Nested Intersection for Scalable Software Composition
(Technical Report)

Nathaniel Nystrom Xin Qi Andrew C. Myers

Computer Science Department
Cornell University

{nystrom,gixin,andru}@cs.cornell.edu

Abstract ponents offer disjoint, complementary functionality. In the general

_case, two software components are not disjoint. They may in fact
offer similar functionality, because they extend a common ancestor
component. Composing related frameworks should integrate their

lier work on nested inheritance in the language Jx. Nested inher- extensions rather than duplicating the extended components. It is

itance permits modular, type-safe extension of a package (includ-th's more general form of software composition that nested inter-
ing nested packages and classes), while preserving existing typeseCtlon supports. L

relationships. Nested intersection enables composition and exten- . A Motivating example for software composition is the problem
sion oftwo or morepackages, combining their types and behavior of comblnlng_ _domaln-specn‘!c compl_ler extensions. We dem_on-
while resolving conflicts with a relatively small amount of code. Strate the utility of nested intersection through a J& compiler

The utility of J& is demonstrated by using it to construct two com- Eramelwork for irSp_Iemehntin domaikn-spi]ecri]fi'c Exteng‘ionshto Pthf
posable, extensible frameworks: a compiler framework for Java, Y2V language. Using the framework, which is based on the Poly-

and a peer-to-peer networking system. Both frameworks supporthOt compiler framework [36], one can choose useful language fea-

composition of extensions. For example, two compilers adding dif- Ures ftohr agien app|lfﬁtl0n doma'”c‘;.fom a“me_lnu” (tjf avt‘;"t'k.ible op-
ferent, domain-specific features to Java can be composed to obtairflons, then compose the corresponding compilers to obtain a com-

a compiler for a language that supports both sets of features. piler for the desired language. .
P guag PP We identify the following requirements for general extension

and composition of software systems:

This paper introduces a programming language that makes it conve
nient to compose large software systems, combining their features
in a modular way. J& supportgested intersectigrbuilding on ear-

1. Introduction

Most software is constructed by extending and composing exist-
ing code. Existing mechanisms like class inheritance address the
problem of code reuse and extension for small or simple exten- 2. Type safety: Extensions cannot create run-time type errors.
sions, but do not work well for larger bodies of code such as com-
pilers or operating systems, which contain many mutually depen-
dent classes, functions, and types. Moreover, these mechanisms do

not adequately suppotbmpositiorof multiple interacting classes. 4. Scalability: Extensions should bealable The amount of code
Better language support is needed. needed should be proportional to the functionality added.

This paper introduces the language J& (pronounced “Jet”), 5. Non-destructive extension: The base system should still be
which supports the scalable, modular composition and extension ayajlable for use within the extended system.

of large software frameworks. J& builds on the Java-based lan-
guage Jx, which supports scalable extension of software frame-
works throughnested inheritanc¢35]. J& adds a new language
feature,nested intersectigrwhich enables composition of multi-
ple software frameworks to obtain a software system that combines
their functionality.

Programmers are familiar with a simple form of software com-
position: linking, which works when the composed software com-

1. Orthogonal extension: Extensions may require both new data
types and new operations.

3. Modularity: The base system can be extended without modify-
ing or recompiling its code.

6. Composability of extensions.

The first three of these requirements correspond to Wadésr's
pression problent49]. Scalability (4) is often but not necessarily
satisfied by supporting separate compilation; it is important for ex-
tending large software. Non-destructive extension (5) enables ex-
isting clients of the base system and also the extended system itself
to interoperate with code and data of the base system, an important
- -) requirement for backward compatibility. Nested inheritance [35]
This technical report expands on the paper of the same name submitted 0 ddresses the first five requirements, but it does not support exten-
OOPSLA 2006. . L ! . . o

sion composition. Nested intersection adds this capability.

This paper describes nested intersection in the J& language and
our experience using it to compose software. Section 2 consid-
ers a particularly difficult instantiation of the problem of scalable
Permission to make digital or hard copies of all or part of this work for personal or extensibility and composition—the extension and composition of
classroom use is granted without fee provided that copies are not made or diSt.”bL.‘tEdcompilers—and gives an informal introduction to nested intersec-
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute 10N and J&. Nested intersection creates several interesting techni-
to lists, requires prior specific permission and/or a fee. cal challenges, such as the problem of resolving conflicts among
OOPSLA’06 October 22—26, 2006, Portland, Oregon, USA. composed packages; this topic and a detailed discussion of lan-
Copyright(© 2006 ACM 1-59593-348-4/06/0010. .. $5.00. guage semantics are presented in Section 3. Section 4 then de-

scribes how nested intersection is used to extend and compose com- base _ Vier como
pilers. The implementation of J& is described in Section 5, and Sec- p o Vistor Compller
tion 6 describes experience using J& to implement and compose Abs TypeChecker
extensions in the Polyglot compiler framework and in the Pastry
framework for building peer-to-peer systems [44]. Related work is /<1 P\
discussed in Section 7, and the paper concludes in Section 8. The pair sum
appendix gives a formal operational semantics and a type system Exp Compiler Exp Compiler
for J&.

Abs Pair Abs Case

Visitor Visitor

2. Nested intersection
Nested intersection supports scalable extension of a base system | '/Pe¢hecker TranslatePairs TypeChecker TranslateSums
and scalable composition of those extensions. Consider building a [>\ f]
compiler with composable extensions. A compiler is of course not i
the only system for which extensibility is useful; other examples pair & sum
include user interface toolkits, operating systems, game engines, Exp Compiler

. bstract;
web browsers, and peer-to-peer networks. However, compilers are (abstrach

a particularly challenging domain because a compiler has several
different interacting dimensions along which it can be extended: Visitor
syntax, types, analyses, and optimizations.

Abs Pair Case

TypeChecker TranslatePairs TranslateSums

2.1 Nested inheritance 5 X - . "
. . .))) Figure 2. Inheritance hierarchy for compiler composition
Nested intersection builds on previous work on nested inheri-

tance [35]. Figure 1(a) shows a fragment of J& code for a simple
compiler for the lambda calculus extended with pair expressions. | ate binding applies to supertype declarations as well.
This compiler translates the lambda calculus with pairs into the Thus, pair.Emitter extendspair.Visitor and inherits its
lambda calculus without pairs. visitPair method. Late binding of supertype declarations thus
Nested inheritance is inheritancerdimespacepackages and provides a form ofvirtual superclassef30, 15], permitting inher-
classes. In J&, packages are treated like classes with no fields,itance relationships among the nested namespaces to be preserved
methods, or constructors. A namespace may contain other namewhen inherited into a new enclosing namespace. The class hier-
spaces. A namespace may also extend another namespace, inhegrchy in the original namespace is replicated in the derived name-
iting all its members, including nested namespaces. As with or- space, and in that derived namespace, when a class is further bound,

dinary inheritance, the meaning of code inherited from the base new members added into it are automatically inherited by sub-
namespace is as if it were copied down from the base. A derived classes in the new hierarchy.

namespace megverrideany of the members it inherits, including Sets of mutually dependent classes may be extended at once. by
nested classes and packages. grouping them into a namespace. For example, the cl&spesnd

As with virtual classes [29, 30, 19], overriding of a nested class visitor in the base package are mutually dependent. Ordinary
does not replace the original class, but instead refinefurtiver class inheritance does not work because the extended classes need
binds [29], it. If a namespacd’ extends another namespate to know about each other: their compiler could defin@air as
that contains a nested namespdce, thenT’.C inherits mem- a new subclass @ xp, but references withiBxp to classVisitor

bers fromT.C as well as fronil’.C's explicitly named base name- would refer to the olbase version ofVisitor, not the appropriate
spaces (if any). Further binding thus provides a limited form of one that understands how to visit pairs. With nested inheritance
multiple inheritanceexplicit inheritancefrom the named base of of the containing namespace, late binding of type names ensures

T'.C and induced inheritancdrom the original namespace.C. that relationships between classes in the original namespace are
Unlike with virtual classesT’.C is also a subtype of .C. In Fig- preserved when these classes are inherited into a new namespace.
ure 1(a), thepair package extends these package, further bind- In general, the programmer may want some references to other

ing theVisitor, TypeChecker, andCompiler classes, as illus- types to be late bound, while others should refer to a particular fixed
trated by thebase and pair boxes in the inheritance hierarchy class. Late binding is achieved by interpreting unqualified type
of Figure 2. The claspair.TypeChecker is a subclass of both names likevisitor as sugar for types nested withitependent
base.TypeChecker and pair.Visitor and contains both the classesandprefix typesThe semantics of these types are described
visitAbs andvisitPair methods. in more detail in Section 3. Usually, the programmer need not write
The key feature of nested inheritance that enables scalable ex-down these desugared types; most J& code looks and behaves like
tensibility is late binding of type names. When the name of a class java code.
or package is inherited into a new namespace, the name is inter-
preted in the context of the namespace into which it was inherited, 2.2 Extensibility requirements
rather than where it was originally defined. When the name occurs
in a method body, the type it represents may depend on the run-time
value ofthis.
In Figure 1(a), the nameéisitor, in the context of thé&ase

Nested inheritance in Jx meets the first five requirements described
in Section 1, making it a useful language for implementing exten-
sible systems such as compiler frameworks:

package, refers tbase.Visitor. In the context ofpair, which Orthogonal extension. Compiler frameworks must support the
inherits frombase, Visitor refers topair.Visitor. Thus, when addition of both new data types (e.g., abstract syntax, types,
the methochccept is called on an instance phir.Pair, it must dataflow analysis values) and operations on those types (e.g., type
be called with gpair.Visitor, notwith abase.Visitor. This checking, optimization, translation). It is well known that there is

allows Pair’s accept to invoke thevisitPair method of the a tension between extending types and extending the procedures
parametev. that manipulate them [42]. Nested inheritance solves this problem

package base;

abstract class Exp {
Type type;
abstract Exp accept(Visitor v);
}
class Abs extends Exp {
String x; Exp e; // Ax.e
Exp accept(Visitor v) {
e = e.accept(v);
return v.visitAbs(this);
}
}
class Visitor {
Exp visitAbs(Abs a) {

return a;
}
}
class TypeChecker extends Visitor {
Exp visitAbs(Abs a) { ... }
}

class Emitter extends Visitor {
Exp visitAbs(Abs a) {
print(...); return a;

}

}

class Compiler {
void main() { ... }
Exp parse() { ... }

package pair extends base;

class Pair extends Exp {

Exp fst, snd;

Exp accept(Visitor v) {
fst.accept(v); snd.accept(v);
return v.visitPair(this);

¥

}

class Visitor {
Exp visitPair(Pair p) { return p; }

}

class TypeChecker extends Visitor {
Exp visitPair(Pair p) { ... }

}

class TranslatePairs extends Visitor {

Exp visitPair(Pair p) {
return ...;

/7 (AYAS. Exy) [p- £5t] [p.snd]
¥

class Compiler {
void main() {
Exp e = parse();
e.accept(new TypeChecker());
e = e.accept(new TranslatePairs());
e.accept(new Emitter());

}
Exp parse() { ... }

(a) Lambda calculus + pairs compilers

package sum extends base;

class Case extends Exp {
Exp test, ifLeft, ifRight;
}
class Visitor {
Exp visitCase(Case c) {

return c;
}
}
class TypeChecker extends Visitor
{...}
class TranslateSums extends Visitor
{...}
class Compiler {
void main() { ... }
Exp parse() { ... }

(b) Lambda calculus + sums compiler

package pair_and_sum extends pair & sum;

// Resolve conflicting versions of main
class Compiler {
void main() {

Exp e = parse();
e.accept(new TypeChecker());
e = e.accept(new TranslatePairs());
e = e.accept(new TranslateSums());
e.accept(new Emitter());

Exp parse() { ... }

(c) Conflict resolution

because late binding of type names causes inherited methods to op-

Figure 1. Compiler composition

For two namespaceSandT, S&T is theintersectionof these

erate automatically on data types further bound in the inheriting two namespaces. Nested intersection is a form of multiple inheri-
tance implemented usirigtersection typef43, 13]: S& T inherits

context.

Type safety. Nested inheritance is also type-safe [35]. Dependent

system or of other extensions as if they belonged to the extension

which could cause run-time errors.

reasons; one important reason is that the name of every method,

from and is a subtype of bothandT.

Nested intersection is most useful when composing related
Sﬁ?a(:kages or classes. When two namespaces that both extend a com-
'mon base namespace are intersected, their common nested name-

spaces are themselves intersecte&:dahdT contain nested name-

Modularity and scalability. Extensions are subclasses (or sub- SpacesSCandT.C, the intersectiosg T containsg(S&T).C, which
packages) and hence are modular. Extension is scalable for severdf €qual toSC&T.C.

Consider the lambda calculus compiler from Figure 1(a). Sup-

field, and class provides a potential hook that can be used to extend?0se that we had also extended tage package to aum package
implementing a compiler for the lambda calculus extended with

sum types. This compiler is shown in Figure 1(b).

behavior and data representations.

Non-destructive extension. Nested inheritance does not affect

The

intersection packagepair & sum,

shown in Fig-

the base code, so it is a non-destructive extension mechanismyre 2, composes the two compilers, producing a com-
unlike open classes [12] and aspects [27]. Therefore, base COdegiIer for the lambda calculus extended with both product

and extended code can be used together in the same system, whi

CAnd sum types. Since botpair and sum contain a class

is important in extensible compilers because the base language iSompiler, the new class (pair & sum).Compiler extends

often used as a target language in an extended compiler.

The sixth requirement, composition of extensions, is discussed in

the next section.

2.3 Composition

composition of their functionalities.

both pair.Compiler and sum.Compiler.
pair.Compiler andsum.Compiler define a methoehain, the
class (pair & sum).Compiler contains conflicting versions of

Because both

main. The conflict is resolved in Figure 1(c) by creating a new
derived packag@air_and_sum that overridesnain, defining the

.)) order of compiler passes for the composed compiler. A similar
To support composition of extensions, J& extends Jx with nested ~qnfiict occurs with thearse method.

intersection: New classes and packages may be constructed by
inheriting from multiple packages or classes; the class hierarchies
nested within the base namespaces are composed to achieve a

3. Semantics of J&

This section gives an overview of the static and dynamic semantics

of J&. A formal presentation of the J& type system is omitted for
space but can be found in an associated technical report [37].

3.1 Dependent classes and prefix types

In most cases, J& code looks and behaves like Java code. However,
unqualified type names are really syntactic sugar for nested classes

of dependent classes and prefix types, introduced in Jx [35].
The dependent class.plass represents the run-time class of

the object referred to by thinal access path .pA final access

path is either a final local variable, includingis and final formal

parameters, or a field accgss, wherep is a final access path and

f is a final field ofp. In general, the class representedylass

is statically unknown, but fixed: for a particulgr all instances of

class A {
class B { }
void m() { }
}
class Al extends A { class A2 extends A {
class B { } class B { }
class C { } class C { }
void m() { } void m() { }
void p() { %} void p() { %}
} }

abstract class D extends A1 & A2 { }

Figure 3. Multiple inheritance with name conflicts

p.class have the same run-time class, and not a proper subclass,

as the object referred to lyy

The prefix type HT] represents the enclosing namespace of
the class or interfacd that is a subtype of the namespdee
It is required thatP be a non-dependent type: either a top-level
namespac€ or a namespace of the for®.C. In typical useT
is a dependent clasB.may be either a package or a class. Prefix

checks allow an escape hatch that can enable wider code reuse.
Casting an object to a dependent classlass checks that the
object has the same run-time clasgahis feature allows objects
indexed by different access paths to be explicit coerced into another
family of types.

Nested inheritance can operate at every level of the containment

types provide an unambiguous way to name enclosing classes andlierarchy. Unlike with virtual classes [19], in J& a class nested
packages of a class without the overhead of storing references toWithin one namespace can be subclassed by a class in a different
enclosing instances in each object, as is done in virtual classes"@mespace. For example, suppose a collections libraty is
Indeed, if the enclosing namespace is a package, there are no runimplemented in J& as a set of mutually dependent interoperating
time instances of the package that could be used for this purpose. classes. A user can extend the classl.LinkedList to a class
Late binding of types is provided by interpreting unqualified MyList not nested withinitil. A consequence of this feature is
names as members of the dependent alass . class or of a pre- that a prefix typeP[T] may be defined even iF is not directly
fix type of this.class. The compiler resolves the narfieto the nested withinP or within a subtype oP. When the current object
typethis.class.C if the immediately enclosing class contains or this is aMyList, the prefix typeutil[this.class] is well-
inherits a nested namespace narfiedsimilarly, if an enclosing formed and refers to thetil package, even thougtyList is not
namespac® other than the immediately enclosing class contains @ member class aftil. i)
or inheritsC, the nameC resolves toP[this.class].C. Derived ~ Toensure soundness, the typelass is well-formed only ifp
namespaces of the enclosing namespace may further bind and rels final. However, to improve expressiveness and to ease porting of

fine C. The version ofC selected is determined by the run-time Java programs to J&, a non-final local variaklmay beimplicitly
class ofthis. coercedto the typex.class under certain conditions. Whenis

For example, in Figure 1(a), the namisitor is sugar used as an actual argument of a method call, a constructor call, or
for the typebase [this.class] .Visitor. The dependent class @new expression, or as the source of a field assignment, axd if
this.class represents the run-time class of the object referred to IS not assigned in the expression, then it can be implicitly coerced
by this. The prefix packagease [this.class] is the enclos- to typex.class. Consider the following code fragment using the
ing package ofhis.class that is a derived package dhse. classes of Figure 1(a):

Thus, if this is an instance of a class in the packageir,
base[this.class] represents the packageir.

Both dependent classes and prefixes of dependent classes are))))
exact type$5]: all instances of these types have the same run-time In the call toaccept, e is never assigned and hence its run-time
class, but that class is statically unknown in general. Simple types class does not change between the tinis first evaluated and
like base.Visitor are not exact since variables of this type may Mmethod entry. lfe had been assigned, say tdase . Exp, thenew

base.Exp e = new pair.Pair();
e.accept(new base[e.class].TypeChecker());

contain instances of any subtypeWifsitor.
J& provides a form offamily polymorphism{17]. All types

expression would have allocateda@se . TypeChecker and passed
itto pair.Pair.accept, leading to a run-time type error. Implicit

indexed by a given dependent class—the dependent class itselfcoercion is not performed for field paths, since it would require

its prefix types, and its nested classes—are membersfafa
ily of interacting classes and packages. By initializing a variable

with instances of different classes, the same code can refer to

classes in different families with different behaviors. In the con-

reasoning about aliasing and is in general unsafe for multithreaded
programs.

