
Designing hardware to be
free of covert channels by

construction

Andrew Myers
Cornell University 

(with Ed Suh, Danfeng Zhang, Yao Wang and Andrew Ferraiuolo)

javascript:void(0)
javascript:void(0)
javascript:void(0)

Can we trust the stack?

Got security mechanisms, but:

• Modern systems are compositions of complex
software & hardware.

• Buggy or malicious code and adversarial data can
break security at every level, including hardware

application code

libraries

OS/hypervisor

hardware
networkSpectre

SMM rootkits
Rowhammer

Compositional security?

• How to build layers so their composition
is secure?

• Need contracts between the layers  
— but what kind?

application code

libraries

OS/hypervisor

hardware
contract ↕

contract ↕

contract ↕

Contract = Refinement?

• Correctness: each layer’s behavior refines its spec.

• Compositional

• Commonly used

•Not strong enough!

U→L contract:
U relies on L’s behavior being from set of

behaviors allowed by L’s specification.
L guarantees its behavior is from that set.

Upper layer U

Lower layer L

Example: Meltdown/Spectre

• Attacks completely bypass OS memory
protection against reads.

•Intel was right.

Recent reports that these exploits 
are caused by a ‘bug’ … are incorrect

The trouble with refinement

• Processor spec makes no guarantee
about time to do a memory read

• Correctness=refinement ⇒ any delay is

allowed and is not a ‘bug’.

• But: Meltdown/Spectre correlate read
delays with contents of inaccessible
memory — a timing channel

Hyperproperties

• Conventionally, correctness is a trace property.

• Specification gives set of allowed traces;
implementation must refine this set

• Absence of information flow (e.g., on timing
channels) is not a trace property — it’s a
hyperproperty over sets of possible traces.

•Spectre shows layer contracts must be — at
least — hyperproperties.

Timing channel control

• Abstractions/specs silent about execution
time ⇒ vulnerable to timing channels

• How to build layers so that timing
channels can’t be exploited?

application code

libraries

OS/hypervisor

hardware
contract ↕

contract ↕

contract ↕

t

A language-based approach

• Problem: how can designer
know whether there are timing
channels?

• Idea: static analysis (type
system) verifies timing leakage
is bounded at every layer

t?

Security lattice
• For now, a simple lattice of security levels:

• L=public, H=secret, L ⊑ H ⋢ L

• Richer lattices enable
multiuser systems and more
expressive policies

• Strong adversary ⇒ strong security:

• Sees everything at level L, e.g., timing of updates
to low memory

H

L

secret

public

A timing channel
if (h)
 sleep(1);
else
 sleep(2);

A subtler example
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1;

 Data cache affects timing!

Beneath the surface
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1; compiler

optimizations

data/
instruction

cache

branch
target
buffer

data/
instruction

TLB

guarantees?

interface?

A language-level abstraction

L H
machine

layer

program
layer

machine
layer

•Each operation has read label, write label
governing interaction with underlying
machine

(x := e)[ℓr,ℓw]

machine state 
affecting timing
but invisible at
language level

Read label

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(x := e)[ℓr,ℓw]

L H

machine
environment

(h1:=h2)[L, ℓw]

Write label

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects
L H

machine
environment

(x := e)[ℓr,ℓw]

(h1:=h2)[L,H]

Security properties

• Language implementation must satisfy
three (formally defined) properties:

1. Read label property

2. Write label property

3.Single-step noninterference: no
machine-level leaks from high
environment to low

• Provides guidance to compiler writers and
designers of future secure architectures

L H

L’ H

Type system
• We analyze programs using a type system

that tracks timing.

c : T ⇒ time to run c depends on

information of (at most) label T

• A “standard” information flow type
system, plus read and write labels.

