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1 Introduction

The language ALSO is designed to support safely extensible
multi-user servers. It was originally designed for writing
MUD servers (programmable multi-user virtual worlds), but
itis also applicable to other servers. For example, it provides
much of the key functionality of languages like Safe-Tcl
and JavaScript. ALSO supports even more flexible MUD
systems than MOO [1], and can be used to implement other
kinds of servers too (e.g., HTTP, SMTP). ALSO contains
several uncommon or unique features that make it easier
to safely extend a running system. This note provides an
overview and rationale for ALSO’S design. More details are
available [2]. A running ALSO server can be experimented
with at telnet://also.lcs.mit.edu:4201.

2  Overview

ALSO is designed to be familiar in those areas where being
different yields no benefit. For example, its syntax is
similar to that of C++ and Java, though there are some
compatible extensions (e.g., semicolons are optional and it
supports gcc-like block expressions). ALSO has first-class
lambda expressions and lexical scoping, but functions can be
conveniently declared in a C-like syntax. The language is
not statically typed. Functions may return multiple results,
and may return either normally or with an exception. The
following example is the Fibonacci function:

fib(x) = (
if (x < 0) fail(range—error, x)
if (x<2)1
else fib(x — 1) + fib(x — 2)
)

Computation is typically performed on objects. Like
SELF [3], ALSO has prototype-based inheritance; that is,
objects inherit directly from other objects. Typically,
exemplar or template objects fill the role of classes in class-
based systems. Objects can contain references to each other,
and are stored in a garbage-collected heap.
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ALSO is currently executed by a fairly fast interpreter
(about as fast as Perl), but the execution model is compatible
with compilation. In particular, it has an eval operator
that, like the same operator in Scheme and Lisp, explicitly
compiles program text into code. Only eval can add new
code to a running server.

This section has discussed similarities between ALSO
and some popular programming languages. Now we will
consider some differences.

3 Identifiers

Most interpreted languages (e.g., Scheme, Tcl) have a read-
eval-print loop that inserts identifier bindings into a global
namespace. A global namespace is inappropriate for a multi-
user system, since it leads to name clashes — users may want
different names for the same objects, or the same names for
different objects. An extreme example is users who speak
different languages, but the ALSO model provides support for
even this case.

In ALSO, each user (in fact, each separate invocation
of eval) can supply their own naming environment for
interpreting identifiers in code. This environment is then
used consistently for interpreting and reporting identifiers.
The naming environment can be an object that performs
arbitrarily complex computation to locate identifiers, which
provides a powerful hook into the workings of the compiler.

Since ALSO is designed for extensible systems, it is always
possible to examine compiled code (i.e., function values) in
source form, using the sprint operator. This operator can
report the code using identifiers consistent with the user’s
naming environment, which is possible because compiled
code contains a precis of the naming environment used to
compile it. An inverse naming environment, supplied to
sprint, then can be used to back-map identifiers mentioned in
the precis.

There are limitations to customized name environments, of
course. Because ALSO is lexically scoped, local variables are
not mapped using the compilation environment. However,
there is no ambiguity of interpretation in this case.



4 Transactions

Requests for different users are processed by an ALSO server
in separate, serializable transactions, so they do not interfere
with one another. ALSO allows nested transactions, where
the failure of an inner transaction does not necessarily affect
the containing transaction. Transactions are integrated with
exceptions in a convenient and unobtrusive manner. The “try”
statement may be used to execute any block of code within a
nested transaction. For example, try (x = 1/0) will attempt to
divide 1 by 0. Since the contained code will terminate with an
uncaught exception (divide-by-zero), the transaction has no
effect except to return any values attached to the exception.

Since run-time errors and access control failures are treated
as exceptions, this model makes it easier to run code that may
contain bugs. If the code encounters an unexpected run-time
error, it will generate an exception that terminates the current
transaction. Running this code is therefore less likely to
leave objects in a partially-modified or inconsistent state.
Transactions provide an additional level of confidence about
importing untrusted or possibly buggy code.

In MUDs, other users routinely extend the system by
adding new code that provides behavior for items in the
virtual world. Interacting with these items often causes one
to invoke the code, often at unexpected times. Transactions
are particularly helpful in this situation, but no other MUD
language supports nested transactions. Transactions may be
helpful for extensible web servers, too.

5 Objects

As the only mutable data type in ALSO, objects are very
important for programming. However, the object model
has some unusual features. In virtually all object-oriented
languages, an object is a map from symbols to values. An
object (or class) is a local namespace, and symbols are used
to look up methods and instance variables. To satisfy the
goals of Section 3, ALSO takes a unique approach: Objects
map from values to values. The identifiers used to name
components of an object may vary from user to user, so
objects do not impose a namespace on their users. In
addition, since objects are implemented as hash tables, they
conveniently supersede arrays, associative arrays, and sets.

An object is a collection of mutable properties, which are
key/value pairs. A property key may have any type; typically,
property keys are themselves objects. The compilation
environment contains the user’s mappings from identifiers to
property keys, so different users may use different identifiers
to access the same properties. When a property key is an
object, other information may be associated with it, such as
documentation or an ACL.

Objects can also be used to implement modules: encap-
sulated implementations that provide a public interface. The
public interface is accessed through properties, whereas pri-
vate module identifiers are stored in local variables captured

by a closure. For example, the following code implements
a module with two public procedures, incr and value, that
access an internal counter:

counter is (
varcnt =0
new (
incr() = (cnt = cnt + 1),
value() = cnt

)

/I private!

)

counter is bound to the result of the new expression, which
uses cnt from the same scope. External code can access cnt
only through counter.incr() and counter.value(). Evolution
of the system is then supported by the mutability of counter
(subject to access control constraints).

6 Queries

ALSO supports a simple query model in the form of invertible
properties. If a property key is designated as invertible, then
the “?” operator may be used to find all objects that map
that key to a particular value. Common object properties
like location, type, and owner are usually invertible. For
example, the expression owner?andru would produce a list
of all objects owned by andru. Querying is fast, because
the current ALSO implementation precomputes all query
results, incrementally updating its tables as assignments are
performed to invertible properties.

This simple query model has greatly simplified existing
code because it supports one-to-many relationships. For
example, MUD systems often find all objects in a particular
location, or all objects of a particular type. Generally
these two particular requests are hard-coded into the system,
denying wider use of the functionality. The “?” operator
makes this kind of request robust and efficient.

7 Future Work

ALSO provides several uncommon or even unique features
that are well-integrated and aid writing robust code in a
multi-user environment. However, more work is required
for wider acceptance of ALSO. The access control model
is currently being refined, and performance, while not bad,
is being improved by the addition of on-the-fly compilation.
A good debugger and an integrated GUI toolkit such as Tk
would also help.
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