3.2 Intersection types

text of a given class, other classes and packages named usindNested intersection of classes and packages in J& is provided in

this.class are in the same family as the actual run-time class
of this. In Figure 1(a)pair.Pair.accept’s formal parameter

has typebase[this.class].Visitor. If this iS apair.Pair,
base[this.class].Visitor mustbe gair.Visitor, ensuring
the call tovisitPair is permitted.

the form ofintersection type§43, 13]. An intersection typ&& T
inherits all members of its base namespagasdT. With nested
intersection, the nested namespacesSafnd T are themselves
intersected.

To support composition of classes and packages inherited more

The type system ensures that types in different families (and than once, J& providesharedmultiple inheritance: when a sub-
hence indexed by different access paths) cannot be confused withclass (or subpackage) inherits from multiple base classes, the

each other accidentally tmse object cannot be used whereasir

new subclass may inherit the same superclass from more than

object is expected, for example. However, casts with run-time type one immediate superclass; however, instances of the subclass will

not contain multiple subobjects for the common superclass. For class C { void n(O) { ... } }
instance,pair_and_sum.Visitor in Figure 1(c) inherits from

base.Visitor only once, not twice through botpair andsum. class Al {
Similarly, the packag@air_and_sum contains only on&isitor class Bl extends C { }
class, the composition @hair.Visitor andsum.Visitor. class B2 extends C { }
void m() {
) new Al[this.class].B1() & Al[this.class].B2Q);
3.3 Name conflicts }

Since an intersection class type does not have a class body in}
the program text, its inherited members cannot be overridden by
the intersection itself, however, subclasses of the intersection mayclass A2 extends Al {

override members. class Bl extends C { void n() { ... } }
When two namespaces declare members with the same name, a class B2 extends C { void n(O) { ... } }
name conflicimay occur in their intersection. How the conflict is // now Bl & B2 conflict

resolved depends on where the name was introduced and whethet
the name refers to a nested class or to a method. If the name was
introduced in a common ancestor of the intersected namespaces, Figure 4. Conflicts introduced by late binding
members with that name are assumed to be semantically related.
Otherwise, the name is assumed to refer to distinct members that

coincidentally have the same name, but different semantics. If A andB have a name conflict that causes their intersection to
When two namespaces are intersected, their correspondingpe an abstract class, a class body must be provided to resolve the

nested namespaces are also intersected. In Figure 3Abathd conflict.

A2 contain a nested clagsinherited fromA. Since a common an- Further binding may also introduce name conflicts. For exam-

cestor introduceB, the intersection typ&1 & A2 contains a nested ple, in Figure 4A1.B1 andA1.B2 do not conflict, buta2.B1 and

class(A1 & A2).B, which is equivalent ta1.B& A2.B. The subclass A2.B2 do conflict. Since the anonymous intersectioinm may

D has an implicit nested cla®s, a subclass ofA1 &A2).B. create an intersection of these two conflicting types, it should not be
On the other handy1 andA2 both declare independent nested allowed. Because the type being instantiated is statically unknown,

classesC. Even though these classes have the same name, theyt is a compile-time error to instantiate an anonymous intersection

are assumed to be unrelated. The clasisk A2).C is ambiguous of two or more dependent types (either dependent classes or pre-
In fact, A1 & A2 contains two nested classes nantdone that fixes of dependent classes); only anonymous intersections of non-
is a subclass ofi1.c and one a subclass a2.c. ClassD and dependent, non-conflicting classes are allowed.

its subclasses can resolve the ambiguity by exploiting prefix type
notation: A1 [D].C refers to theC from A1 and A2[D].C refers to 3.5 Prefix types and intersections
the C from A2. In A1, references to the unqualified naraeare
interpreted as\1[this.class].C. If this is an instance oD,
these references refer to the.C. Similarly, references t@ in A2
are interpreted a&2 [this.class].C, and wherthis is aD, these
references refer t62.C.

A similar situation occurs with the methods.p and A2.p.
Again, D inherits both versions of. Callers ofD.p must resolve

Unlike with virtual classes [19], it is possible in J& to extend
classes nested within other namespaces. Multiple nested classes or
a mix of top-level and nested classes may be extended, resulting
in an intersection of several types with different containers. This
flexibility is needed for effective code reuse but complicates the
definition of prefix types. Consider this example:

the ambiguity by up-casting the receiver to specify which one of class A { class B{ B mn(Q; ... } }

the methods to invoke. This solution is also used for nonvirtual class Al extends A { class B{ B x =m(); } }
“super” calls. If the superclass is an intersection type, the call may class A2 extends A { class B{ } }

be ambiguous. The ambiguity is resolved by up-casting the special class C extends A1.B & A2.B { }

receiversuper to the desired superclass.

Finally, two or more intersected classes may declare methods
that override a method declared in a common base class. In this X] | X
case, illustrated by the methadin Figure 3, the method in the nameB In A1.B IS Sl..lgar forA1[this.class].B. Slﬂce the method
intersection typei1 & A2 is consideredibstract Because it cannot @ @nd other code im.B may be executed whethis refers to an
override the abstract method, the intersection is also abstract andnStance ofA1.B, these two references ®should resolve to the

cannot be instantiated. Subclasses of the intersectionypethe same type; that is, it must be thiefthis. class] is equivalent to
example), must override to resolve the conflict, or else also be A1 [this.class]. This equivalence permits the assignment of the
declared abstract. result ofm() to x in A1.B. Similarly, the three types([C], A1[C],

andA2[C] should all be equivalent.
Prefix types ensure the desired type equivalence. Two tiypes
3.4 Anonymous intersections and P’ arerelated by further bindingf they both contain nested
An instance of an intersection class typeB may be created by ~ YPESPC andP’.C that are inherited from or further bind a common
explicitly invoking constructors of both andB: typeP”.C. We writeP ~ P _for the symmetric, transitive closure of
this relation. In general, iP ~ P/, thenP[T] andP’[T] should
new AQ) & BO; be equivalent. The prefix typ@[T] is defined as the intersection
of all typesP’, whereP ~ P’ whereT has a supertype nestedmn
This intersection type isnonymousAs in Java, a class body and a supertype nestedi Using this definition, A1 andA2 are
may also be specified in theew expression, introducing a new all transitively related by further binding. Thus[C], A1[C], and
anonymous subclass 8% B: A2[C] are all equivalent ta1 & A2.
Prefix types impose some restrictions on which types may be
new AO & BO { ... }; intersected. If two classég and T, contain conflicting methods,

As explained in Section 3.1, the unqualified nama the body
of classA.B is sugar for the typei[this.class].B. The same

class A { A(int x); } In the first case, if all calls to the shared superclass’s construc-

class B { tor originate from the same call site, which is multiply inherited
class C extends A { C(int x) { A(x+1); } } into the intersection, then every call to the shared constructor will

} pass it the same arguments. In this case, the programmer need do

class Bl extends B { nothing; the operational semantics of J& will ensure that the shared
class C extends A { void m(O; } constructor is invoked exactly once.

} For example, in Figure 5, the implicit claBsC is a subclass of

class B2 extends B { } B1.C&B2.C and shares the superclassSinceB1.C andB2.C both
class C extends A { void p(); } inherit theirc (int) constructor fronB.C, both inherited construc-

1 tors invoke the\ constructor with the same arguments. There is no

class D extends Bl & B2 { } conflict and the compiler need only ensure that the constructor of

A is invoked exactly once, before the bodym€’s constructor is
Figure 5. Constructors of a shared superclass executed. Similarly, if the programmer invokes:

new (Bl & B2).C(1);

there is only one call to the(int) constructor and no conflict.
then their intersection is abstract, preventing the intersection from If, on the other hand, the intersection contains more than one
being instantiated. [f; or T, contain member classes, a prefix type call site that invokes a constructor of the shared superclass, or of
of a dependent class bounded by one of these member classes coulthe intersection itself is instantiated so that more than one construc-
resolve to the intersection & T,. To prevent these prefix types from tor is invoked, then the programmer must resolve the conflict by
being instantiated, all member classes of an abstract intersection arespecifying the arguments to pass to the constructor of the shared

also abstract. superclass. The call sites inherited into the intersectionneilbe
invoked. It is up to the programmer to ensure that the shared super-
3.6 Constructors class is initialized in a way that is consistent with how its subclasses
. o . .) expect the object to be initialized.
Like Java, J& initializes objects using constructors. Since J& per- |y Figure 5, if one or both 081 andB2 were to override the

mits allocation of instances of dependent types, the class being allo-¢ (in+) constructor, therB1.C and B2.C would have different
cated may not be statically known. Constructors in J& are inherited ¢onstructors with the same signature. One of them might change
and may be overridden like methods, allowing the programmer to hqy the ¢ constructor invokesi (int). To resolve the conflict,
invoke a constructor of a statically known superclass of the class p myst further bindc to specify howc(int) should invoke the

being allocated. o _ . constructor ofs. This behavior is similar to that of constructors of
When a class declaresfanal field, it must ensure the field is ghared virtual base classes in C++.

initialized. Since constructors are inherited from base classes that There would also be a conflict if the programmer were to in-
are unaware of the new field, J& requires that if the field declaration ,gye-

does not have an explicit initializer, all inherited constructors must

be overridden to initialize the field. new B1.C(1) & B2.C(2);

To ensure fields can be initialized to meaningful values, con- The A(int) constructor would be invoked twice with different
structors are inherited only via induced inheritance, not via explicit arguments. Thus, this invocation is illegal; however, siBte &

inheritance. That is, the cla3s.C inherits constructors frorii.C B2.C is equivalent tqB1&B2).C, the intersection can be instantiated
whenT is a supertype off/, but not from other superclasses of using the latter type, as shown above.

T’.C. If a constructor were inherited from both explicit and induced o

superclasses, then every class that adisnal field would have 3.7 Type substitution

to override the defaullbject () constructor to initialize the field. Because types may depend on final access paths, type-checking

Since no values are passed into this constructor, the field may notmethod calls requires substitution of the actual arguments for the

be able to be initialized meaningfully. formal parameters. A method may have a formal parameter whose
Since a dependent claps:1ass may represent any subclass of type depends upon another parameter, includings. The actual

p's statically known type, a consequence of this restriction is that arguments must reflect this dependency. For example, the class

p.class can only be explicitly instantiated {i’'s statically known base. Abs in Figure 1 contains the following call:
classisfinal; in this case, sincp.class is guaranteed to be equal

to thatfinal class, a constructor with the appropriate signature v.visitAbs(thisa);
exists. The restriction does not prevent nested classes of dependertb a method obase . Visitor with the signature:
classes from being instantiated.

A constructor for a given class must explicitly invoke a con-
structor of its declared superclass. If the superclass is an intersecfor clarity, each occurrence ofhis has been labeled with
tion type, it must invoke a constructor of each class in the intersec- an abbreviation of its declared type. Since the formal type
tion. Because of multiple inheritance, superclass constructors arebase [thisy.class].Abs depends on the receiveliisy, the type

void visitAbs(base[thisy.class].Abs a);

invoked by explicitly naming them rather than by using #uper of the actual argumenthis, must depend on the receiver
keyword as in Java. In Figure B, C invokes the constructor of its The type checker substitutes the actual argument types for de-
superclasa by name. pendent classes occurring in the formal parameter types. In this ex-

Because J& implements shared multiple inheritance, an inter- ample, the receiver has the typ®ase [thisy .class].Visitor.
section class may inherit more than one subclass of a shared superSubstituting this type for thisy.class in the for-
class. Invoking a shared superclass constructor more than once maynal parameter type base[thisy.class].Abs Yyields
lead to inconsistent initialization dfinal fields, possibly causing base[base[thisy.class].Visitor].Abs, which is equiv-

a run-time type error if the fields are used in dependent classes.alent tobase [thisy.class].Abs.
There are two cases, depending on whether the intersection inherits The type substitution semantics of J& generalize the original Jx
one invocation or more than one invocation of a shared constructor. substitution rules [35] to increase expressive power. However, to

package pair; package pair_and_sum class A { }
extends pair; class Al extends A { }
class A2 extends A { }
class TgtExp = base.Exp; class TgtExp = pair.Exp;

class Rewriter { class Rewriter { class B { class T = A; }
TgtExp rewrite(Exp e) TgtExp rewrite(Exp e) class Bl extends B { class T = Al1; }
{ ...} { ...} class B2 extends B { class T = A2; }
} }
Figure 6. Static virtual types Figure 7. Static virtual types example

must be a subtype of bottt andA2; thus,(B1&B2).T is bound to
A1 &A2.

To enforce exactness preservation by type substitution, static
virtual types can be declaregkact. For a given container name-
spaceT, all members of thexact virtual typeT.C are of the same
fixed run-time class or package. Exact virtual types can be further
bound in a subtype of their container. For example, consider these
declarations:

ensure soundness, some care must be taken. If the typavefe
base.Visitor, thenv might refer at run time to gair.Visitor
while at the same timehis, refers to abase.Abs. Substitu-
tion of base.Visitor for thisy.class in the formal parameter
type would yieldbase [base.Visitor].Abs, which is equivalent

to base.Abs. Since the corresponding actual argument has type
base[thisy.class].Abs, which is a subtype obase.Abs, the

call would incorrectly be permitted, leading to a potential run-time

type error. The problem is that there is no guarantee that the run- class B { exact class T = A; }
time classes othis, andv both have the same enclosibgse class B2 extends B { exact class T = A2; }
package.

. _ . The exact virtual typeB.T is equivalent to the dependent class
To remedy this problem, type substitution must satisfy the re- (new A).class;thatis,B.T contains only instances with run-time

quirement ofexactness preservatipthat is, vvhen substituting into classA and not any subtype of. Similarly, B2.T is equivalent to
an exact type—a dependent class or a prefix of a dependent class—

- . >~ (new A2).class. If a variableb has declared typ&, then an
the resulting type must also be exact. This ensures that the run-time; 1o nce ofb. class.T may be either a or a A2, depending on
class or package represented by the type remains fixed. Substitutinqh e run-time 'cI ass dﬁ '
the typebase [this, .class].Visitor. for thisy.class is per- '
mitted since botlbase [thisy.class] andbase[thisy.class] 3.9 Packages
are exact. However, substitutimgse . Visitor for thisy.class
is illegal sincebase is not exact; therefore, a call toisitAbs
wherev is declared to be Base.Visitor is not permitted.

Implicit coercion of a non-final local variabbe to dependent
classx.class, described in Section 3.1, enhances the expressive-
ness of J& when checking calls by enablinglass to be substi-
tuted for a formal parameter ahis. Since this substitution pre-
serves exactness, the substitution is permittexsifleclared type
were substituted for the formal instead, exactness might not have
been preserved.

3.8 Static virtual types 4. Composing compilers

Dependent classes and prefix types enable classes nested withibsing the language features just described we can construct a
a given containment hierarchy of packages to refer to each othercomposable, extensible compiler. In this section, we sketch the
without statically binding to a particular fixed package. This allows design of such a compiler. Most of the design described here was
derived packages to further bind a class while preserving its rela- used in our port to J& of the Polyglot compiler framework [36]
tionship to other classes in the package. It is often useful to refer to €xcept where necessary to maintain backward compatibility with
other classesutsidethe class’s containment hierarchy without stat- the Java version of Polyglot.
ically binding to a particular fixed package. J& providgatic vir- The base package and packages nested within it contain
tual typedo support this feature. Unlike virtual types in BETA[29], all compiler code for the base language: Java, in the Polyglot
a static virtual type is an attribute of an enclosing package or class framework. The nested packagesse.ast, base.types, and
rather than of an enclosing object. base.visit contain classes for AST nodes, types, and visitors
In Figure 6, the packagepair declares a static virtual that implement compiler passes, respectively. All AST nodes are
type TgtExp representing an expression of the target lan- subclasses Obase.ast.Node; most compiler passes are imple-
guage of a rewriting pass, in this case an expression from mented as subclassestafse.visit.Visitor.
the base compiler. Therewrite method takes an expression .
with type pair[this.class].Exp and returns abase.Exp. 4.1 Orthogonal extension
The pair_and_sum package extends theair package and Scalable, orthogonal extension of the base compiler with new data
further binds TgtExp to pair.Exp. A static virtual type can types and new operations is achieved through nested inheritance. To
be further bound to any subtype of the original bound. Be- extend the compiler with new syntax, these package is extended
causepair_and_sum.TgtExp is bound topair.Exp, the method and new subclasses @ibde can be added to thest package.

J& supports inheritance of packages, including multiple inheri-
tance. In fact, the most convenient way to use nested inheritance is
usually at the package level, because large software is usually con-
tained inside packages, not classes. The semantics of prefix pack-
ages and intersection packages are similar to those of prefix and
intersection class types, described above. Since packages do not
have run-time instances, the only exact packages are prefixes of a
dependent class nested within the package, pkg;[x.class],
wherex is an instance of clagskg.C.

pair_and sum.Rewriter.rewrite mustreturn @air.Exp, rather New passes can be added to the compiler by creating/tieivtor
than abase.Exp as inpair.Rewriter.rewrite. subclasses.
With intersections, a static virtual type may be inherited from Because the Visitor design pattern [21] is used to imple-

more than one superclass. Consider the declarations in Figure 7ment compiler passes, when a new AST node class is added
ClassB1 &B2 inheritsT from bothB1 andB2. The type(B1&B2).T to an extension'sast package, avisit method for the class

transform transform unaware. It is therefore hard to write a reusable compiler pass; the
9 children \@/m"‘ node pass may fail to transform all the node’s children or attributes.
—} In the pair compiler of Figure 1, thE€ranslatePairs pass

e @ E' = transformspair AST nodes intase AST nodes. If this compiler

source intermediate target pass is reused in a compiler in which expressions have, say, addi-
tional type annotations, the source and target languages node will
Figure 8. AST transformation have children for these additional annotations, but the pass will not
be aware of them and will fail to transform them.

Static virtual types (Section 3.8) are used to make a pass aware
of any new children added by extensions of the source language,
d/vhile preserving modularity. The solution is for the compiler to
explicitly represent nodes in the intermediate form as trees with
a root in the source language but children in the target language,
corresponding to the middle tree of Figure 8. This design is shown
in Figure 9. In the example of Figure 1, this can be done by creating,
for both the source (i.epair) and target (i.e.pbase) language,
packagesast_struct defining just the structure of each AST
node. Theast_struct packages are then extended to create
packages for the actual AST nodes. Finally, a package is created
- inside each visitor clasfor the intermediate form nodes of that
4.2 Composition visitor's specific source and target language.