• Standard part controls data (storage)
channels (e.g., forbids l := h)

• labels can be generated by analysis,
inference, programmer... 

c[H,L] : H  
(h1:=h2)[L,L] : L  
sleep(h) : H

if (h1)
 (h2:=l1)[L,H];
else
 (h2:=l2)[L,H];
(l3:=l1)[L,L]

low cache read
cannot be affected by

h1

Examples:

Formal results
Memory and machine environment
noninterference [PLDI’12]: 
 
Assuming hardware satisfies the contract, a
well-typed program* leaks nothing via either
timing or data channels

*using no dynamic mitigation

• Can we express interesting
computations as well-typed programs?

• Can we build reasonably efficient
hardware that satisfies the contract?

Language-level timing channels
• What about language-level timing

dependencies?
for (i = 0; i < guess.length; i++) {
 if (pwd[i] != guess[i]) return false
}

for (i = 0; i < MAX_PWD_LEN; i++) {
 count += (pwd[i] == guess[i]);
}
return count == pwd.length;

• Sometimes avoidable:

• In general, language-level timing
channels cannot be eliminated entirely.

Dynamic timing mitigation
• Idea: predict timing to mitigate timing leakage

[CCS ’10, ’11]

• Running time of mitigate padded based on
predictions using only information at level l.

• Well-typed program running on compliant
hardware has bounded leakage 
(e.g., O(log2 T))

mitigate(l) { s }

label of running time mitigated command

Are we done?

• Read and write labels provide a
contract that controls timing leaks
across abstraction layers

•Information-flow type systems and
predictive mitigation can be used to
verify that programs don’t leak

•But… Can we build hardware that
satisfies the contract?

[ℓr, ℓw]
L H

�23

How to build efficient HW
that verifiably prevents illegal
information flows?

Hardware
• Systems increasingly rely on hardware-level

protection

• ARM TrustZone, Intel SGX, IBM SecureBlue

• But are hardware systems trustworthy?

• Processors are complex and error-prone

• Hard to spot security issues: e.g., Intel SMM-mode escalation attack
[Wojtczuk et al., 2009]

• Need formal security guarantees

Shared HW Leaks Information
• Data cache

– AES [Osvik et al.’05, Bernstein’05, Gullasch et. al.’11]

– RSA [Percival’05]

• Instruction cache [Aciiçmez’07]

• Computation unit [Z. Wang&Lee’06]

• Memory controller [Wang&Suh’12]

• On-chip network [Wang et al.’14]

How to prevent the next 700 timing channel attacks?

Secure HDLs

• Idea: add security annotations to
hardware description language

• SecVerilog = Verilog + information security
annotations [ASPLOS’15, ASPLOS’17, DAC’17]

• Applications:

• controlling leakage through
microarchitectural side channels

• catching bugs in hardware security
architectures (e.g., TrustZone)

SecVerilog

• A general-purpose security-typed hardware
description language

– Lightweight language design (Verilog + labels)

– Dependent typing ⇒ fine-grained resource sharing

– Low verification overhead (design-time & run-time)

• Formally proved security guarantees

• Verified MIPS processor and TrustZone
implementations

Dynamic vs Static

• Dynamic enforcement: propagate labels at run
time with information (IX, Asbestos, Histar, Hails, …)

• for statement x = y, where Ly ⋢ Lx, system halts or
assignment is ignored.

• Weak guidance: security failures⇒run-time failures

• When coarse-grained ⇒ need to reorganize application

• Static enforcement: design verified ahead of time
(Jif [POPL’99], FlowCaml, Fabric [SOSP’09], SecVerilog, …)

–compiler checks Ly ⊑ Lx

–but: capturing dynamic behavior may require complex annotations

Security Model

• Attacker sees contents of public HW
state at each clock tick

(synchronous logic)

H

L

reg[31:0] d0[256],d1[256];
reg[31:0] d2[256],d3[256];
wire[7:0] index;
wire[1:0] way;
wire[31:0] in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

A 4-way cache in Verilog

Statically partitioned cache

way

indexin

d0 d1 d2 d3

SecVerilog

= Verilog + security labels

reg[31:0]{L} d0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[1:0]{L} way;
wire[31:0] in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

Partitioned cache
Annotations on

variable declarations

• General
• Few annotations
• Verify HW design as-is

Static labels ⇒ no resource sharing?

reg[31:0]{L} d0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[1:0]{L} way;
wire[31:0] in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

When way = 0 or 1, in has label L

When way = 2 or 3, in has label H

label?

