO

[REF]
Σ;Γ ⊢ v : τ pc ◁ τ

Σ;Γ; pc;λI ⊢ ref v τ : (ref τ)ℓ ⊣ λO

[DEREF]

Σ;Γ ⊢ v : (ref τ ′)ℓ

τ ′ <: τ ℓ ◁ τ

Σ;Γ; pc;λI ⊢ !v : τ ⊣ λO
[ASSIGN]

Σ;Γ ⊢ v1 : (ref τ)ℓ

Σ;Γ ⊢ v2 : τ ℓ ◁ τ

Σ;Γ; ℓ;λI ⊢ v1 := v2 : unitℓ
′
⊣ λO

[LOCK]

Σ;Γ; pc;λ′
I ⊢ e : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc;λI ⊢ lock ℓ in e : τ ⊣ λO
[LET]

Σ;Γ; pc;λI ⊢ e1 : τ1 ⊣ λ′
O λ′

O ⇒ λI
Σ;Γ, x :τ1; pc;λI ⊢ e2 : τ2 ⊣ λO

Σ;Γ; pc;λI ⊢ let x = e1 in e2 : τ2 ⊣ λO
[VARIANCE]

Σ;Γ; pc′;λ′
I ⊢ e : τ ′ ⊣ λ′

O

τ ′ <: τ pc ⇒ pc′

λ′
I ⇒ λI λ′

O ⇒ λO

Σ;Γ; pc;λI ⊢ e : τ ⊣ λO

Tracking Statement Typing

[ATPC]
Σ;Γ; pc;λI ⊢ s : τ ⊣ λO

Σ;Γ; pc′;λI ⊢ s at-pc pc : τ ⊣ λO
[WITHLOCK]

Σ;Γ; pc;λ′
I ⊢ s : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc;λI ⊢ s with-lock ℓ : τ ⊣ λO
[RETURN]

Σ; ·; pc;λ′
I ⊢ s : τ ⊣ λ′

O

λ′
I ∨ λ′

O ⇒ λO

Σ;Γ; pc;λI ⊢ returnτ s : τ ⊣ λO

Attacker-Model Expression Typing
[IGNORELOCKS]

Σ;Γ; pc;λ′
I ⊢ e : τ ⊣ λ′

O

Σ;Γ; pc;λI ⊢ ignore-locks-in e : τ ⊣ λO

Class Typing Lookup Functions

[METHOD-OK]

λI ⇒ pc2 ℓC ⇒ pc2 λI ∨ λ′
O ⇒ λO pc1 ◁ τa

Σ;x :τa, this :C
pc2 ; pc2;λI ⊢ e : τ ⊣ λ′

O

CT (C) = class C[ℓC] extends D {· · ·}
can-override(D,m, τa

pc1≫pc2;λO−−−−−−−−→ τ)

Σ ⊢ τ m{pc1≫pc2;λO}(x :τa) {e} ok in C

[CLASS-OK]

fields(D) = g :τg
K = C(g :τg ; f :τf) {super(g) ; this.f = f}

Σ ⊢ M ok in C

Σ ⊢ class C[ℓC] extends D {f :τf ; K ; M} ok

[CT-OK]

C referenced in any type =⇒ C ∈ dom(CT)
∀C ∈ dom(CT).Σ ⊢ CT (C) ok

Σ ⊢ CT ok

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}
fields(D) = g :τg

fields(C) = g :τg ; f :τf

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}
τ m{pc1≫pc2;λO}(x :τa) {e} ∈ M

mtype(C,m) = τa
pc1≫pc2;λO−−−−−−−−→ τ

mbody(C,m) = (ℓC , x, τa, pc1≫pc2, e, τ)

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}
m not defined in M

mtype(C,m) = mtype(D,m)
mbody(C,m) = mbody(D,m)

(D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc1≫pc2;λO−−−−−−−−→ τ

can-override(D,m, τa
pc1≫pc2;λO−−−−−−−−→ τ)

Protection Subtyping Heap Typing

ℓ ⇒ ℓ′

ℓ ◁ tℓ
′

ℓ ⇒ ℓ′

tℓ <: tℓ
′

CT (C) = class C[ℓC] extends D {· · ·}
Cℓ <: Dℓ

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

σ(ι) = (v, τ) =⇒ Σσ ⊢ v : τ

⊢ σ wt

Fig. 10. Full typing rules for SeRIF.

18

This definition is sufficient to state and prove the important
property that the SeRIF semantics is deterministic up to
location–name isomorphism.

Theorem 5. For any s1, s′1, and s2 and any C1, C′
1 and C2,

if (s1, C1) ≃ (s2, C2) and ⟨s1 | C1⟩ −→ ⟨s′1 | C′
1⟩, then there

exists s′2 and C′
2 such that ⟨s2 | C2⟩ −→ ⟨s′2 | C′

2⟩, and for all
such s′2 and C′

2, (s′1, C′
1) ≃ (s′2, C′

2).