Independent compiler extensions can be composed using nested in- In the ast_struct package, children of each AST node re-
tersection with minimal effort. If the two compiler extensions are side in achild virtual package. Thesst package extends the
orthogonal, as for example with the product and sum type com- ast_struct package and further bindhild to theast package
pilers of Section 2.3, then composing the extensions is trivial: the itself; the node classes &st have children in the same package as
main method needs to be overridden in the composing extension their parent.

to specify the order in which passes inherited from the composed TheVisitor.tmp package also extends thet_struct pack-
extensions should run. age, but further bindshild to thetarget package, which repre-

If the language extensions have conflicting semantics, this will sents the target language of the visitor transformation. AST node
often manifest as a name conflict when intersecting the classesclasses in themp package have children in thewrget package,
within the two compilers. These name conflicts must be resolved to but parent nodes are in thap package; sincemp is a subpack-
be able to instantiate the composed compiler, forcing the compiler age ofast_struct, nodes in this package have the same structure
developer to reconcile the conflicting language semantics. as nodes in the visitor’s siblingst_struct package. Thus, if the

It is undecidable to determine precisely whether two programs, ast_struct package is overridden to add new children to an AST
including compilers, have conflicting semantics that prevent their node class, the intermediate nodes in thg package will also
composition. Several conservative algorithms based on programcontain those children.
slicing have been proposed for integrating programs [23, 2, 31]. Both thechild andtarget virtual packages are declared to
These algorithms detect when two procedures are semanticallybe exact. This ensures that the children oftap node are in the
compatible, ornoninterfering Interprocedural program integra- target package itself (in this casease.ast) and not a derived
tion [2] requires the whole program and it is unclear whether the package of the target (e.gair.ast).
algorithm can scale up to large programs. Formal specification of-
fers a way to more precisely determine if two programs have se- 5, Implementation
mantic conflicts.

must be added to the extensionidsit.Visitor class. Be-
cause the classes implementing the compiler passes exten
base[this.class].visit.Visitor, thisvisit method isinher-
ited by allvisitor subclasses in the extension. Visitor classes in
the framework can transform the AST by returning new AST nodes.
The Visitor class implements default behavior for thesit
method by simply returning the node passed to it, thus implement-
ing an identity transformation. Visitors for passes affected by the
new syntax can be overridden to support it.

We implemented the J& compiler in Java using the Polyglot frame-
work [36]. The compiler is a 2700-LOC (lines of code, excluding
blank and comment lines) extension of the Jx compiler [35], itself
One challenge for building an extensible compiler is to implement a 22-kLOC extension of the Polyglot base Java compiler.
transformations between different program representations. In Fig- J& is implemented as a translation to Java. The amount of
ure 1, for example, a compiler pass transforms expressions with code produced by the translation is proportional to the size of
pairs into lambda calculus expressions. For a given transformationthe source code. The translation does not duplicate code to imple-
between two representations, compiler extensions need to be ablenent inheritance. Class declarations are generated onéxfiicit
to scalably and modularly extend both the source and target repre-classesthose classes (and interfaces) declared in the source pro-
sentations and the transformation itself. However, if the extensions gram. Classes inherited from another namespace but not further
to the source and target representations do not interact with a transbound are calledmplicit classesData structures for method dis-
formation, it should not be necessary to change the transformation.patching and run-time type discrimination for implicit classes and
Consider an abstract syntax tree (AST) node representing a bi-intersection types are constructed on demand at run time.
nary operation. As illustrated in Figure 8, most compiler transfor-
mations for this kind of node would recursively transform the two
child nodes representing the operands, then invoke pass-specificEach explicit J& class is translated into four Java classes: an in-
code to transform the binary operation node itself, in general con- stance class, a subobject class, a class class, and a method interface.
structing a new node using the new children. This generic code canFigure 10 shows a simplified fragment of the translation of the code
be shared by many passes. in Figure 1. Several optimizations discussed below are not shown.
However, code for a given base compiler transformation might At run time, each instance of a J& clagss represented as an
not be aware of the particular extended AST form used by a given instance ofT’s instance class,C(T). Each explicit class has its
compiler extension. The extension may have added new children toown instance class. The instance class of an implicit class or inter-
the node in the source representation of which the transformation issection class is the instance class of one of its explicit superclasses.

4.3 Extensible rewriters

5.1 Translating classes

package base.ast_struct; package base.ast extends ast_struct; package base;

exact package child = ast_struct; exact package child class Visitor {
abstract class Exp { } = base.ast[this.class]; // source language
class Abs extends Exp { abstract class Exp { // = base[this.class].ast
String x; child.Exp e; abstract v.class.target.Exp // target language
} accept (Visitor v); // <= base.ast;
void childrenExp(Visitor v, exact package target = base.ast;
v.class.tmp.Exp t) { package tmp extends ast_struct {
} exact package child = target;
} }
}

Figure 9. Extensible rewriting example

Aninstance of C(T) contains a reference to an instance ofdlaess
classof T, CC(T). The class class contains method and construc-
tor implementations, static fields, and type information needed to
implementinstanceof, prefix types, and type selection from de-
pendent classes. If J& were implemented natively or had virtual // method interfaces for Exp

machine support, rather than being translated to Java, then the ref-interface Exp$methods {

erence taCC(T) could be implemented more efficiently as part of interface Accept

IC(T)’s method dispatch table. All instance classes implement the { JetInst accept(JetInst self, JetInst v); }
interfaceJetInst. ¥

package base;

Subobject classes and field accesseEach instance ofC(T) // class class of Exp
contains asubobjectfor each explicit superclass df, including Clis:IEXE$°1aSStt';Pi‘;mei‘ts §§P$'3‘etlll°di"*§°ept {
T itself if it is explicit. The subobject class for a superclaéson- eLIOst acceptlietinst seii, Jetinst v

. . " o S { /* cannot happen */ }
tains all instance fields declared TH; it does not contain fields static JetInst accept$disp(JetClass c, JetInst self,

inherited intoT’. The instance class maintains a map from each ex- JetInst v) {

plicit superclass of to the subobject for that superclass. The static JetClass r = ... // find the class class with the
view method in the subobject class implements the map lookup // most specific implementation
function for that particular subobject. If J& were implemented na- return ((Exp$methods.Accept)r).accept(self, v);

tively, the subobjects could be inlined into the instance class and }

implemented more efficiently. N
To get or set a field of an object, theew method is used to ¥

lookup the subobject for the superclass that declared the field. The//

. . . class class of Abs

field can then be accessed directly from the subobject.vike class Abs$class implements Exp$methods.Accept {

method could be inlined at each field access, but this would make jetnst accept(JetInst self, JetInst v) {

the generated code more difficult to read and debug. Abs$ext.view(self).e =
.) Exp$class.accept$disp(null, Abs$ext.view(self).e, v);
Class classes and method dispatchor each J& class, there is a return Visitor$class.visitAbs$disp(null, v, self);

singleton class class object that is instantiated when the class is first
used. A class class declaration is created for each explicit J& class.
For an implicit or intersection clags, CC(T) is the runtime system b
classJetClass; the instance ofietClass contains a reference to
the class class object of each immediate superclags of
. The qlass c_Iass provides functions for accessing run-tim(_e type JetSubobjectMap extMap; // subobject map
information to implemeninstanceof and casts, for constructing JetClass jetGetClass()
instances of the class, and for accessing the class class object of [/x get the class class instance */ }
prefix types and member types, including static virtual types. The .
code generated for expressions that dispatch on a dependent class (a
new x.class() expression, for example) evaluates the dependent
class’s access path (i.&) and uses the methojktGetClass () // subobject class of Abs
to locate the class class object for the type. class Abs$ext {

All methods, including static methods, are translated to instance = String x; JetInst e;
methods of the class class. This allows static methods to be invoked Stjtlc.AbssseXt view(JetInst self) {

. . . / find the subobject for Abs in self.extMap

on dependent types, where the actual run-time class is statically 4
unknown. Nonvirtuakuper calls are implemented by invoking the 3
method in the appropriate class class instance.

Each method has an interface nested inniethod interface
of the J& class that first introduced the method. The class class
implements the corresponding interfaces for all methods it declares Figure 10. Fragment of translation of code in Figure 1
or overrides. The class class of the J& class that introduces a
methodm also contains a methatfdisp, responsible for method
dispatching. The receiver and method arguments as well as a class

// instance class of Abs
class Abs implements JetInst {

class are passed into the dispatch method. The class class argumest single object; an instance of an implicit class or intersection

is used to implement nonvirtuahper calls; for virtual callspull class is represented by an instance class object and subobjects for

is passed in and the receiver’s class class is used. superclasses not merged into the instance class object. We expect
Single-method interfaces allow us to generate code only for this optimization to greatly improve efficiency.

those methods that appear in the corresponding J& class. An alter-

native, an interface containing all methods declared for each class,

would require class classes to implement trampoline methods to6. Experience

dispatch methods they inherit but do not override, greatly increas- 6.1 P

h . . olyglot

ing the size of the generated code.
Each virtual method call is translated into a call to the dispatch Following the approach described in Section 4, we ported the Poly-

method, which does a lookup to find the class class of the most glot compiler framework and several Polyglot-based extensions,

specific implementation. The class class object is cast to the ap-all written in Java, to J&. The Polyglot base compiler is a 31.9

propriate method interface and then the method implementation is KLOC program that performs semantic checking on Java source

invoked. code and outputs equivalent Java source code. Special design pat-
As shown in Figure 10, all references to J& objects are of type terns make Polyglot highly extensible [35]; more than a dozen re-

JetInst. The translation mangles method names to handle over- search projects have used Polyglot to implement various extensions

loading. Name mangling is not shown in Figure 10 for readability. to Java (e.g., JPred [34], IMatch [28], as well as Jx and J&). For this

work we ported six extensions ranging in size from 200 to 3000

Allocation. A factory method in the class class is generated for | OC.

each constructor in the source class. The factory method for a J& The extensions are summarized in Table 1. The parsers for the

classT first creates an instance of the appropriate instance class,base compiler, extensions, and compositions were generated from

and then initializes the subobject map T0s explicit superclasses, CUP [24] or Polyglot parser generator (PPG) [36] grammar files.

includingT itself. Because constructors in J& can be inherited and Because PPG supports only single grammar inheritance, grammars

overridden, constructors are dispatched similarly to methods. were composed manually, and line counts do not include parser
Initialization code in constructors and initializers are factored code.

out into initialization methods in the class class and are invoked The port of the base Comp”er was our first attemptto porta|arge

by the factory method. A super constructor call is translated into a program to J&, and was completed by one of the authors within a

call to the appropriate initialization method of the superclass’s class few days, excluding time to fix bugs in the J& compiler. Porting

class. of each of the extensions took from one hour to a few days. Much
. of the porting effort could be automated, with most files requiring

5.2 Translating packages only modification ofimport statements, as described below in

To support package inheritance and composition, a packdge Section 6.3.

represented as package classanalogous to a class class. The The ported base compiler is 28.0 KLOC. The code becomes

package class provides type information about the package at runshorter because it eliminates factory methods and other extension
time and access to the class class or package class instances of ifgatterns which were needed to make the Java version extensible, but
member types. The package classpols a member of package Which are not needed in J&. We eliminated only extension patterns
p. Since packages cannot be instantiated and contain no methodsthat were obviously unnecessary, and could remove additional code
package classes have no analogue to instance classes, subobjewith more effort.

classes, or method interfaces. The number of type downcasts in each compiler extension is
reduced in J&. For examplepffer went from 192 to 102 down-
5.3 Java compatibility casts. The reduction is due to (1) use of dependent types, obviating

To leverage existing software and libraries, J& classes can inherit the F‘eed for casts to access methods 'and fields introduced In ex-
gensmns, and (2) removal of old extension pattern code. Receivers

from Java classes. The compiler ensures that every J& class ha - .
exactly one most specific Java superclass. When the J& class isof calls to conflicting methods sometimes needed to be upcast to

instantiated, there is only onsper constructor call to some con- 'esolve the ambiguities; there are 19 such upcasts in the port of
structor of this Java superclass. °°f_|feg|' 2 sh i ¢ cod ded t h pair of

In the translated code, the instance cl6&&) is a subclass of able 2 ShOWS lines of code needed lo compose each pair o
the most specific Java superclas§ofWhen assigning into a vari- extensions, producing working compilers that implemented a com-

able or parameter that expects a Java class or interface, the instancB°S€d language. Thparam extension was not composed because it
of IC(T) can be used directly. A cast may need to be inserted be- IS anabstract extensionontaining infrastructure for parameterized
cause references t6(T) are of typeJetInst, which may notbe YPES: howeveroffer extends thearam extension.

. ; The data show that all the compositions can be implemented
a subtype of the expected Java type; these inserted casts always . X) f
succeed. The instance class also overrides methods inherited fron{"ItN Very little code; further, most added code straightforwardly

Java superclasses to dispatch through the appropriate class cladgsolves trivial name conflicts, such as between the methods that re-
dispatch method. turn the name and version of the compiler. Only three of ten compo-

sitions offer & pao, coffer & covarRet, andpao & covarRet)
required resolution of nontrivial conflicts, for example, resolving

5.4 Optimizations L . .
) . i)) conflicting code for checking method overrides. The code to re-
One problem with the translation described above is that a single ggjve these conflicts is no more 10 lines in each case.

J& objectis represented by multiple objects at run time: an instance
class object and several subobjects. This slows down allocation and
garbage collection. 6.2 Pastry

A simple optimization is to not create subobjects for J& classes We also ported the FreePastry peer-to-peer framework [44] version
that do not introduce instance fields. The instance class of explicit 1.2 to J& and composed a few Pastry applications. The sizes of
J& classT can inline the subobjects intiC(T). Thus, at run the original and ported Pastry extensions are shown in Table 3.
time, an instance of an explicit J& class can be represented by Excluding bundled applications, FreePastry is 7.1 kLOC.

[Name | Extends Java 1.4 ... [LOC original | LOC ported] % original]

polyglot | with nothing 31888 27984 87.8

param with infrastructure for parameterized 513 540 105.3
types

coffer with resource management facilities 2965 2642 89.1
similar to Vault [14]

jo with pedagogical features 679 436 64.2

pao to treat primitives as objects 415 347 83.6

carray with constant arrays 217 122 56.2

covarRet | to allow covariant method return types 228 214 93.9

Table 1. Ported Polyglot extensions

jo pao carray | covarRet [Name [LOC original] LOC ported|
coffer 63 86 34 66 Pastry 7082 7363
30 46 34 37 Beehive 3686 3634
pao 34 23 PC-Pastry 695 630
carray [31] CorONA 626 591
cache N/A 140
Table 2. Polyglot composition results: lines of code CorONA—Beehive N/A 68
CorONA-PC-Pastry N/A 28
Host nodes in Pastry exchange messages that can be handled Table 3. Ported Pastry extensions and compositions

in an application-specific manner. In FreePastry, network mes-

sage dispatching is implemented withstanceof statements and

casts. We changed this code to use more straightforward methodThe Pastry extensions had similar message dispatching overhead;
dispatch instead, thus making dispatch extensible and eliminating since code in common between Beehive and PC-Pastry was fac-
several downcasts. Messages are dispatched to several protocoltored outinto theache extension, the size of the ported extensions
specific handlers. For example, there is a handler for the routing is smaller. The size reduction in CorONA is partially attributable to
protocol, another for the join protocol, and others for any appli- moving code from the CorONA extension to the CorONA-Beehive
cations built on top of the framework. The Pastry framework al- composition.

lows applications to choose to use one of three different messaging .
layer implementations: an RMI layer, a wire layer that uses sock- 6.3 Porting Java to J&

ets or datagrams, and an in-memory layer in which nodes of the Porting Java code to J& was usually straightforward, but certain
distributed system are simulated in a single JVM. Family polymor- common issues are worth discussing.

phism enforced by the J& type system statically ensures that mes-
sages associated with a given handler are not delivered to anothe
handler and that objects associated with a given transport layer ar
not used by code for a different layer implementation.

Pastry implements a distributed hash table. Beehive and PC-
Pastry extend Pastry with caching functionality [41]. PC-Pastry
uses a simple passive caching algorithm, where lookups are cache
on nodes along the route from the requesting node to a node con-
taining a value for the key. Beehive actively replicates objects
throughout the network according to their popularity. We intro-
duced a packageache containing functionality in common be-
tween Beehive and PC-Pastry; the CorONA RSS feed aggregation
service [40] was modified to extend theche package rather than
Beehive.

Using nested intersection, the modified CorONA was composed Final access paths. To make some expressions pass the type
first with Beehive, and then with PC-Pastry, creating two appli- checker, it was necessary to declare some variables final so they
cations providing the CorONA RSS aggregation service but using could used in dependent classes. In many cases, non-final access
different caching algorithms. Each composition of CorONA and a paths used in method calls could be coerced automatically by the
caching extension contains a singlein method and some con- compiler, as described in Section 3.1. However, non-final field
figuration constants to initialize the cache manager data structures.accesses are not coerced automatically because the field might
The CorONA-Beehive composition also overrides some CorONA be updated (possibly by another thread) between evaluation and
message handlers to keep track of each cached object’s popularitymethod entry. The common workaround is to save non-final fields
We also implemented and composed test drivers for the CorONA in a final local variable and then to use that variable in the call.
extension, but line counts for these are not included since the orig- This issue was not as problematic as originally expected. In fact,
inal Java code did not include them. in 30 kLOC of ported Polyglot code, only three such calls needed

The J& code for FreePastry is 7.4 KLOC, 300 lines longer than to be modified. In most other cases, the actual method receiver type
the original Java code. The additional code consists primarily of was of the formP[p.class].Q and the formal parameter types
interfaces introduced to implement network message dispatching.were of the formP[this.class].R. Even if an actual argument

Type names. In J&, unqualified type names are syntactic sugar
Ifor members ofthis.class or a prefix of this.class, e.g.,
Nisitor might be sugar fobase[this.class].Visitor. In
Java, unqualified type names are sugar for fully qualified names;
thus,Visitor would resolve tobase.Visitor. To take full ad-
gantage of the extensibility provided by J&, fully qualified type
Names sometimes must be changed to be only partially qualified.