SecVerilog

• Verilog + dependent security labels

Using type-level function:
Par(0) = Par(1) = L
Par(2) = Par(3) = H

reg[31:0]{L} d0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[1:0]{L} way;
wire[31:0] {Par (way)} in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

An example of partitioned cache

Resource “in” shared
across security labels

Less HW needed for 
secure designs

A permissive yet sound type system

A well-typed HW design provably
enforces observational determinism

L info. at each clock tick leaks no H info.

Soundness

Verifies an efficient MIPS processor

Permissiveness

Soundness challenges

–Label channels [ASPLOS’15]

–Statically preventing implicit
downgrading [DAC’17]

–Enforcing robust declassification and
transparent endorsement [CCS’17]

Label Channels

Change of label leaks
information

When p = 1, 
 s = 0

When p = 1, 
 s = 1

p x

1 0

p x

1 0

p x

1 0

p x

1 1

p x

0 0

p x

1 1

p = s!

Type-level function:
LH(0)=L LH(1)=H

reg{L} p;
reg{H} s;
reg{LH(x)} x;
if (s) begin x = 1; end
if (x==0) begin
 p = 0;
end

No-Sensitive-Upgrade
[Austin&Flanagan’09]

(incorrectly) rejected

“No update to public variable in secret context”

Insight: Label of way is always H after branch

NSU rejects secure designs From a real
processor design

reg{H} hit2, hit3;
reg[1:0]{Par(way)} way;
if (hit2 || hit3)
way ⇐ hit2 ? 2 : 3;

else
way ⇐ 2;

Solution: definite assignment

No update to public variable in secret context,
if the variable is not updated in all branches

(correctly) accepted

Also more permissive than
flow-sensitive systems [Hunt&Sands’06, Russo&Sabelfeld’10]

reg{H} hit2, hit3;
reg[1:0]{Par(way)} way;
if (hit2||hit3) 
 way ⇐ hit2 ? 2 : 3; 
else 
 way ⇐ 2;

Precision of dependent labels

reg[31:0]{L} d0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[1:0]{L} way;
wire[31:0] {Par (way)} in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

Type-level function:
Par(0)=Par(1)=L
Par(2)=Par(3)=H

Predicate generation

reg[31:0]{L} d0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[1:0]{L} way;
wire[31:0] {Par (way)} in;

...
case (way)
 0: begin d0[index]=in; end
 1: begin d1[index]=in; end
 2: begin d2[index]=in; end
 3: begin d3[index]=in; end
endcase
...

Type-level function:
Par(0)=Par(1)=P
Par(2)=Par(3)=S

Par(way) ⊑ L  
when way=0?

P(c) : a predicate that holds before c executes

Approximated by propagating postconditions

�41

Type system
Other analyses

Variables not always updated

Predicate generation

Soundness Permissiveness

Typing obligations discharged using Z3 SMT solver.

Formally verified MIPS processor

Rich ISA: runs OpenSSL with off-the-shelf GCC

– extended with instruction to set current
security level

Classic 5-stage in-order pipeline

– Typical pipelining techniques

• data hazard detection

• stalling

• data bypassing/forwarding

Overhead of SecVerilog

• Verification time:

2 seconds for complete MIPS processor

• Designer effort

– Annotation burden: 
one label/variable declaration (mostly inferable, as
shown in forthcoming work)

– Imprecision leads to little extra logic:  
27 LoC to establish necessary invariants

Overhead of secure processor

• Added HW resources

• Performance overhead on SW

Overhead of verification

Unverified Verified Overhead

Delay w/ FPU (ns) 4.20 4.20 0%

Delay w/o FPU (ns) 1.67 1.66 -0.6%

Area (μ2) 401420 402079 0.2%

Power (mW) 575.6 575.6 0%

Verification overhead is very small!