Proof. By induction on the operational semantics. We take
the permutation to be defined only mapping location names
between σ1 and σ2 and extend it on uses of E-REF (or
inductively with E-EVAL).

Finally, for use in the noninterference theorem (Theorem 1),
we combine location–name isomorphism with ℓt-equivalence.

Definition 11 (Location–name ℓt-isomorphism). Two states σ1

and σ2 are location–name ℓt-isomorphic, denoted σ1 ≃ℓ σ2,
if there exists a θ such that σ1|ℓt = θ(σ2)|ℓt .

APPENDIX C
PRESERVATION AND PROGRESS

We now prove preservation and progress theorems for SeRIF.
The proofs of all theorems in this section follow by induction
and are available in the technical report [13].

Because SeRIF is stateful, the type preservation theorem
includes preservation of both the statement and the heap.

Theorem 6 (Type Preservation). If
• ⟨s | (CT , σ,M, L)⟩ −→ ⟨s′ | (CT , σ′,M′, L′)⟩,
• Σσ ⊢ CT ok,
• Σσ; Γ; pc;λI ⊢ s : τ ⊣ λO, and
• ⊢ σ wt,

then
• Σσ ⊆ Σσ′ ,
• ⊢ σ′ wt, and
• Σσ′ ; Γ; pc;λI ⊢ s′ : τ ⊣ λO.

Several semantic steps (E-REF, E-ASSIGN, and E-CALL)
include information-security checks to guarantee that the code
performing the operation is sufficiently trusted. The type system
guarantees that these labels remain at least as trusted as the
pc label of code executing. We formally define this property
as a relation between a label stack and a statement, denoted
by M ↭ s, and then prove that the semantics maintains this
relation. The relation is formally defined on evaluation contexts
and extended to statements s = E[e] if M ↭ E.

ℓm ↭ [·]
M ↭ E

M ↭ let x = E in e

M ↭ E

M ↭ E with-lock ℓ

M ↭ E

M ↭ ignore-locks-in E

M ↭ E

ℓ,M ↭ returnτ E

ℓ,M ↭ E ℓ ⇒ pc

ℓ,M ↭ E at-pc pc

Proposition 1. For any statements s and s′ and configurations
C = (CT , σ, (ℓm,M), L) and C′ = (CT , σ′,M′, L′), if
⊢ CT ok and (ℓm,M) ↭ s and Σσ; Γ; ℓm;λI ⊢ s : τ ⊣ λO

and ⟨s | C⟩ −→ ⟨s′ | C′⟩, then M′ ↭ s′.

The progress theorem is not without caveats. SeRIF’s type
system intentionally leaves checking of explicit casts, null
dereferences, and dynamic reentrancy locks to run time. As a
result, the progress theorem states that these three are the only
ways a well-typed program can get stuck.

Theorem 7 (Progress). For any statement s and configuration
C = (CT , σ, (ℓm,M), L), if

• Σσ; ·; pc;λI ⊢ s : τ ⊣ λO,
• ℓm ⇒ pc, and
• (ℓm,M) ↭ s,

then one of the following holds:
1) s is a closed value,
2) ⟨s | C⟩ −→ ⟨s′ | C′⟩ for some s′ and C′,
3) s = E[(C)(new D(v))] where D ̸<: C,
4) s = E[!null] or s = E[null := v], or
5) s = E[new C(v).m(w)] for a C and m such that

mtype(C,m) = τa
pc1≫pc2;λO−−−−−−−→ τ and there is some

ℓm ∈ L such that pc1 ̸⇒ pc2 ∨ ℓm.

Note that, for any invocation I = (ℓ, ι,m(v)), ℓ ↭ !ι.m(v).
Therefore, if the invocation and class table are well-typed in
Σσ for a well-typed heap σ, Theorems 6 and 7 combine with
Proposition 1 to prove that the invocation either steps to a
closed value with a well-typed heap or gets stuck on one of
the three run-time error checks.

19

	Introduction
	Motivation
	Uniswap
	Key–Value Store
	Town Crier

	Information Flow Control
	Label model
	Endorsement

	Reentrancy and Security
	Defining Reentrancy
	Reentrancy Security
	Enforcing Reentrancy Security

	A Core Calculus for Secure Reentrancy
	SeRIF Operational Semantics
	Type System for SeRIF
	Modeling Application Operation
	Examples Revisited

	Formalizing Security Guarantees
	Attacker Model
	Noninterference
	Formalizing Reentrancy

	Implementation
	Related Work
	Conclusion
	Appendix A: Full SeRIF Rules
	Appendix B: Location–Name Isomorphism
	Appendix C: Preservation and Progress