In particular,import statements in most compilation units are
rewritten to allow names of other classes to resolve to depen-
dent types. For example, in Polyglot the import statemepbrt
polyglot.ast.*; was changed tdmport ast.*; so that im-
ported classes resolve to classepdtyglot [this.class] .ast
rather than irpolyglot . ast.

were updated between its evaluation and method entry, the typeof the family object are part of the family. In contrast, with class-
system ensures its new value is a class enclosed by the same runbased family polymorphism, each dependent class defines a family
time namespacR[p.class] as the receiver, which guarantees that of classes nested within and also enclosing. By using prefix types,
the call is safe. any instance of a class in the family can be used to name the family,
not just a single family object.

Tribe [11] is another language that provides a variant of virtual
‘classes. By treating a final access ppths a type, nested classes
in Tribe can be considered attributes of an enclosing class as in Jx
d J& or as attributes of an enclosing instance as in BETA and
derivatives. This flexibility allows a further bound class to be a
subtype of the class it overrides, like in J& but unlike with virtual
classes. Tribe also supports multiple inheritance. However, super-
classes of a Tribe class must be nested within the same enclosing
class, limiting extensibility. This restriction allows the enclosing
7. Related work type to be named using awner attribute:T.owner is the enclos-
There has been great interest in the past several years in meching class ofT.
anisms for providing greater extensibility in object-oriented lan- Concord [26] also provides a type-safe variant of virtual classes.
guages. Nested intersection uses ideas from many of these othein Concord, mutually dependent classes are organizeadjiotps
mechanisms to create a powerful and relatively transparent mechawhich can be extended via inheritance. References to other classes
nism for code reuse. within a group are made using types dependent on the current
group,MyGrp, similarly to how prefix types are used in J&. Rel-
ative supertype declarations provide functionality similar to virtual
superclasses. Groups in Concord cannot be nested, nor can groups
be multiply inherited.

Path aliasing. The port of Pastry and its extensions
made more extensive use of field-dependent classes (e.qg.
this.thePastryNode.class) than the Polyglot port. Several
casts needed to be inserted in the J& code for Pastry to allow a type
dependent upon one access path to be coerced to a type dependeﬁg
upon another path. Often, the two paths refer to the same object,
ensuring the cast will always succeed. A simple local alias analysis
would eliminate the need for many of these casts.

Virtual classes. Nested classes in J& are similar to virtual
classes [29, 30, 25, 19]. Virtual classes were originally developed
for the language BETA [29, 30], primarily for generic program-
ming rather than for extensibility.

Although virtual classes in BETA are not statically type safe, Multiple inheritance. J& provides multiple inheritance through
Ernst's generalized BETA (gbeta) language [15, 16] uses path- nested intersection. Intersection types were introduced by Reynolds
dependent types, similar to dependent classes in J&, to ensure stati¢n the language Forsythe [43] and were used by Compagnoni and
type safety. Type-safe virtual classes using path-dependent typespierce to model multiple inheritance [13]. Cardelli [9] presents a
were formalized by Ernst et al. in thve calculus [19] formal semantics of mu|t|p|e inheritance.

Akey difference between J&'s nested classes and virtual classes The distinction between name conflicts among methods intro-
is that virtual classes are attributes of an ObjeCt, called the enClOSingduced in a common base class and among methods introduced in-
instance, rather than attributes of a class. Virtual classes may onlydependently with possibly different semantics was made as early as
have one enclosing instance. For this reason, a virtual class camgg2 by Borning and Ingalls [3]. Many languages, such as C++ [47]
extend only other classes nested within the same object; it may and Self [10], treat all name conflicts as ambiguities to be resolved
not extend a more deeply nested virtual class. This can limit the py the caller. Some languages [32, 4, 45] allow methods to be re-
ability to extend components of a larger system. Because it iS named or aliased.
unique, the enclosing instance of a virtual class can be referred A mixin [4, 20], also known as aabstract subclasss a class
to unambiguously with amut path: this.out is the enclosing parameterized on its superclass. Mixins are able to provide uniform
instance ofthis’s class. In contrast, J& uses prefix types to refer extensions, such as adding new fields or methods, to a large number
to enclosing classes. of classes. Mixins can be simulated using explicit multiple inheri-

Both J& and gbeta provide virtual superclasses, the ability to tance. J& also provides additional mixin-like functionality through
late-bind a supertype declaration. When the containing namespacsyirtual superclasses.

of a set of classes is extended via inheritance, the derived name- Since mixins are Composed |inear|y, a class may not be able to

space replicates the class hierarchy of the original namespacegccess a member of a given super-mixin because the member is
forming ahigher-order hierarchy18]. Because virtual classes are overridden by another mixin. Explicit multiple inheritance imposes
contained in an object rather than in a class, there is no subtypingngo ordering on composition of superclasses.
relationship between classes in the original hierarchy and further Trajts [45] are collections of abstract and non-abstract methods
bound classes in the derived hierarchy, as there is in J&. that may be composed with state to form classes. Since traits do not
The gbeta language supports multiple inheritance. As in J&, have fields, many of the issues introduced by multiple inheritance
commonly named virtual classes inherited into a class are them- (for example, whether to duplicate code inherited through more
selves composed [16]. However, multiple inheritance is limited to than one base trait) are avoided. The code reuse provided by traits is

other classes nested within the same enclosing instance. largely orthogonal to that provided by nested inheritance and could
Virtual classes in gbeta support family polymorphism [17]: two pe integrated into J&.

virtual classes enclosed by distinct objects cannot be statically con-

fused. When a containing namespace is extended, family polymor-Scala Scala [38] is another language that supports scalable exten-
phism ensures the static type safety of the classes in the derivedsibility and family polymorphism through a statically safe virtual
family by preventing it from treating classes belonging to the base type mechanism based on path-dependent types. However, Scala’s
family as if they belonged to the extension. In gbeta, each object de- path-dependent typetype is a singleton type containing only the
fines a family of classes: the collection of mutually dependent vir- value named by access paph in J&, p.class is not a single-

tual classes immediately nested within it. Because nested classes iion. For instancejew x.class(. . .) creates a new object of type

J& are attributes of their enclosing class, rather than an enclosingx. class distinct from the object referred to by This difference
object, J& supports what Clarke et al. [11] calass-based fam- gives J& more flexibility, while preserving type soundness. Scala
ily polymorphism With virtual classes, all members of the fam- provides virtual types, but not virtual classes. It has no analogue to
ily are named from a single “family object”, which must be made prefix types, nor does it provide virtual superclasses, limiting the
accessible throughout the system. Moreover, only nested classescalability of its extension mechanisms. Scala supports composi-

tion using traits. Since traits do not have fields, new state cannot beprovides aspect-like extensibility; an extension of a container may
easily added into an existing class hierarchy. implement functionality that cuts across the class boundaries of the
. . . nested classes. Aspects modify existing class hierarchies, whereas
Self types and matching. Bruce et al. [7, 5] introducenatching nested inheritance creates a new class hierarchy, allowing the new

?:Szgtiﬁge{r?jt;\;getoof’ ?#;ygggﬁogféhfégggf ?Lgﬁgﬁ:ﬁégﬁ{ clascierarchy to be used alongside the old. Caesar [33] is an aspect-
this.class is similar but represents only the class referred to by oriented language that also supports family polymorphism, permit-

this and not its subclasses. Type systems wiflType decouple ting application of aspects to mutually recursive nested types.

subtyping and subclassing; in PolyTOIL and LOOM, a subclass .

matchests base class but is not a subtype. With nested inheritance, 8- Conclusions

subclasses are subtypes. Bruce and Vanderwaart [8, 6] projp@se This paper introduces nested intersection and shows that it is an
groupsas a means to aggregate and extend mutually dependenteffective language mechanism for extending and composing large
classes, similarly to Concord's group construct, but using match- hodies of software. Extension and composition are scalable because
ing rather than subtyping. new code needs to be written only to implement new functionality
or to resolve conflicts between composed classes and packages.
Novel features like static virtual types offer important expressive
ower.

Nested intersection has been implemented in an extension of
(Java called J&. Using J&, we implemented a compiler framework
for Java, and showed that different domain-specific compiler exten-
sions can easily be composed, resulting in a way to construct com-
pilers by choosing from available language implementation com-
Similar to open classegxpanderg50] are a mechanism for ponents. We demonstrated the utility of nested intersection outside

extending existing classes. They address the limitations of open the compiler domain by porting the FreePastry peer-to-peer system

classes by enabling classes to be updated not only with new meth-l© J&. The effort required to port Java programs to J& is not large.
ods, but also with new fields and superinterfaces. Expanders do notpOrted programs were smaller, reqwred_f_ewer type casts, and sup-
change the behavior of existing clients of extended classes. Exist-Ported more extensibility and composability. .

ing classes are extended with new state using wrapper objects. One W? have informally described he_re the static and dynamic se-
limitation of this approach is that object identity is not preserved, mantics of J&. A formal treatment with a proof of soundness can

which may cause run-time type checks to return incorrect results. be found in_ an asso_ciat_ed technical report [37]. . .
Nested intersection is a powerful and convenient mechanism for

Classboxes. A classboX1] is a module-based reuse mechanism. building highly extensible software. We expect it to be useful for a

Classes defined in one classbox may be imported into anotherwide variety of applications.

classbox and refined to create a subclass of the imported class.

By dispatching based on a dynamically chosen classbox, namesp cknowledgments

of types and methods occurring in imported code are late bound to)) .

refined versions of those types and methods. This feature providesSteve Chong, Jed Liu, Ruijie Wang, and Lantian Zheng provided

similar functionality to the late binding of types provided ttyis- useful feedback on various drafts of this paper. Thank you to

dependent classes and prefix types in J&. Michael Clarkson for his very detailed comments anq folr the pun.
Since reuse is based on import of classboxes rather than inher-Thanks also to Venugopalan Ramasubramanian for insightful dis-

itance, classboxes do not support multiple inheritance, but they do cussions about Pastry and Beehive.

allow multiple imports. When two classboxes that both refine the _ This research was supported in part by ONR Grant N00014-
same class are imported, the classes are not composed like in J&01-1-0968, by NSF Grants 0133302, 0208642, and 0430161, and

|nstead’ one Of the C|asses is Chosen over the Other_ by an Alfred P. Sloan ResearCh Fe||OWShIp The US GOVernment

) .) is authorized to reproduce and distribute reprints for Government
Class hierarchy composition. Ossher and Harrison [39] propose pyrposes, notwithstanding any copyright annotation thereon. The
an approach in which extensions of a class hierarchy are written yiews and conclusions here are those of the authors and do not

in separate sparse extension hierarchies containing only new func-necessarily reflect those of ONR, the Navy, or the NSF.
tionality. Extension hierarchies can be merged and naming conflicts

detected. However, semantic incompatibilities between extension References

hierarchies are not detected. Unlike with nested intersection, hier-

archies do not nest and there is no subtyping relationship between [1] Alexandre Bergel, phane Ducasse, and Oscar Nierstrasz. Class-

classes in different hierarchies. box/J: Controlling the scope of change in JavaPmc. 20th ACM
Tarr et al. [48] define a specification language for composing Conference on Object-Oriented Programming Systems, Languages

class hierarchies. Rules specify how to merge “concepts” in the g'l?oﬁgfl'zco"gg’ns (OOPSLApages 177-189, San Diego, CA, USA,

hierarchies. Nested intersection supports composition with a rule o ']

analogous to merging concepts by name. [2] I_Detiwd |t?_:|nklfey,|8usan Horv\‘/tlaz, anddThomalsl,mR'\ip?. Protgram
Snelting and Tip [46] present an algorithm for composing class integration tor languages with procedure ca ransactions

hierarchies and a semantic interference criterion. If the hierarchies ggnig:t)\l/vlaégSEngmeermg and Methodology (TOSEMY):3-35,

areinterference-freethe composed system preserves the original o) o))

behavior of classes in the hierarchies. J& reports a conflict if com- [3] Alan Borning and Daniel Ingalls. Multiple inheritance in Smalltalk-

posed class hierarchies havetatic interferencebut makes no ef- 80. InProc. National Conference on Atrtificial Intelligence (AAAI)

fort to detect dynamic interference. pages 234-237, August 1982.

. . . . [4] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman
Aspect-oriented programming. Aspect-oriented programming Meyrowitz, editor,Proc. 5th ACM Conference on Object-Oriented
(AOP) [27] is concerned with the managementaspects func- Programming Systems, Languages and Applications (OORSLA)
tionality that cuts across modular boundaries. Nested inheritance pages 303-311, Ottawa, Canada, 1990. ACM Press.

Open classes and expandersAn open clasg12] is a class to
which new methods can be added without needing to edit the
class directly, or recompile code that depends on the class. Nested’
inheritance provides similar functionality through class overriding
in an extended container. Nested inheritance provides additional
extensibility that open classes do not, such as the “virtual” behavior
of constructors, and the ability to extend an existing class with new
fields that are automatically inherited by its subclasses.

[5] Kim B. Bruce. Safe static type checking with systems of mutually
recursive classes and inheritance. Technical report, Williams College,
1997.http://cs.williams.edu/ “kim/ftp/RecJava.ps.gz.

6

—

Kim B. Bruce. Some challenging typing issues in object-oriented
languages. Electronic Notes in Theoretical Computer Science
82(8):1-29, October 2003.

Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL:

A type-safe polymorphic object-oriented language. Elropean
Conference on Object-Oriented Programming (ECOQOR)mber

952 in Lecture Notes in Computer Science, pages 27-51. Springer-
Verlag, 1995.

Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language
design: Statically type-safe virtual types in object-oriented languages.
In Mathematical Foundations of Programming Semantics (MFPS),
Fifteenth Conferencevolume 20 ofElectronic Notes in Theoretical
Computer Scieng@ages 50-75, New Orleans, Louisiana, April 1999.

[7

—

8

—_

9

—

Luca Cardelli. A semantics of multiple inheritancénformation
and Computation76:138-164, 1988. Also iReadings in Object-
Oriented Database Systen, Zdonik and D. Maier, eds., Morgan
Kaufmann, 1990.

[10] Craig Chambers, David Ungar, Bay-Wei Chang, and Uddzlé.
Parents are shared parts of objects: Inheritance and encapsulation in
Self. Lisp and Symbolic Computatipa(3):207-222, June 1991.

[11] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias
Wrigstad. Tribe: More types for virtual classes. Submitted for pub-
lication. Available athttp://slurp.doc.ic.ac.uk/pubs.html,
December 2005.

[12] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch
for Java. InProc. 15th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OORSLA)
pages 130-145, 2000.

[13] Adriana B. Compagnoni and Benjamin C. Pierce. Higher order
intersection types and multiple inheritandéathematical Structures
in Computer Sciencé(5):469-501, 1996.

[14] Robert DeLine and ManuekEhRndrich. Enforcing high-level protocols
in low-level software. InProc. SIGPLAN 2001 Conference on
Programming Language Design and Implementatioeges 59-69,
June 2001.

[15] Erik Ernst. gbeta—a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritancé®hD thesis,
Department of Computer Science, University of Aarhfighus,
Denmark, 1999.

[16] Erik Ernst. Propagating class and method combinationPrbr.
Thirteenth European Conference on Object-Oriented Programming
(ECOOP’99) number 1628 in Lecture Notes in Computer Science,
pages 67-91. Springer-Verlag, June 1999.

[17] Erik Ernst. Family polymorphism. IfProc. 15th European
Conference on Object-Oriented Programming (ECOORCS
2072, pages 303-326, 2001.

[18] Erik Ernst. Higher-order hierarchies. Proc. 17th European
Conference on Object-Oriented Programming (ECOORJume
2743 of Lecture Notes in Computer Sciengeages 303-329,
Heidelberg, Germany, July 2003. Springer-Verlag.

[19] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. InProc. 33rd ACM Symp. on Principles of Programming
Languages (POPL.)pages 270-282, Charleston, South Carolina,
January 2006.

[20] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. IRroc. 25th ACM Symp. on Principles
of Programming Languages (PORLpages 171-183, San Diego,
California, 1998.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software
Addison Wesley, Reading, MA, 1994.

[22] Carl Gunter and John C. Mitchell, editor3heoretical aspects of
object-oriented programmingVIT Press, 1994.

[23] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninter-
fering versions of programsACM Transactions on Programming
Languages and Systenid (3):345-387, July 1989.

[24] Scott E. Hudson, Frank Flannery, C. Scott Ananian, Dan Wang,
and Andrew Appel. CUP LALR parser generator for Java, 1996.
Software release. Located attp://www.cs.princeton.edu/
~appel/modern/java/CUP/.

[25] Atsushi Igarashi and Benjamin Pierce. Foundations for virtual
types. InProc. Thirteenth European Conference on Object-Oriented
Programming (ECOOP’99)number 1628 in Lecture Notes in
Computer Science, pages 161-185. Springer-Verlag, June 1999.

[26] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concorde@®OP Workshop
on Formal Techniques for Java Programs (FTfJBPslo, Norway,
June 2004.

[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. IRroceedings of 11th European Conference
on Object-Oriented Programming (ECOOP’9fumber 1241 in
Lecture Notes in Computer Science, pages 220-2423sky¥,
Finland, June 1997. Springer-Verlag.

[28] Jed Liu and Andrew C. Myers. JMatch: Abstract iterable pattern
matching for Java. IfProc. 5th Int’l Symp. on Practical Aspects of
Declarative Languages (PADLpages 110-127, New Orleans, LA,
January 2003.

[29] O. Lehrmann Madsen, B. Mgller-Pedersen, and K. Nyga@faject
Oriented Programming in the BETA Programming Language
Addison-Wesley, June 1993.

[30] Ole Lehrmann Madsen and Birger Mgller-Pedersen. Virtual classes:
A powerful mechanism for object-oriented programming.Phoc.
4th ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSI_fages 397-406, October
1989.

[31] Katsuhisa Maruyama and Ken-Ichi Shima. An automatic class gener-
ation mechanism by using method integratitEEE Transactions on
Software Engineering26(5):425-440, May 2000.

[32] Bertrand Meyer.Object-oriented Software ConstructioPrentice
Hall, New York, 1988.

[33] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In
Proc. 2nd International Conference on Aspect-Oriented Software
Development (AOSDpages 90-100, Boston, Massachusetts, March
2003.

[34] Todd Millstein. Practical predicate dispatch. Pmoc. 19th ACM
Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLADctober 2004.

[35] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. fmoc. 19th ACM Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA) pages 99-115, October 2004.

[36] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java.Rroc. 12th
International Compiler Construction Conference (CC’0Bages
138-152, April 2003. LNCS 2622.

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. Nested
intersection for scalable software extension, September 2006.
http://www.cs.cornell.edu/nystrom/papers/jet-tr.pdf.

(37]

[38] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. InProc. 20th ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSiajes 41-57,

San Diego, CA, USA, October 2005.