Believed
secure but not

verified

Overhead of secure processor (HW)

Baseline Verified Overhead

Delay w/ FPU (ns) 4.20 4.20 0%

Delay w/o FPU (ns) 1.64 1.66 1.21%

Area (μ2) 399400 402079 0.67%

Power (mW) 575.5 575.6 0.02%

Enabled by the SecVerilog type system

unmodified, 
insecure

SW-level overhead

9% overhead on average
same cache area ⇒ smaller effective cache

Prior HDL-level info flow control
Lightweight
design

Fine-grained
resource sharing

Low verification
overhead

Security bugs
change run-time
behavior

Caisson
[Li et al.’11]

Sapper
[Li et al.’14]

SecVerilog
 [DAC’17]

Implementing TrustZone

• Goal: map security requirements of a
practical processor arch to IFC.

• Multi-core RTL prototype of ARM TrustZone

• Demonstrate that security bugs can be caught

• Low overhead

• HDL type system extensions

• Heterogeneous security labels for arrays and vectors

• Downgrading to permit communication

ARM TrustZone
• Normal world: only accesses normal-world data

• Secure world: can access data in either world

User Mode

Privileged Modes

Secure WorldNormal World

Trusted HW/SWUntrusted HW/SW

TrustZone Prototype Implementation

• NS bit indicates world

• Cache blocks have an
NS bit

• Network transactions
are appended with the
NS bit

• DRAM is partitioned

• Access control
modules enforce
security

Secure WorldNormal World

DRAM

TrustZone as an Information Flow
Policy

• Policy enforces integrity and confidentiality protection

• Secure world is CT, Normal World is PU

• Control registers and the NS bit are labeled PT.

• Policy mismatch with TrustZone spec, where secure world can
access normal world (secure-world SW must be careful!)

CT PU

CU

PT

Integrit
y

Confidentiality

Secure World Normal World

Language Extension: Bit Vector Types

• Bit vectors are a convenient hardware data structure

• Security information is lost when bits are grouped

• Solution: types that are functions describing each bit’s level

• Type Rules:

• Precisely capture per-bit label propagation

• Enforce security policy for each bit

Language Extension: Array Support

• Describing cache blocks: needed to unroll the
array

• More expressive dependent labels avoid unrolling

Downgrading

• Information flow analysis reveals
potentially dangerous flows
• Secure-world writes to control registers

• But: overly restrictive

• Downgrading – release of information
• Like typecasts: downgrade(expr, label)

• Potential problems are limited to downgrades

Security Results

• Extended type system – same security as
original SecVerilog

•The processor type-checks…

• Downgrading relaxes noninterference

• …only in the secure world

• We audit and categorize each use of
downgrading.

Security Vulnerability Detection

• Implemented 9 hardware vulnerabilities

• 3 modeled on real-world vulnerabilities:

•Backdoor in Actel ProASIC3 [Sergei et al., CHES 2012]

• Security-critical AMD errata [Hicks et al., ASPLOS 2015]

• Intel SMM-mode [Wojtczuk et al., 2009]

• Only undetected bug was designed to
thwart type system:
• Uses downgrading incorrectly, adds a nonsensical constant to

an address

Overheads

• Programmer effort in lines of code:

• Unverified: 16234

• Verified: 16700

• Overhead: 2.9%

• Hardware overheads:
• Clock frequency and CPI unchanged

• The area and power overheads are negligible (0.37% and 0.32%)

HDL information flow?

• Seems to be effective way to gain
security assurance for hardware designs

• A lightweight development methodology that
allows building efficient hardware with verified
properties

• Implemented a MIPS processor verified to have
no timing channels or other leaks

• Implemented a multicore prototype of ARM
TrustZone and detected vulnerabilities found in
commercial processors

Conclusions

• Want trustworthy stack of abstractions?
Need new kinds of contracts — beyond
safety and liveness to hyperproperties

application code

libraries

OS/hypervisor

hardware

↕

t

• Timing channels can be controlled
with static analysis at the language
level — if hardware obeys a contract

• Timing channel contracts and other
policies can be enforced at the hardware
level by a security-typed HDL, with
reasonable overhead

[ℓr, ℓw]
L H