Harold Ossher and William Harrison. Combination of inheritance
hierarchies. InProc. 7th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OORSLA)

(39]

pages 25-40, October 1992.

[40] Venugopalan Ramasubramanian, Ryan Peterson, and Eirin G
Sirer. Corona: A high performance publish-subscribe system for the
World Wide Web. InProceedings of Networked System Design and
Implementation (NSD)May 2006.

[41] Venugopalan Ramasubramanian and Emim Girer. BeehiveO(1)
lookup performance for power-law query distributions in peer-to-peer
overlays. INUSENIX Symposium on Networked Systems Design and
Implementation (NSDJMarch 2004.

[42] John C. Reynolds. User-defined types and procedural data structures
as complementary approaches to data abstraction. In Stephen A.
Schuman, editoifNew Directions in Algorithmic Languagepages
157-168. Institut de Recherche d’Informatique et d’Automatique, Le
Chesnay, France, 1975. Reprinted in [22], pages 13-23.

[43] John C. Reynolds. Design of the programming language Forsythe.
Technical Report CMU-CS-96-146, Carnegie Mellon University,
June 1996.

[44] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware)pages 329-350, November 2001.

[45] Nathanael Scirli, S&phane Ducasse, Oscar Nierstrasz, and An-
drew P. Black. Traits: Composable units of behavior. In Luca
Cardelli, editorProc. 17th European Conference on Object-Oriented
Programming (ECOOP 2003number 2743 in Lecture Notes in
Computer Science, pages 248-274, Darmstadt, Germany, July 2003.
Springer-Verlag.

[46] Gregor Snelting and Frank Tip. Semantics-based composition of class
hierarchies. IProc. 16th European Conference on Object-Oriented
Programming (ECOOR)volume 2374 ot.ecture Notes in Computer
Sciencepages 562-584, Maga, Spain, 2002. Springer-Verlag.

[47] Bjarne Stroustrup.The C++ Programming LanguageAddison-
Wesley, 1987.

[48] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.
N degrees of separation: Multi-dimensional separation of concerns.
In Proc. 1999 International Conference on Software Engineering
(ICSE) pages 107-119, May 1999.

[49] Philip Wadler et al. The expression problem, December 1998.
Discussion on Java-Genericity mailing list.

[50] Alessandro Warth, Milan Stanojéviand Todd Millstein. Statically
scoped object adaptation with expanders. Phoc. 21st ACM
Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLAortland, OR, October 2006.

[51] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundnesdnformation and Computatiqri15(1):38-94, 1994.

L,e
class Cextends T {LF M}
[final] T f=e

: T m(T X) {e}

programs Pr
class declarations
field declarations

method declarations

L

E

M

types T
S

P

\'

o| T.C | p.class | P[T] | &T
o | SC | PIS] | &5

non-dependent types

classes =o | PC
values =null | ¢
access paths p:=v| x| pf
expressions ex=v|x|ef|ef=e
| egm(E) | new T(f=9) | &1; &
typing environments I =0 | I, x:T | I,£:S| I, p1=p2

Figure 11. Grammar

A. Formal semantics

This section presents a formal semantics for the core J& type system and sketches a soundness proof for the semantics. To reduce complexity,
several features including package inheritance, constructors, and static virtual types are not modeled in the semantics.

A grammar for the calculus is shown in Figure 11. Throughout the semantics, we use the reofatitme listay,...,a, forn> 0. The
length ofa is written #3@), and the empty list is writtenil. We write {@} for the set containing the members of the s term with a list
subterm should be interpreted as a list of terms; for exanipleg should be read; = ey, ..., f, = en.

ProgramsPr consist of a list of class declaratiohsand a hain” expressione. To avoid cluttering the semantics, we assume a fixed
programPr; all inference rules are implicitly parameterized Bn A class declaratioh contains a class nan@® a superclass declaration
T, member classds fieldsF, and method#$1. A field declaratiorF may be final or non-final and consists of a type, field name, and default
initializer expression. Methodd have a return type, formal parameters, and a method body; all formal parameters are final.

Following Tribe [11], all classes are nested within a single top-level cla$gpesT are either the top-level class nested classeB.C,
dependent classesclass, prefix typesP [T], or intersection type&T. The intersection typeT can be read; & --&Ty. A nested class.C
of the top-level class may be abbrevia@dNon-dependent types are writt€@nd class names are writtnin the calculus, the prefix type
P[T] is well-formed only if some supertype @fis immediately enclosed by a subclassPoMore general prefix types can be constructed
by desugaring to this form: for exampledhas typeA.B.C, thenA[c.class] desugars td [A.B[c.class]].

A value is eithemull or a locatior?, which maps to an object on the heap of typ@ final access patp is either a value, a parameter
or a final field accesp. f. Expressions are values, parameterfield accesses, field assignments, calls, allocation expressions, or sequences.
Constructors are not modeled in the semantics; insteag; axpression may explicitly initialize fields of the new object. Fields not explicitly
initialized by thenew expression are initialized by the default initializer in the field declaration.

Type checking is performed in a typing contéxtwhich is a list of variable typings: T, location typings/: S, and path equivalence
constraintsp; = pp. Location typings are used to type check the heap during evaluation. Path equivalence constraints are used to assert
equivalence of dependent types in the presence of aliasing. They generalize the aliasing facts of the=fdent in the Tribe type
system [11]. The type-checker does not require an alias analysis be performed; however, the type system could easily be augmented with
results of an alias analysis to improve its precision.

A.1 Class lookup

The class tableCT, defined in Figure 12, maps class narRée class declarations. We wri@T (P) = L if P has no definition. The judgment
P defined states thaP is a well-formed class; the judgment holds either wiReis a class in the class table or wherfurther binds a
defined class. Thmem function returns the set of classesomprising a non-dependent tyBea typeSis equivalent to the intersection of
all classes irmem(S). Usingmem, the well-formed class judgment is extended to all non-dependent §/pes

A.2 Subclassing and further binding

Inheritance among classes is defined in Figure 12. The rules are similar to those defined for the language Tribe [11]. Thé-jedggnBht
states thaP is a declared subclass Bf. The rule SC simply looks up the superclass using the class@hlsubstituting the container for
this.class. Type substitution is defined in Figure 16. By the program well-formedness rules, shown later, the only access path allowed in
a superclass declaration is ttieis path, ensuring that the result of substitutingfad s is a non-dependent type.

The judgment- P;.C g, P,.C states thaP;.C further bindsP,.C whenP; inherits fromP, andP,.C is defined. We writé- P P, if Py
either subclasses or further binds The reflexive, transitive closure af is —*. The relation~ is an equivalence relation between classes
that contain a common nested cl&sThe functioninh(S) returns the set of all superclassesSof

A.3 Prefix types

The meaning of non-dependent prefix tydsS] is defined by therefix function in Figure 12. Th&-prefix of a non-dependent tyis

the intersection of all class&5 whereP andP’ transitively share a nested class—thaPisndP’ are equivalent under the relation—and
Sextends nested classes of bBtandP’. The intuition behind the definition is th&textends some class that is contained in the intersection
of P andP’. This definition ensures that# is a subtype oP’, thenP[S] is equal toP [S], as desired in Section 3.5.

CT(P) FPCec P2 mem(S)

Pr=(L,e) FPC*P mem(P) = {P}
CT(o) =class o extends &nil {L} CT(RC)T:{%]_'a;s/Eh?:%eﬁd; T{-}
= elmem(s) D = {P. € mem(S)| - R.C defined}

CT(P) = class C' extends T’ {L' F/ M'} FPL.CCLP, (8O mem(SC) =UppR.C
class Cextends T {...} €L’

CT(P.C) —classCextends T { . } men:)(r;f[l);gl?f) n:]ei(s,)
" Sdefined FPLCP, - Py.C defined

FB mem(&S) = Jg .emem(S)
. FPLCCp P2.C (FB) §eS
F o defined (DEF-OUTER)
oo -) ree)
F P defined () b o . o cmem(S)
1 Csc 1 e P2
———— = (INH-SC) —————= (INH-FB)) _ ’
+Pdefined FPCP I+ P.Cdefined FRCP FRCP prefix(P,S) = &{P'|3C,C".
- P.C defined FP~P

GRS APCEinh(9

P'.C € inh
- Sdefined P mem(S) + PC defined FPLCCmPL.C - PoClgPoC AP'.C €inh(S)}
F SC defined FP ~P;
(DEF-NEST)

(REL-FB)

_ FP~P FP~P, FP~P3
VS ES FP~P
F S defined Se FP~P; FPL~P;

= DEF-MEET) (REL-REFL
- &Sdefined () () (REL-SYM) (REL-TRANS)

Figure 12. Subclassing and auxiliary functions

A.4 Member lookup

Method and field lookup functions are shown in Figure 14. For a as® defineownFields(P) andownMethods(P) to be the set of fields
and methods declared in the class. Using these definitions, the set of fields and methods declared or inherited by a non-dep8ndent type
is defined by thefields(S) and methods(S) functions. The functiodnames returns the set of field names for a list of fiels The ftype
function returns the declared type of a fidldf an arbitrary typdl in environment . Themtype function provides similar functionality for
methods.
The method body for a methadin typeSis returned bynbody. For simplicity, the formal semantics presented here do not specify what
method body to dispatch to when one method overrides another; precise specification of method dispatch is not necessary to prove soundness
of the type system.

A.5 Exactness

Before proceeding, some auxiliary functions need to be defined. The fumpetibs(T) returns the set of access paths in the structure of type
T. The functionexacts(T) returns the set of (maximal) exact types embedded in the structure oTtyplee functionprefixExacty(T) is
true if thekth prefix of T is an exact type. IprefixExacty(T), then necessarilprefixExacty 1 (T).

A.6 Simple bounds

The judgment - T < Sin Figure 15 states thdt has a non-dependent bounding typ&or dependent classpsclass, the bounding type
is simply the bound on the declared typepofFor prefix typed?[T1, the bound is the result of computing thefix function forP and the
bounding type off .

A.7 Type well-formedness

AtypeT is well-formed in a context is writtenl” - T. A classP is well-formed if it is in the class tableT. A nested typd .C is well-formed

if T is well-formed and has bourfsland if SC is defined. A dependent clapslass is well-formed if p is a final access path. A prefix type
PLT] is well-formed if T has simple boun® andprefix(P, S) is not empty; in other words, there is some superclass whose enclosing
class is related t& by further binding. Finally an intersection typé is well-formed if the following three conditions hold:

¢ All constituent typed; are well-formed, and
e All exact types in the structure &fT are equivalent up to aliasing, ensuring they all refer to the same run-time class.

¢ All constituent typedl; have the same level of exactness. This condition ensures that the intersection has the same level of exactness as
any one of its constituents.

paths(o) =0
paths(T.C) = paths(T)
paths(p.class) = {p}
paths(P[T]) = paths(T)
paths(&T) = | J paths(T;
TeT
{T} if exact(T)
ifT=o
exacts(T) = { exacts(Tp) if —exact(T) andT =Tp.C
exacts(Tp) if ~exact(T) andT = P[To]

Urcrexacts(T) if —exact(T) andT =&T

exact(T) = prefixExactg(T)
prefixExacty (o) = false

false ifk=0

fixE T.C) =
prefixExact(T.C) {prefixExactkl(T) otherwise
prefixExacty(p.class) = true

prefixExacty, (P[T1) = prefixExacty 1(T)

prefixExacty (&T) \/ prefixExacty(T)
TeT

Figure 13. Auxiliary functions

CT(P) =classCext T {LF M} F=[final] T f = r-T<s
ownFields(P) =F fnames(F) = {T } methods(S) = M
ownMethods(P) =M Mi = Tna M(T X) {e}
r-7T<4s mtype(T, T,m) = (X:T) — Ty1
CT(P) = fields(S) = F
ownFields(P) 0 Fi=[final] Ty f=e r-T4s
ownMethods(P) = ftype(F, T, f) =Ts methods(SL: M
Mi = Thr1 m(T X) {e}
rET<s mbody(S,m) =
fields(S) =|_J ownFields(P) fields(S) = F
Re€inh(9) F = [final]T f=
methods(S) = |_J ownMethods(P}) finit(S) =

Reinh(S)

Figure 14. Member lookup

A.8 Type substitution

The rules for type substitution are shown in Figure 16. The fundtifgh; Ty/x}} substituteSy for xin T. The environmenf is used to look
up field types when substituting a non-dependent class into a field-path dependerii@hssid be well-formed i and a subtype of's
declared type.

A.9 Final access paths

The judgment” k4,4 p: T in Figure 15 states that the access pptis a well-typed final access path in cont€xtThenull path can
take on any non-dependent type. A location pattas the type declared in the environment. A variable pdtas the type declared in the
environment. Finally a field patp. f is final if pis final with typeT, and the type of the field path is determined by looking up the field type.
A.10 Typing

For arbitrary expressions, the judgmért e: T states thae has typeT in contextl.

r=T14Ss
I Final P2 T r=T4Ss .
rT4Ss r=T4s prefix(P,S) =S r-T,15"
r-P<P(Bb- — =" (Bp- = (Bp- =02 2 (Bo- — == (Bp-
<P (BD-SIMP) FrTcasc (BD-NEST) T polass SS(BD FIN) FrPT] dS (BD-PRE) FraT <65 (BD-MEET)
r=T
rETY
reT F-P rET i _
r-Ts rHPITI<S MEx @
CT(P)# L F SC defined I Finat P: T S# &nil prefixExacty (Ti) = prefixExact (T;)""""1€
=T (WF-s 2 (WF-NES _fnal B - — 27 (WF- =
rrp WRSIMR) e (WENESD o class WFFN) - gy (WR-PRE FreT
(WF-MEET)
FrMNETi~T
MrETi~Ts
o~ Ty~ =
FET T rNEFTHh~T MrETo~T3 Fr=-pr=p2
MrETy~Ts MET1~T3 FI—TE[pl]zTE[pz]
I Final P:T
(r}_finjl pT
r=s 0:Serl x:Tel ftype(I', T, f) = final T¢
— X (F-NULL — (F-LocC — (F-vAR - F-GET
r }_final null:S() r }_final ZS() Fl—ﬁna| x:T () r '_final pf :Tf ()
M-eT M-ep:To THe:Ts
Ik T ft [T,f)=[final] T ft MTo,f)=T lFerbETy THetbT
final PT - p) ype(l', T, f) = [final] " (T-cEm ype(, To, f) =Ts (T-sE7) akrn e T 1 oeg
[+ p:p.class M-ef:Ts MN-ep.f=e:Ts M-e; e)
r=T r+eT _
ftype(T,T, f;) = [final] ;7€' FrrerT TET<T
: = T-NEW ——=— (T-suB
M-newT(f=#%):T () r-e:T’ ()
M-e:TQ Mhe: /="
n=#& =#3X) X =this
mtype(l, T, m) = (X:TO) — Tr?Jrl
il —j-1 jviel.n+1jel.i
T T gy =T
prefixExact (T) = prefixExact, (T e
i i Vviel.n+1,jel.i
p.f € paths(TI ™) = p/ € paths(T) AT - o/ = p{ej_1/x_1}.f e
T (T-CALL)
I+ep.m(e): T
M=pr=pz
M-pr=pz
I Ffinal P11 T1 M=p1=pz
pr=p2€l I Ffinal P1: T2 Fr-p=m I-p2=ps
— (A-ENV ————— (A-FIELD I p=p(A-REFL —— (A-sy™M ——— (A-TRANS,
erlzpz() erl-f:pz-f() P=p() th:pz() rF|01:|03()
r-T<P
FrMNFM<mh CT(PC) =classCextends T’ {...}
MET<T3 (S-TRANS) T{T; T/this}=T" (S-suP) T re14S
TFTi<Ts r-TC<T1” r-T<s
(S-BOUND)
FP~PVEPICP
NrET<T, MEPL[T]
Fr’ET<T, TFET.C [final P:T r=PLT,] MR ([T]
Frmcehe CMESD Trpasss<t O™ Frpmi<pmg O TERmamm SFRER)
r-T<PC rPIT.CI - rET<7"
- == - -7 - <T (S -~ = (S ~
FET<PTIC (S-ouT) FET~PTCI (S-IN) I-&T <T; (S-MEET-LB) FET<eT (S-MEET-G)
FFUL<S THU;p exact(Uy)
FrETi~T, rM-U, < reU; 05 ~S FETi<T, exact(Ty)
T S- S = SH S- c
TFh~T (S-ALIAS) FFUL<U; (SEvAL) FFh~T (S-ExACT)

Figure 15. Static semantics

ofl; Tx/x}=o
T.C{T; Tx/x} =TLr; Tx/x}.C
v.class{l; Tx/x} =v.class

x#y
y.class{l; Tx/x} =y.class

x.class{; Tx/x} = Tx

p.class{l; Ty/x}} = p'.class
p.f.class{l; Ty/x} = p'.f.class

p.class{l; Tx/x} =Tp
Tp # p.class
ftype(I', Tp, f) = Ts
p.f.class{l; Ty/x} =T;

TLM /X =T
PLTI{r; Tx/x} =PLT’]

T T/xp =T
&T{T; Tu/x} =&T’

Figure 16. Type substitution

Any final access patp has typep.class by T-FIN. The subtyping rule SN and subsumption (BUB) give the standard typing rules
for values and parametexs

The type of a field accessf is obtained by looking up the field if, the static type oé. The rule TSET checks if the expression being
assigned from has the same type.

By T-SEQ a sequence expression takes the type of the second expression in the sequence.

A new expression is well-typed via Wew if it initializes only declared fields of a well-formed type.

Calls are checked with TaLL by looking up the method type, then substituting in the receiver type and the actual argument types
for this and the formal parameters. Type substitution is defined in Figure 16. ATtyigeexact, writtenexact(T), if it is a dependent
class, a prefix of an exact type, or an intersection containing an exact type. The funeiiofT) is defined in Figure using the function
prefixExacty (T), which returns whether thith enclosing prefix o is exact. Substituting into the The actuals must have the same type as
the substituted formal types. To ensure subtyping is preserved by the substitution, substitution must preserve prefix exactness. This ensures
that if the type of formal is dependent omhis or on another formaj, theith actual value has a type dependent on the actual receiver or on
actualj. Substitution of the return type need not preserve exactness.

Substitution must also preserve field paths. Two different objects used as actuals may have the same dependent type, but may contain final
fields that point to objects of different clases. Preserving field paths ensures that the substituted field path is dependent on the actual target,
not on another object of the same class which may have initialized the field differently.

Finally, T-suB is the standard subsumption rule.

A.11 Subtyping and type equivalence

Subtyping rules are defined in Figure 15. The judgnientT < T’ states thafl is a subtype off’ in contextl". The rules ensure that
syntactically different types representing the same sets of values are considered equal. The jldgmenfT’ is sugar for the pair of
judgmentd FT<T/andl-T'<T.

Subtyping is reflexive and transitive. The rulesBp states that a type is a subclass of its declared superclass; the enclosing class of the
subtypeT is substituted in fothis in the superclass.

S-BOUND states that a type is a subtype of its bounding simple type. The rulesS-states that a nested cla8ss covariant with
its containing class; that is, further binding implies subtypingrii$ states that a dependent class is a subtype of its declared bound; with
F-NULL, this rule also implies thatull.class is a subtype of any well-formed simple type.

Subtyping of prefix types is covariant by the rule®8&s1 and SPRES2. S-OUT and SN, and relate prefix types to non-prefix types.

S-MEET-LB and SMEET-G are from Compagnoni and Pierce [13] and define subtyping for intersection types. Together these two rules
imply that intersection types are associative and commutative and that the singleton intersectidnig/pguivalent to its element type
With the other rules above, these rules also imply the intuitive judgnientB[¢T1 <P[T;] andl - (&T).C<T;.C.

0ok

FFok x¢gdoml) THT
FT,x:T ok

FFok ¢¢doml) TFS
FT,0:Sok

FTok T Ffinal P T Final P2
FT,p1=pzok

Figure 17. Well-formed environments

O{v/x} =0
(Fox:T){v/x} =T
(Fy:T){v/x} = T{v/x},y:T{v/x}
(F,0:9){v/x} =T{v/x},£:S
(T p1 = P2){v/x} = T{v/x}, p{v/x} = p2{v/x}

Figure 18. Environment substitution

Finally, the rule SEVAL states that a fully evaluated type (i.e., a type containing only value paths) is a supertype of any fully evaluated
exact type with the same bounding type. This rule ensures, for examplé; itibdss ~ ¢».class if /1 and/, both point to objects of the
same type.

A.12 Program typing

Program typing rules are presented in Figure 19. ThexPsays the prograrRr is well-formed if all class declarations are well-formed, if
the “main” expression is well-typed, and if the transitive closure of the inheritance relatigracyclic.

By L-0kK, a class declaration is well-formed if all its members are well-formed and its superclass is well-formed in an environment
containing onlythis bound to the class’s container. Additionally, the only access path embedded in the superclass declaratiehigan be
The class must also conform to all of its superclasses.

A classP conforms toP’ if all of the following hold:

¢ If both P andP’ have a member clagy, thenP.D’s declared superclass is a subtypébD’s.
e The field names o andP’ are disjoint. This requirement simplifies the semantics by ensuring field names are unique.
e |f both P andP’ define a methodh, then the method iR correctly overrides the methdd.

Method M in P correctly overridesv’ if the number of formal parameters are equal, the parameter typelsasé supertypes of the
parameter types dfl’, and the return type dfl is a subtype oM’. Subtyping checks are done with fresh names substituted in for the
parameter names occurring in the types. Using the judgméndk, it is required that the type of formal parameteiepends only oshis
and formal parameters 1 through 1.

Finally, field and method declarations are well-formed by ruleskFand M-0Ok, respectively if the types occurring in the signatures
well-formed and if the initializer is method body is well-typed.

A.13 Environments
Environments are well-formed by the judgmentt ok, defined in Figure 17. Environment substitution is defined in Figure 18.

A.14 Operational semantics

A small-step operational semantics is shown in Figure 20. The semantics are defined using a reduction—relatidrich maps a
configuration of an expressi@and a heap to a new configuration. A hedp is a function from memory locatiorfsto objectsS { f = v}.
The notatiore, H — r,H’ means that expressi@and heagH step to result and heagH’. Results are either expressiond\arilError. The
initial configuration for prograniL, e) is e, 0. Final configurations are of the formH or NullError,H.

oFLok OFe:T OFT ' acyclic
F (L,e) ok

(P-0K)

PCFLok PCHFok PCHM ok
PHE T super ok
+ P.C conforms top, "R€inh(PO\PC}

P class C extends T {LF M} ok

(L-0K)

T#o
this:PFT
paths(T) C {this}
—exact(T)

PE T super ok

CT(P) = class Cextends T {LF M}
CT(P') = class C' extends T/ {L' F/ M}
. Li =class Dextends Ti {... } A .
Vi, - (LI'J = class D extends 'ILJ'{{}}) = this:PFT<T]
(fnames(F) Nfnames(F’)) =0
(M =T M(T X) {e} A) .
i, j. =L = P M overridesM’
! (M; =Tl M(T'X) {€} !]
t P conforms toP’

M =Tors m(T %) €}
M =T/, m(T’X) (€}
#(X) = #(X) = #(y) yN(XUX)=0
I =this:Py:T{y/x}
=T oki -
FET{y/R}=T{y/x}
[FToa{y/%} = T 1 {9/X}
P - M overrides metho’

0T OFeT
P final T f =eok

(F-0oK)

F=this:PX:T Flok TFT TFeT
PFT m(T X) {e} ok

(M-0K)

Figure 19. Program typing

We write H[¢ := o] for H with H(¢) remapped t, that is:
Q¢:=0=L—0

(H,—d)[{:=0]=H,l+—0

(H,l' —d)[t:=0=H[{:=0],{'+— o
To account for aliasing of access paths, typing environments include path equivalence constraimps The functionHT returns a

typing context constructed from a hedpby inserting location types and aliasing information for fields into the environment.
0'=0
H—S{f=w)=HT 15T =V
wheref’ = {f; € T|ftype(0,S fi) = final T;}

The equivalence constraints ensure that whgrfi,H — (5, ¢».class is a subtype off1.f.class. This is essential for proving type
preservation.

The reduction rules are mostly straightforward. Order of evaluation is captured by an evaluation Edateepression with a holg)
and the congruence rule BoNG. Since types are dependent, expressions used in types must be evaluated as well. Wdawrieype
containing no redex. The rule RuLL propagates a dereference afid 1 pointer out through the evaluation contexts to produbi@Error,
simulating a Javlilul1PointerException.

R-GET and RsET get and set a field in a heap object, respectivelg R+ uses thenbody function defined in Figure 14 to locate the
most specific implementation of method

objects o =S{f=v}
heaps H :=0|H/{—o0 eH — ¢ H
results r =e | NullError EdH SEdH (R-CcONG)
evaluated types U =0 |UC| lclass | P[U] | &U [el,H — E[¢],
evaluation contexts E =]
| E.f E[NE],H — NullError,H (R-NULL)
| new TE(f =€)
| newU(f=v,f=E, ' =¥g) H() =S{T=v
| E.f=e M (R-GET)
| t.f=E .5, H—vi,H
| Em(® B
| Lm(V.E,®) H() = S{T=v}
A | E;e H =H[(:=S{fi=vi,...,fi=V,..., fa = W}] (R-sE")
type evaluation contexts TE =TEC (fi=v.H —vH
| E.class
| PLTE] _
| «(U,TET) £:SeHT mbody(Sm)=Th1 MTX) {e} n=4#YV)=#X) (R-CALL)
null error contexts NE :=null.f ¢m(v),H — e{¢/this,v/x},H
| null.f =e
| null.m(e) t
_ HTFU s
TEnull|(f = =2 _
I ‘,i,eu“l’lErrEf I(f=9) fnames(fields(S)) = TUT #(T7) £0
finit(S /) = ¢
— — (R-NEW)
newU(f =V),H —newU(f =V, f' =¢),H
HTFU <S {f} = fnames(fields(S))
tgdomH) H =H[(:=S{f=v
#dom(H) H'-~ [{f =v}] (R-ALLOC)
newU(f =Vv),H — ¢,H’
v, eH —eH (R-SEQ
Figure 20. Operational semantics
H(¢)=S{f=v}
fields(S) = [final] T f=¢
HTFv:T
v C dom(H)U {nu11}
7 (H-Loc)
H FéVlEdOfT(H)
— T (HEAP)
FH | C H
ocs(e) € dom(H) (CoNFIG)

FeH

Figure 21. Well-formed heaps

There are two rules for evaluatingw expressions. R¢ew looks up all fields of the type being allocated and steps to a configuration
containing initializers for those fields. R:LoC is applied when all initializers have been evaluated. A new location is allocated and the
object is installed in the heap.

A.15 Well-formed heaps

Figure 21 shows the heap typing rules. The judgnteht? states that a locatiofis well-formed for a heapl if it maps to an object of type
Scontaining all declared fields &and each value stored in those fields has the correct type and, if a location, is also well-fokin&tiie
H-NuULL states that theull value is always well-formed.

A heapH is well-formed, written— H, if all locations in its domain are well-formed. Finally, a configuration is well-formed, written
F e H if H is well-formed and all free locations ef locs(e), are inH.

B. Soundness
To prove soundness we use the standard technique of proving subject reduction and progress lemmas [51].

B.1 Substitution

This is a useful pair of lemmas that allows many of the type substitulidion x) lemmas proved above (XXX below) to be used easily to
prove value substitutiorv(for x) lemmas.

LEMMA B.1. If x:Tx e I, andl{v/x} - v: Ty andl{v/x} F Ty <Tx, andl | p.class, then pclass{l; v.class/x} = p{v/x}.class.
PROOR By structual induction om. Let p’ = p{v/x}.

e If p=x, thenp’ = v. The case follows trivially since.class{Il; v.class/x}} = v.class.

e If p=po.f, thenp’ = po{v/x}.f. By the induction hypothesigg.class{l; v.class/x}} = po{Vv/x}.class. Thus, by the definition of
type substitutionpg. f.class{I; v.class/X}} = po{Vv/x}.f.class.

¢ Otherwise p’ = p and the case holds trivially.

d

LEMMA B.2. If x:Tx eI, andlM{v/x} Fv: Ty andl{v/x} F Ty <Ty, andl - T, then T{T; v.class/x}} = T{v/x}.
PROOF By structural induction off .

e T =o. Trivial.

e T =To.C. Follows from the induction hypothesis and definition of type substitution.

e T = p.class. ThenT{v/x} = p’.class wherep’ = p{v/x}. The case follows from Lemma B.1.

e T =P[Tol. ThenT{v/x} = P[To{v/x}1.
By the induction hypothesidp{; v.class/x}} = To{v/X}. Sinceexact(P[To]), we also havexact(P[To{v/x}1).
Hence, the case holds by the definition of type substitution,

e T =4&T. Follows from the induction hypothesis and definition of type substitution.

d

LEMMA B.3. If x:Tx e T, andl{v/x} Fv:Ty andT{v/x} - Ty <Tx, andTl kg p: T, thenl{v/x} Fgnar p{v/x}: Ts. wherel {v/x} -
Ts<T{v/x}.
PrROOFR By induction on the derivation df ¢, p: T. Letp’ = p{v/x}
e F-NULL. Thenp = p’. By F-NULL, [{V/X} Ffina null:T{v/x}.
e F-Loc. Thenp= p’ andT = T{v/x}.
e F-VAR. Letp=y#x Thenp=p’. Theny:T €. If xis not free inT, thenT{v/x} = T. If, on the other handx is free inT, then
y:T{v/x} € F{v/x} and we can derivE{Vv/x} Ffina Y: T{V/X} by F-VAR.
Now, letp=x. Thenp’ = vandT = Ty andT{v/x} = Ts = Ty. Since we assumdd{v/x} - T, < Ty, the case holds trivially.
e F-GET. Thenp = po.f, I Ffinal Po: To, ftype(I, To, f) = Ts, andT = Ts.
By the induction hypothesi$,{v/x} Ffinal Po{v/x}: T}, wherel {v/x} - T < To{v/x}.
By Lemma B.6ftype(I", To{v/x}, f) = Ty; thereforeftype(I', T4, f) = Tt.
Thus, we can derive by B£T, T kgna po{Vv/x}.f : Ti{po{v/x}/this}, which can be rewritten:[Fg,q po.f{v/x} :
(Tt{po/this}){v/x}.
(]

We writek S C* S if inh(S) Cinh(Sy).

LEMMA B.4. If x:Txel, andlM{v/x} Fv:Tyandl{v/x} - Ty<Tx, andl Fgna p: T, andl =T < S, then {v/x} Finar p{v/x}:T" and
M{v/x}FT'<Sand 3Cc*S.

ProoF Follows from Lemma B.3 and Lemma B.Z9.

LEMMA B.5. If x:Tx eI, andl {v/x} Fv:Tyandl{v/x} - Ty<Tyx,andl =T < S, then {v/x} - T{v/x} < S where+- S C*S.

ProoF Follows from Lemma B.31 and Lemma B[2.

LEMMA B.6. If x:Tx e, andl{v/x} - v:Ty andl{v/x} - T, <Tx, andftype(l',T, f) = [final] Ts, thenftype(F {v/x}, T{v/x},) =
[final] T;.

ProoOF Follows from Lemma B.5 and the definition fiélds. (]

LEMMA B.7. If x:Ty e, andl {v/x} - v: Ty andl {v/x} - Ty <Tx, andmtype(I', T,m) = (X:T) — Tpy1, thenmtype(r {v/x}, T{v/x},m) =
(XT) — Tn+]_.

ProoFR, Follows from Lemma B.5 and the definition sfethods. (]

LEMMA B.8. If x:Tx e I, andl{v/x} - v: Ty and " {v/x} F Ty <Ty, andexact(T), thenexact(T{v/x}).

PROOF By inspection of definition oéxact. [J

LEMMA B.9. If x:Tx e I, andl{v/x} Fv: Ty andl{v/x} F Ty <Tx, andl - T thenl {v/x} - T{v/x}.

ProoFE Follows from Lemma B.2 and Lemma B.34.

LEMMA B.10. If x:Tx e I, andl {v/x} F v: Ty andl {v/x} - Ty < Ty, andl" - Ty < Ty, thenl {v/x} - Ti{v/x} <To{v/x}.
PROOF By induction on the derivation df - Ty <T».

e S-TRANS. Trivial via the induction hypothesis.

¢ S-sup. Follows from the induction hypothesis and Lemma B.11. armR&NS.
e S-BOUND. By Lemma B.9 and Lemma B.5 and1&RANS.

e S-NEST. Follows from the induction hypothesis and Lemma B.9.

e S-FIN. Lemma B.3.

e S-PRESL. Follows from the induction hypothesis and Lemma B.9.
e S-PRE-S2. By Lemma B.9.

e S-0uT. Follows from the induction hypothesis.

e S-IN. By Lemma B.9.

e S-MEET-LB. By Lemma B.9. Trivial.

e S-MEET-G. Follows from the induction hypothesis.

e S-ALIAS. Follows from definition of {v/x}.

e S-EVAL. Trivial sinceU;{v/x} = U;.

e S-EXACT. Follows from the induction hypothesis and Lemma B.8.

d

LEMMA B.11.If x: Ty e T, and F{v/x} F v: Ty and F{v/x} + T, < Ty, and T{; Ty/y} = T’, and x is not free in T, then
T {v/xg; Ty{v/x} /vyl = T{v/x}.
PrROOF The proof is by induction on type substitution derivation.
e T =o. Trivial.
e T =Tp.C. Follows from the induction hypothesis.
e T = p.class.
* p=v. Trivial.
* p=z Trivial.
* p=y. ThenT’ =Ty. andT’{v/x} = Ty{v/x}. By the definition of type substitutioy,c1ass{I {v/x}; Ty{v/x}/y} = Ty{v/x}. Done.
* p=x. Vacuous (variable capture).
" p=po.f.
Let po.class{l; Ty/y} = Tp. andpo.class{{v/x}; Ty{v/x}/y} = T;. By the induction hypothesidy = Tp{v/x}.
—If T, = piclass, then T = pi{v/x}.class. In this case, po.f.class{l; Ty/y} = pi.f.class and
po.f.class{{v/x}; Ty{v/x}/y}} = p1{v/x}.f.class = p;.f.class{v/x}.
— OtherwiseTp # p1.class. Sinceftype(I, Tp, f) = Tr, by Lemma B.6ftype(I {v/x}, To{v/x}, f) = Tt.
Since by Fok, 0+ T;, xis not free inT¢, and hencd; {v/x} = Ts.

e T =P[Tol. Follows from the induction hypothesis.
e T =4&T. Follows from the induction hypothesis.

O

LEMMA B.12. (Substitution)f x:Tx € I', andl' {v/x} - v: Ty andl'{v/x} - T, <Tyx, andl - e: T, thenl {v/x} - e{v/x}: T{v/x}.
PROOF By induction on the derivation df -eF T.
Lete =e{v/x} andT’ = T{v/x}.
e T-FIN. Thene= pandT = p.class and€’ = p{v/x} andT’ = p{v/x}.class. The case follows from Lemma B.3.
e T-GET. Thene=ey.f andrl - ey: Tp andftype(l", To, f) = [final] T; andT = Ts.
Thene = ep{v/x}.f = €. . By the induction hypothesis, sin€e- ey: To, we have {v/x} - ep{v/x} : To{v/x}.
By Lemma B.6, andtype(I {v/x}, To{v/x}, f) = [final] Ts.
Since by Fek, O+ T¢, xis not free inT¢, and hencd’ = Tt {v/x} = T; =T.
The case holds by GET.
e T-sSET. The proof of this case is similar to the proof of the previous case feeT-
¢ T-seQ Follows from the induction hypothesis.
o T-NEW.
Follows from Lemma B.9, Lemma B.6, and the induction hypothesis.
e T-CALL.
Follows from IH, Lemma B.7, Lemma B.11, and Lemma B.8.
e T-SUB.
Thenl Fe:T” wherel F T <T.
By the induction hypothesi§,{v/x} - e{v/x} : T"{v/x}.
By Lemma B.10J {v/x} - T"{v/x} <T{v/x}.
Thus, by Tsus, I{v/x} Fe{v/x}: T{v/x}.
O

This lemma states that if a final access patias a given typd, that type must be a supertypemtlass.
LEMMA B.13. If I Fgna p:Tpandl = p:T, thenl - p.class<T.

PROOE The proof is by induction on the height of the subtyping derivation.
There are only two ways to derive- p: T:

e T-FIN. ThenT = p.class and the case holds by REFL and SALIAS.

e T-suB. Thenl - p: T’ andlN-T'<T.
By the induction hypothesi§, - p.class <T’. Therefore by SFRANS, I - p.class <T.
O

B.2 Type substitution again

This lemma states that a value substitutiow &r x in a type results in a subtype of the type substitution'®ktatic type forx.

LEMMA B.14. (Type substitutionlf x:Ty € [, andl{v/x} - v: T, and I {v/x} - Ty <Tx, and+ I ok, and T{I {v/x}; Ty/x} = T’, then
M{v/x} = T{v/x} <T'.

PROOF By induction on type substitution derivation.

e CaseT = o. Trivial.
e CaseT = To.C. ThenT{v/x} = To{v/x}.C andT’ = T§.C whereTo{T {v/x}; Tv/x} =T.
By the induction hypothesis{v/x} - To{v/x} <Tj; therefore, by SNEST, ['{v/x} F To{v/x}.C<Tj.C.

e Casel = p.class. ThenT{v/x} = p{v/x}.class.

= Casep = v. Trivial.

= Casep =Yy # X. Trivial.

= Casep = x. ThenT = x.class andT’ = Ty andT{v/x} = v.class.

Sincel {v/x} Fv:T’, [{v/x} Fv.class <T' by Lemma B.13.

= Casep = po.f. ThenT = pp.f.class andT{v/x} = po{v/x}.f.class
Let pg.class{{F{v/x}; Tv/x}} = Tp. By the induction hypothesi§,{v/x} - po{v/x}.class <Tp.
There are two cases.
— Tp # pp-class for any py,.
Then,ftype(I' {v/x},Tp, f) = Ts.
By F-GET, we havel {v/x} Ffinal Po{Vv/x}.f: Ts.
Thus, by Lemma B.13,[{v/x} F po{v/x}.f.class < Ti{po{v/x}/this}. Since T; has no free variablesT; =
Te{po{v/x}/this}.
— Tp = pj-class. It must be thapy = po{v/x}. The case follows trivially from SxLIAS.
e CaseT =P[Tol. ThenT{v/x} = P[To{v/x}1. andT’ = P[T{1 where andlo{ {v/x}; Tv/x} =T{.
By the induction hypothesis,{v/x} - To{v/x} <Ty; therefore, by SPRE-S1, [{v/x} - T{v/x} <T'.

e CaseT =&T. ThenT{v/x} = &T{v/x} andT’ = &T’ where for alli, T{I {v/x}; Tv/x} = T/. By the induction hypothesis§,{v/x} -
Ti{v/x} <T/; therefore, by SMEET-G, ['{v/x} - T{v/x} <T'.

d

B.3 Environments
We say a heapl, remapdH if
e Hi=0andH, =0, or
e Hj remapsH;, andH; = Hi, ¢ — S{f =V}, andH, = H}, ¢ — S{f =V}, and for allf;, if ftype(0,S, fi) = final T, thenv; = V.

Hy extendsH; if Hp remapsH;, or there is aH such thaH extendsH; andH, = H,¢+— oand? ¢ dom(H).
We say an environmeffit, extendd 1 if there is a” such that' , =T1,T".

LEMMA B.15. If Hp remaps H, then I-g extends Iﬂ

PROOF By structural induction oiil,.
e Hy = 0. ThenH; = 0. Trivial.
o Hp = H}, ¢ — S{f =v}. ThenH, = H;, ¢ — S{f = V'}. By the induction hypothesii, = H;'. For all final fieldsf of S, 01[f] = o,[f].
ThereforeH;r = HI by construction.
o

LEMMA B.16. If Hy extends H, then I-g extends Iﬁ

PROOF By structural induction of.
If Hy remapsHy, thean = HI by Lemma B.15.
Otherwise, there is aA such thaH extendsH; andHy = H,¢ — S{f =v} and¢ ¢ dom(H).
By the induction hypothesisj ™ extendsH, and by constructiomi] = HT,¢:S ¢.F7 = whereT’ are the final fields 08 O

LEMMA B.17. (Extension)f [-e:T and I, ok, thenl,[" - e:T.

PrROOF By induction on the derivation df -e: T.O

LEMMA B.18.If [x:Ty,[" Fe:T or,x.class = Ty,[" Fe:T, andl contains no yTy, then,I" x: Ty Fe:T.

PROOF. By induction on the derivation df,x: Ty, - e: T and by induction on the derivation 6fx.class = T,,[" Fe:T.O

LEMMA B.19. If I, x: Ty Fe:T orifIM,x.class =Ty Fe:T and x is not free in e, theht-e: T.

PrROOF By induction on the derivation df,x: Ty - e: T and by induction on the derivation 6fx.class =T,Fe:T.O

LEMMA B.20.If T=T < Sand-T,I" ok, then,"-T < S.

PrROOF By induction on the derivation df - T < S O

LEMMA B.21.If T =T and~I,I’ ok, thenl,I" - T.

PrROOF By induction on the derivation df - T. [

LEMMA B.22. If [- Ty <Tp and I, ok, thenl, [- Ty <T>.

PROOF By induction on the derivation df - Ty <T,. O

LEMMA B.23. If [Fgna p: T, and- T, ok, thenl, I Fgna p:T.

PROOF By induction on the derivation df F,, p:T. O

LEMMA B.24. If ftype(T', T, f) = Tt andF I, ok, thenftype((I',), T, f) = Tt

PROOF. By structural induction oiir. [

LEMMA B.25. If mtype(T,T,m) = (X:T) — Tny1, andk I, T’ ok, thenmtype((I,I7), T,m) = (X:T) — Tny1,

PROOF. By structural induction oifr. [

LEMMA B.26. If T{I; Ty/x} =T andrI',I"’ ok, then If T{I",T""; T,/x} =T’
PROOF By induction on the type substitution derivation.

e T =o. ThenT’ = o. Trivial.

e T =Ty.C. Follows from the induction hypothesis.

e T = p.class.
* p=v. Trivial since the environment is not used.
= p=Yy. Trivial since the environment is not used.

= p= po.f.class This is only case where the environment is useglilass{{I'; T,/x} = Tp, then by the induction hypothesis,
po.class{l; Ty/x} = Tp. If Tp is not a path type, the case holds by Lemma B.24. Otherwise, the case holds trivially.

e T =P[Tol. Follows from the induction hypothesis.
e T =4&T. Follows from the induction hypothesis.

O

LEMMAB.27. fTFTi~TandlMN-Ty < S andlN =T, S, thenl F § = S (XXX).
PROOFR XXX O

LEMMA B.28.If ' - Ty <Tp, andexact(Tp), andl - T < § andl - T, 9 S, thenl - § = S (XXX).
PROOF XXX OO

LEMMA B.29. fTFTi<TandlN+Ty IS andl - T, < S, then- S C* .

PrROOF By induction on the subtyping derivation.
e S-TRANS. Trivial via the induction hypothesis.
e S-sup. Follows from Lemma B.31.
e S-BOUND. Trivial sinceTo =& = S,.
e S-NEST. Follows from the induction hypothesis.
e S-FIN. Follows from Bd-FIN.
e S-PRESL. Follows from definition oprefix and Bb-PRE
e S-PRES2. Follows from definition oprefix and Bb-PRE
e S-0UT. Follows from the induction hypothesis.
¢ S-IN. Follows from definition ofrefix and BD-PRE
e S-MEET-LB. Follows from B>-MEET.
e S-MEET-G. Follows from the induction hypothesis.

e S-ALIAS. Follows from Lemma B.27.

e S-EVAL. Trivial since§; = S.

® S-EXACT. Follows from Lemma B.28.
|

LEMMA B.30. andl F Ty <T,, andftype(I, Ty, f) = [final] Ts, thenftype(l', Tp, f) = [final] Ts.

PROOF LetlM+T; < S andl T, < S. By Lemma B.29)- S =* S,. By the definition offields Thus, fields(I',S) D fields(I",S).
Therefore, for all fields of S, ftype(I', T/, f) = ftype([, T,). O

B.4 Type substitution redux
LEMMA B.31.Ifx:Tyel, andlN - Ty <Tx,andl =T < S, and Ty, and T{I; Ty/x} =T/, thenl - T’ < S and SC*S.

PROOF By induction on type substitution derivation.
e T =o. Trivial sinceT’ =T.
e T =To.C. ThenT’ = Tj.C where andlp{"; Tv/x} = T{.

Let T F Tp < . By the induction hypothesis, - Tj < §) andF § C* S. By BD-NEST, ' - T§.C < §,.C. The case holds by the
definitions ofmem andinh [XXX cleanup].

e T =p.class.
Then by BO-FIN, I Fgpg p:To-andlN = Tp < S
*p=Vv.ThenT'=T.
*p=y. ThenT'=T.
*p=xThenT' =T, andlN T, < S.
SinceT = Xx.class,
Sincex: Ty € I, T Final X: Tx by F-VAR.
Sincel - Xx.class:S by BD-FIN we havel Ty < S
Sincel - Ty < Ty, by Lemma B.29\- SC*S.
* p=po.f. Let pg.class{l; Ty/x} = Tp. By F-GET, I Fina Po: Tp, ftype(l, Tp, f) = final T¢, andrl Fna Po.T: Tr. By BD-FIN,
we have FTf < S
— If Tp = py.class, thenT’ = py.f.class. By F-GET, I Fnal py: T, ftype(T, Ty, f) = final Ty, andl bgna pp-f: Ty. Since
I Ffinal Tf S by BD-FIN, I Fgina T/ < SandS=S.
— Otherwise,Tp is not a path type. Then by the definition of type substitutidh= T; where ftype(I", Tp, f) = T¢. Since
I inal Tt < S, we have Fp, T < SandS=S.
e T =P[Tol. LetT I To < S. By the induction hypothesis, - T§ < §, and+ §,=* S. Thus, by B-PRE I+ P[T{]1 < S where
S = prefix(P, §)). SinceS= prefix(P,S), by the definition oprefix, - S C* S[XXX cleanup].
e T=¢T.ThenT’ =&T’. Letl - T; < S. By the induction hypothesis, for all" - T/ < § and~ S C* S. By BD-MEET, [- T/ < §. The
case holds by the definitions afem andinh [XXX cleanup].

d

LEMMA B.32.If - S C* Sy, thent prefix(P,S;) C* prefix(P, &).

PROOFR Theninh(S;) 2 inh(S).
Thus by the definition ofrefix, mem(prefix(P,S1)) 2 mem(prefix(P,Sp)).
Hence,inh(prefix(P,S1)) 2 inh(prefix(P,S)), and thus- prefix(P,S;1) C* prefix(P, &).
g

LEMMA B.33.If x:Tx € ', and Tl + T, < Ty, and ftype(I", T, f) = [final] T¢, andl + Ty, and T{I; T,/x} = T/, thenftype(l, T, f) =
[final] Ts.

PROOFE Letl+T < Sandl+T' < 8. By Lemma B.31, and- S C* S. By the definition offields Thus, fields(I",S) D fields(I", S).
Therefore, for all fields of S, ftype(I', T/, f) = ftype([, T,). O

LEMMA B.34.Ifx:Tx e, andlN - Ty <Ty, andl =T, andl" - Ty, and T{I; Ty/x} =T/, thenl - T".

PrROOF By induction on type substitution derivation.

e T =o. Trivial.

e T=To.C. ThenT{; Ty/x} = T§.C=To{I"; Tv/x}.C. By the induction hypothesi3 is well-formed. Lef - To < S andlr - T§ < §,.
By Lemma B.31} §,C* . Therefore- §,.C defined, and by WFNEST, I - T/.C.

e T = p.class.
By cases ormp.
* p=v. Trivial.
" p=Yy#X Trivial.
» p=x. ThenT{T; T,/x} = Ty and the case follows from the assumptions.
» p=po.f. Let pg.class{l; Ty/x} =Tp.
By Lemma B.33ftype(I", Tp, f) = ftype(I', po.class, f) = Tt.
There are two cases:
— AssumeT, # pj.class. ThenT’ = Ts. By the induction hypothesis, - Ts.

— If Tp = pp.class, then T’ = pj.f.class. Since by Lemma B.33ftype is unchanged by the substitution, we can derive
I Final Pp-f: T by F-GET. Hence, by WFFIN, we have |- py. f.class.

e T =P[Tol. ThenT’' = P[T§]1 whereTo{I; Tv/x} =T4.
By the induction hypothesidy is well-formed. Lef - To < Sandlr =T I S;.
By LemmaB.31}F §C*S.
Therefore, by Lemma B.32; prefix(P, Sy) C* prefix(P,). Hence prefix(P, Sp) # &nil.
Finally, by WFPRE I =T’
o T =¢T. ThenT’ = &T’ where for alli Ti{I"; T,/x} =T/.
By the induction hypothesisl; is well-formed. Since by Lemma B.3%exacts(T)| < |exacts(T’)|, and since-exact(T) implies
—exact(T’), we can derivé - T’ by WF-MEET.

d

LEMMA B.35.If x: Ty eI, andll F Ty, < Ty, andl - Ty, and T{T; Ty/x} = T/, then|exacts(T)| < |exacts(T’)|.

PROOFE By inspection of type substitution rules, no rule substitutes an exact type for an inexact type, and, stneell-formed, by
Lemma B.36exacts(Ty)| < 1, so substitutingy for anC]

LEMMA B.36.If I - T, then|exacts(T)| < 1.
PROOF By structural induction off .
e T =o. Then|exacts(T)| =0.
e T =Tp.C. Then|exacts(T)| = |exacts(Tp)|.
e T = p.class. Then|exacts(T)| = 1.
e T =P[Tol. Then eitheftexacts(T)| = 1, or|exacts(T)| = |exacts(Tp)].
e T =4&T. Then|exacts(T)| < 1 by WF-MEET.

d

B.5 Non-dependent types redux

LEMMA B.37.If - P C Py, then0t+ P, <P;.

PROOFR By induction on the derivation of P, C P».
There are two cases:

e If - Py Csc P2, thenP = P.C and there is & such that- P{ C* P, andCT(PC) = class C extends T {...}, andT {0; P;/this} =S
andP; € mem(S).
By the induction hypothesis and BRaNs, O+ P; <P. Thus, by Ssup, we can deriv@ - P;.C <P».

If P T, P2, thenP, = P{.C andP, = P,.C and- P; C P,. By the induction hypothesi®,- P; <Pj. By S.NEST, 0+ P <P5.

LEMMA B.38. If P € inh(S), thenO+ S<P.

PrRoOOFE Trivial from Lemma B.37[]

LEMMA B.39.If ' = p:T andrl iy p:Tp, thenl ETp <T.
PROOF By induction on the derivation df - p:T.
Only three cases apply:
e T-FIN.
Sincel Ffinal p:Tp, by T-FINT I p:p.class, and by SFINT F p.class <Tp.
e T-GET.
Thenp = po.f, andl" F po: To, andftype(l", To, f) = £final T.
Sincel kinal Po-T:Tp, by F-GETwe havel i, po: Ty andftype(l, Ty, f) = final Tp.
Thus, T =T,.
e T-suB.
Thenl - p: T andlN =T/ <T.
By the induction hypothesis, afid- T, <T'.
Hence, by SFRANS, I = Tp <T.

d

LEMMA B.40. If mtype(0,Sm) = (X:T) — Thi1, thenmbody(S,m) = Tr 1 M(T X) {e}.

PrROOFE Follows immediately from definition ahtype andmbody. O

B.6 Subject reduction

The subject reduction lemma states that a well-formed configuration steps to another well-formed configuration or to a configuration
containingNullError.

LEMMA B.41.If - p,H, and Hf kg p: T, and pH — p/,H, and Hf g p/: T/, then H - p=p.

PROOF By induction on the derivation dfi T 4 p: T.
Sincep can make a ste = po. f. We consideipg by cases.

® pp =null. Thenp =null.f and RNULL is the only rule that can apply.
* po= ¢ Thenp=¢.f and RGETis the only rule that can apply = v; = H(¢)[fi] whereH (¢) = S{f =V}.
By the construction oH T, HT must include’. f; = v;.
® o # V.
Then RcoNGis the only rule that can apply am,H — pg, H.
By F-GET, H' Final Po: To.
By the induction hypothesi$) T+ po = Po-
Thus, by AFIELD, HT F po.f = pj. .

O

LEMMA B.42.If - p,H, and Hf ko p: T, and pH — p/,H, then p/,H and H Fgpa P2 T/, where H - T/ < T

PROOF By induction on the derivation dfi 4 p: T.

Sincep can make a step = po. f. We consideipg by cases.

® pp =null. Thenp =null.f and RNULL is the only rule that can apply.

¢ po={. Thenp = ¢.f and RGETIs the only rule that can apply = vi = H(¢)[fi] whereH (¢) = S{f = v}.
By F-GET, HT k-, £tyTo, andftype(HT, To, f) = T.
Sincet p,H, by CONFIG and HEAP, we haveH F ¢. Thus, by Htoc, we haved T - ViET.
By Lemma B.39HT Hgja P/: T/, WhereH T H T/ < T.
By H-Loc, we can also deriveg € dom(H) U {null}.
If vi = ¢, thenv; € dom(H). Therefore by ©ONFIG, - vi,H.

* PoAV.
Then RcoNGis the only rule that can apply am@,H — pf, H.

By F-GET, HT Fnai Po: To, andftype(HT, To, f) =T.

By the induction hypothesi# " - P Ty andHT - T < To.

By Lemma B.30ftype(HT, T}, f) = T.

Hence, we can derive by BET, HT . ph.f: T.

By the induction hypothesis; pf,H. Therefore, sincéocs(pg. f) = locs(pp), by CONFIG we can derive- pg. f, H.

O

LEMMA B.43.IfHT - TE[p] < Sand pH — p/,H, then H' - TE[p'] < S where- SC*S.
PROOF. By induction onH™ - TE[p] < S

e TE=TE,.C. ThenTE[p] = TEy[p|.C.

By BD-NEST, HT - TEy[p] < S WhereS— SC.

By the induction hypothesi$ T - TEg[p] < Sg

Thus, we can derive by B-NEST. HT - TEO 1< S) C.

Also, by the induction hypothesis,§,C* S

Sincer §C* S, we have- §.CC* S.C.

TE = E.class. ThenTE[p] = E.class[p].

By BD-FIN, H fina) E.class[p]: T andHT - T:S

By Lemma B.42HT 4., E.class[p/]: T/ whereHT - T/ <T.
LetHT T’ < S. By BD-FIN, we can derived T - E.class[p/] < S.
And, by Lemma B.29%- SC*S

TE = P[TEq]. ThenTE[p| = P[TEp|p]].

By BD-PRE HT - TEy[p]: S, and ([P, So) =

By the induction hypothesi$ T - TEO S) where- §,C*

By Lemma B.328 = ([P1,,)C* ([P],S) =

Thus, by B>-PRE HT - P[TEy[p]] < S.

TE=&(U,TE,T). ThenTE[p] = &(U, TE[p|, T).

By BD-MEET, HT - TEg[p].

By the induction hypothesis T - TE[p/].

All other components of the intersection do not change and therefore remain well-formed.
Thus, we can derive by ®MeeT, HT - &(U, TEy[p/], T).

|

LEMMA B.44. IfHT .. pand pH — p/,H, then H - p=p.
PrROOF By induction on the structure gd.

e p=v. Vacuous sinc cannot take a step.

e p=x. Vacuous since is not well-formed.

e p=(.fi. ThenH(¢) = S{f = v} andp’ = v;. By the definition oH, we have’. f = v; € H'. Therefore, by Aenv, HT F 2.f; = v;.

e p=po.fi wherepy is not a locatior?. Thenpg,H — pg,H. By the induction hypothesi$i " - pg = P,- Thus, by AFIELD, we have
HT+ po.f = pj.f.
(]

LEMMA B.45. IfHT - TE[p] and pH — p/,H, then H - TE[p'].

PROOF. By induction onH™ - TE[p).

e TE=TEo.C. ThenTE[p] = TE[p|.C.
By WF-NEST, HT - TEg[p], HT - TEg[p] < S and- SC defined.
By the induction hypothesis T - TE[p/].
By Lemma B.43H™ - TEy[p/] < S where- S=* S
Sincet- S C* Sand Since- SC defined, - S.C defined.
Thus, we can derive by WResT. HT - TE[p/].
e TE=E.class. ThenTE[p] = E.class][p].
By WF-FIN, thenHT ., E.class[p]: T. By Lemma B.42H" i, E.class[p/]: T'.
Hence, by WFFIN, we can derived T - E.class[p/].
e TE=P[TEp]. ThenTE[p] = P[TEp[p]].
By WF-PRE HT - P, HT - TEg[p], andH T - P[TEg[p]] < S.
By the induction hypothesis T - TE[p/].
By BD-PRE HT - TEp[p] < S. By Lemma B.43HT - TEg[p'] < S, where- §,C* S.
By Lemma B.32S = ([P1,,) C* ([P1,S) = S Thus, by B>-PRE HT - P[TEp[p]1 < S.
Hence, by WFPRE, we can derivéd T - P[TEy[p]].
TE=&(U,TEp, T). ThenTE[p] = &, TEy[p],T).
By WF-MeeT, HT - TEg|p].
By the induction hypothesis T - TE[p/].
All other components of the intersection do not change and therefore remain well-formed.
Since the structure afEg[p] andTEy[p'] are the same, we hapeefixExact, (TEg[p]) = prefixExacty (TEg[p']).

Since allT; in exacts(TE[p]) are equivalent up to aliasing, and since by Lemma Bi44- p = p/, we have allT; in exacts(TE[p]) are
equivalent up to aliasing,

Thus, we can derive by WkeeT, HT - &(U, TEy[p/], T).

d

LEMMA B.46. If - E[¢],H, and eH — €,H, andl- € ,H, then- E[¢/], H.

PrROOFR Sincelocs(E[€]) C locs(E[€]) Ulocs(€), andlocs(E[€]) € dom(H), andlocs(€¢/) € dom(H), we haveocs(E[€]) € dom(H).
Sincel- €,H, we have- H. Thus, by ®NFIG, - E[€],H. O

LEMMA B.47. (Subject reductiorfj - e H, HT - e: T, and eH — r,H’, then either

er=¢,Fe,H,andHT+¢:T,or
o r = NullError.

PROOF The proof is by induction on the typing derivatiéti - e:T.

We first consider the case where the derivationldf- e: T ends with an application of Sus. ThenHT - e: T/ whereHT - T/ < T.

If r = €, then by the induction hypothesid!" ¢ : T’. By Lemma B.22H'T - T/ < T. Thus, by Tsus we can deriveH’ - & : T.

Thus, for the remainder of the proof we need only consider typing derivations ending in a rule otherghan T-

We considee by cases depending on the reduction rule used.

First, note that sincel T contains noc: T, and sinced T - e: T, e contains no free variables.

Also, note that by Lemma B.16{'" extendsH .

For the cases below wheee= E[eg] and R€0ONG applies. To show that e H’, we need only show that the typing derivation for
includesH + ey: Tp. Then, by the induction hypothesisg), H', and by Lemma B.46, we can deriveE[ej],H'.

For the cases below wheee= NE, R-NULL applies and = NullError.

e e=V. Vacuously true since cannot take a step.
e e=X. Vacuously true since contains no free variables.
e e=gp.f.
= e=(.fi. Then R&ET s the only rule that can applid’ = H, andr = v; = H(¢)[fi] whereH (¢) = S{f = v}.
Besides TsuB, handled above, there are two cases for the derivatioh'of £.f : T.
— T-FIN.
ThenT = /.fj.class andfj is a final field

By the definition ofHT, sinceH (¢) = S{f =V}, it must that/. fi.class = vj.class € H'. Thus, by SALIAS, HT - £.fj.class ~
Vj.class.

Thus, by Tsus, HTv; I ¢.f.class.
Note that this is the place where we use the fact that fields are firfaislfiot final,¢. fi.class = vj.class will not be in HT.
SinceH’T extendsH T, By Lemma B.17 we havel Tv; - £.f;.class.
— T-GET.
By F-Loc and TFIN, HT F ¢: ¢.class.
Let ftype(HT,Z.class, fi) = Ts.
By T-GET, Tt = T and we can derivel T+ 2. : T.
Sincer- H, andH (¢)[fi] = vi, we have by Heoc, HT - v; : Ty.
» e=null.f. Then RNULL is the only rule that can apply.
* e=¢p.f wheregy # v. Then R€oNGis the only rule that can apply ameg,H — €, H'.
Again, there are two cases for the derivatioHdf- ep. fi : T.
— T-FIN.
Theney = pande) = p’ andT = p.f.class.

By T-FIN, H' o p. f: Tp. By Lemma B.41 and Lemma B.48, = H/, andH T -5, p/.f: T}, andH™ - p.f = p'.f. Thus, we can
derive by TeIN, HT - p.f: p'. f.class, and by SALIAS, HT - p.f.class ~ p'.f.class. and by Ssus, HT - /. : p.f.class.

— T-GET.
ThenH I ey: To andftype(HT, To, f) = Ty = T.
SinceHT - eg: To, by the induction hypothesisi’" - &) T.
By Lemma B.24, we havétype(H'T, To, f) = Tt.
Thus, we can derive by GET, H'). f:T.
ee=¢g).f=e¢e.
* e=null.f =e;. Then RNULL is the only rule that can apply.
» e=(.f =v. Then RsETis the only rule that can apply amii=vandH’(¢)[f] = v.
The judgment ™ - v: T follows trivially from T-SET.
LetH(¢) = S{f = v}. Sincei- e H, we have- H andH |- vand alscH I- v.
By F-Loc and TFIN, H'T+ ¢: .class.
Let ftype(HT,¢.class, f) = Ts. To show that’ is well-formed, we need to show thielt™ - v: T;.
By T-seT, T = T; and therefored T - v: T.
Therefore by Lemma B.1H'T+v:T.

SinceH’ is equal toH except for the value stored k' (¢)[f], namelyv, and since bothi T+ v: T andH’T - v: T, and sinceH + v, it
must be thak H'.

» e=(.f = e; wheree; # v. Then R€oNGis the only rule that can apply ard,H — €} ,H'.
By T-seT, HT - £: To, ftype(HT, To, f) =T = T, andHT - e, : T.
By Lemma B.17H'T I /: To. By Lemma B.24ftype(H'", To, f) =Ty =T,
By the induction hypothesid'" - €] : T.
Thus we can derive by BT, H'T ¢ T.

» e=ep.f = e; wheregy # v. Then R€ONGis the only rule that can apply arg,H — €, H’.
By T-seT, HT - ep: To, ftype(HT, To, f) = Ty = T, andHT -, : T.
By the induction hypothesid’" - €} T.
By Lemma B.24ftype(H'T, To, f) =T =T, By Lemma B.17H'" e : T.
Thus we can derive by SeT,HT ¢ T.

e e=¢gy.m(e).
By T-cALL, all of the following hold:
*HT-ep: T

" mtype(HT,Toovm) =((xT9 — Tr?+1

= Xg = this
sVi=1..n+LVji=1. 0 RS T =T

Vi=1...nVj=1...i. prefixExactk(Tij*l) = prefixExactk(Tij)
sVi=1,..,nVj=1,..,i p.f €paths(TI ™) = p{ej_1/x_1}.f € paths(T)
sVi=1...nHFe:T.

1
. T:an:rl'

We considee by cases.

» e=null.m(€). Then RNULL is the only rule that can apply.
= e=(.m(V). Then R€ALL is the only rule that can apply ahti=H’.
By R-cALL, HT - T{ 'S, andmbody(S,m) = Thr1 M(T X) {em}. By M-OK, I - ém: Tqr1 Wherel = this:PX: T for some
P €inh(S).
By Lemma B.17(H.I") F em: Thi1.
Let eg = em and T§ = Tny1, and lete; = em{¢/this} and Tf = Ty, 1{¢/this}, and forj = 1,...,n, let ej11 = ej{v;/x;} and
T =TE{vi/xj}
Note€ = en. 1.
We want to show thatiT I e, 1 : T L. We do this in two steps. First, we show (1) by Lemma BH2}- en,1: T2, ;. Then we show
(2) by Lemma B.14HT - T8 <TM L By T-sus, HT ey 1 T
To apply the two lemmas, we need to show that the types of the actual values are subtypes of the (substituted) declared formal
types; that is, when the lemmas are applied to a substitutianfaf x in somer, if x: Tx € I and{v/x} - v: Ty, we must have
M{v/x} Ty <Tx.
First considex = this andv = ¢ in the environment T, this:P. Since by TeaLL, HT - £: T, we need to show that T - T? <P.
We do so as follows: Singd T - Té’ <'S we haveHT - TO0 < Shy SBOUND. Since- SC* P, by Lemma B.380 + S<P. Therefore,
by S-TRANS, HT - T <P.
Now consideix = x; andv = vy in the environmenHT, this:Px; : Ty. By T-cALL, HT - vy : T}, whereT! = Ty {H™; T9/this}.
We need to show thad ™ - T < Ty {¢/this}.
By induction onTj.
— Ty =o. ThenT} = Ty{//this} = Ty.
— T1 =T, .C. Follows from the induction hypothesis and\&sT.
— Ty = p.class.
* p=vorp=x# this. ThenT} = Ty{¢/this} = Ty.
* p=this. Then T} = T and T1{¢/this} = (.class. Sinceexact(Ty), we haveexact(TY). Therefore by SEXACT,
HT - T(? </{.class.
- p=po.f.LetT, = po.classfHT; TO/this}.
If Tp is not a path type, thefil = ftype(HT,Tp, f), which is not exact. Hence, this case holds vacuously.
Otherwise, ifTp = pj.class, thenT! = pj.f.class. We need to show T Pp-f.class < po{¢/this}.f.class.
Since TcALL requires field paths are preserved and simgé € paths(Ty), we must havey € paths(Tll) where(TH) Fp =
po{¢/this}.f. By S-ALIAS, HT - P,-f.class < po{¢/this}.f.class.
— T = P[T{1. Follows from the induction hypothesis andr&&-s1.
— Ty =&T. Follows from the induction hypothesis andv&ET-G.
By a similar argument, we havé! - 'I'ij Ti{¢/this,vi/xq,...,Vj/X }.
Therefore we can apply Lemma B.12 and Lemma B.14 to sHow € : Tht1.
Thus, by Tsus, HT + en{¢/this,v/x}:T.
= e=/.m(e) where somey # v. Then R€ONG is the only rule that can apply. WLOG let be the firstg that is not a value. Then,
g,H— el{7 H'.
By the induction hypothesi$)'" - & : T;'.
By applying Lemma B.17 to all other subexpressions, we have fgr4ll, H'T - €j :Tjj andH’T - Z:TOO.

By Lemma B.25mtype(H'T, T, m) = (x:T%) — T2, ,.

By Lemma B.26, foralj = 1,....,n+1and allk < j, T H{H'T; x/TE} = TK.

Since the types of ak are preserveq;refixExactk('I'ij’l) implied prefixExactk(Tij) before the step, then this property also holds
after the step.

Since the types of a# are preservedqaths('l’ij_l and paths(Tij) are also preserved.

Thus, we can derive by TaLL H'T ¢ T.

e = ep.m(e) whereep # v. Then R€oNGis the only rule that can apply ameg,H — €, H’.

By the induction hypothesi#{’" - € : T¢.

By Lemma B.17, we have for all> OH'T - & : T;'.
By Lemma B.25mtype(H'", 9, m) = (x:T%) — T2, .
By LemmaB.26, foralj = 1,...,n+1and allk < j, T/ H{H'T; x/TE} = TK.

Since the types of ak are preserved:refixExactk('l'ij_l) implied prefixExactk(Tij) before the step, then this property also holds
after the step.

Since the types of a# are preservedqaths(Tij*l and paths(Tij) are also preserved.
Thus, we can derive by TALL H T+ ¢ T.

ee=newT(f=8).
= e=newU(f = V). Then RNEw and RALLOC are the only rules that can apply.
LetHTFU g

— If #(fields(S)) < #(T), then RNEW is the only rule that can apply amfl= new U (f = v, f' = &) andH = H’ andT = U.
By the definition offields, for all f/ € T/, we haveftype(HT,U, f/) = [final] T/
By F-ok, for all f{ € f/, we haved - €:T;". By Lemma B.17, for all, H'T - &/ Ty'.
Thus, we can derive by Rew Hf-¢:T.
— If #(fields(S)) = #(T), then RALLOC is the only rule that can apply amii= ¢ andH’ = H, ¢+ S{f = v}.
SinceH'(¢) = S{f =V}, £:Sc H'T.
Therefore, by F-oc, H'! Fna £:S and by TeIN, H'T - ¢:¢.class.
SinceH'T - ¢.class 9 S we have by SevaL, H'T+ ¢.class <U.
Therefore, by Ssus, H'T+€:U.

Sincel- e, H, we have- H. Thus,H ¢ for all ¢ € dom(H). Since the only new location & we just need to show that’ - ¢ to
show that Hencehi’ + ¢ for all ¢/ € dom(H’).

By R-ALLOC, we haveH’(¢) = S{f =v}.
Sincet e H, all locs(e) C dom(H). Thereforev C dom(H) U {null}.
By T-NEW, for all i, ftype(HT,U, f;) = Ty andHT - v; : T;.
By Lemma B.17, for all, H'T - v; : T;.
Thus, we can derivel’ - ¢ by H-Loc.
Sincel € dom(H’), ande’ = ¢, we haveocs(€') C dom(H’). Therefore, we can derive byd\FiG, - €, H'.
= e =new U (T = &) where some; # v. Then R€oNG s the only rule that can apply. WLOG let be the firstg that is not a value.
Then,g,H — & ,H’.
By T-NEW, ftype(HT,U, f) = T. By Lemma B.24, we havitype(H'",U,T) =T.
By T-NEw, HT - & : Ti. Therefore, by the induction hypothesit] - € : Ti.
With this judgment and by Lemma B.17 for all other subexpressions, weHtidvees: T.
Thus, by TNEW, we can derivéd’T ¢ : T.
* e=new TE[null](f =&). Then RNULL is the only rule that can apply.
= e =new TE[p|(f =€) wherep # null andTE|[p| # U. Then R€oNGis the only rule that can apply amdH — p/, H.
By T-NEW, we haveHTe:T.
By Lemma B.17, we havel'T -e&:T.
SinceH™ - TE[p], by Lemma B.45H™ - TE[p/].
Thus, by TNEW, we can derivéd’ + € : TE[p/].
* e=¢€ €.

= e=vj; &. Then RsEQis the only rule that can apply, ahtl=H’ andr = e,.
By T-seqQ sinceH T Fvq; e: T, we haveHT F ey T.
SinceH =H’, HT - e, H.
» e=gp; & wheree; # v. Then R€oNGis the only rule that can apply amd= €;; e.
By T-seqQ sinceH T Fey; e: T, we haveHT ey : Ty andHT ey T.
By the induction hypothesi$)'" I- € : T;. By Lemma B.17H'" - e;: T. Thus we can derive, by $eQ H'T - €); e2: T.

O

B.7 Progress

The progress lemma states that for any well-formed configuratidneithereis a value o, H steps to a new configuratiorH’.
LEMMA B.48. (Progressif - e,H and Hf - e: T, then either e= v, or there is an r and an Hsuch that eH — r,H’.
PROOF By structural induction om.

e=null. Trivial sinceeis a value.
e= (. Trivial sinceeis a value.
e=x. Vacuous sinc#iT b/ x: T.
e=egp.f.
» If & =null, then the configuration can take a step bywBE:L.
= If &g = ¢, then since- e H, H(¢) = S{f = v} andf € f, and so the configuration can take a step bg R~
= Otherwise g can take a step by RONG.
e=¢g.f=¢€.
» If g =null, then the configuration can take a step bywREL.
= If &g = ¢ ande; = v, then sincé- e H, H(¢) = S{f = v} andf € f, and so the configuration can take a step bgR:
= Otherwiseg can take a step by RONG.
e=ep.m(e).
= If & = null, then the configuration can take a step bywBEL.

» Assumesy = ¢ ande are all values. Since e,H, /:Se H for someS. ThereforeHT I ¢:Sby F-Loc and T+IN. SinceHT +e: T, by
T-cALL mtype(HT, S m) is defined. Sinc@+ S, mtype(0, S, m) = mtype(HT, S m). Hence, by Lemma B.4@nbody (S m) is defined
and, therefore, a step can be taken bg R-L.

= Otherwise g can take a step by RONG.
e=new T(f=8).
= If T =U, ande are all values, then sin¢ee, H, there is arSsuch thatHT - U < S If #(fields(S)) = #(), a step can be taken by

R-ALLOC; otherwise, if #fields(S)) < #(f), a step can be taken by Rew.
= Otherwise g can take a step by RONG.
e=ep; e. If e =V, a step can be taken by 8Q Otherwiseg can take a step by RONG.

|

B.8 Soundness

Soundness follows directly from the subject reduction and progress lemmas.
THEOREMB.49. (Soundnessft (L,e) ok andd+ e: T, then there is an r such that@—* r,H’. and r=vand HT - v: T or r = NullError,
PrROOFE Follows from Lemma B.47 and Lemma B.48.

