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Can we trust the stack?

application code

libraries

ecire OS/hypervisor network
ﬁ fﬁ rootkitg hardware

Rowhammer

Got security mechanisms, but:

e Modern systems are compositions of complex
software & hardware.

e Buggy or malicious code and adversarial data can
break security at every level, including hardware



Compositional security?

application code

CONTRACT |
libraries
CONTRACT ]

OS/hypervisor

CONTRACT ]

hardware

e How to build layers so their composition
IS secure?

e Need contracts between the layers
— but what kind?



Contract = Refinement?

Upper layer U

U—L CONTRACT:
U relies on L's behavior being from set of

behaviors allowed by Ls specification.
L guarantees its behavior is from that set.

Lower layer L

o Correctness: each layer’s behavior refines its spec.
« Compositional
e« Commonly used

e Not strong enough!



Example: Meltdown/Spectre

e Attacks completely bypass OS memory
protection against reads.

Recent reports that these exploits

are caused by a ‘bug’ ... are incorrect

»

eIntel was right.



The trouble with refinement

e Processor spec makes no guarantee
about time to do a memory read

» Correctness=refinement = any delay is

allowed and is not a ‘bug.

e But: Meltdown/Spectre correlate read
delays with contents of inaccessible
memory — a timing channel



Hyperproperties

e Conventionally, correctness is a trace property.

o Specification gives set of allowed traces;
implementation must refine this set

e Absence of information flow (e.g., on timing
channels) is not a trace property — it's a
hyperproperty over sets of possible traces.

e Spectre shows layer contracts must be — at
least — hyperproperties.



Timing channel control

application code

CONTRACT |
libraries
CONTRACT ]

OS/hypervisor

CONTRACT ]

hardware

o« Abstractions/specs silent about execution
time = vulnerable to timing channels

e How to build layers so that timing
channels can’t be exploited?



A language-based approach

-

e Problem: how can designer \_
know whether there are timing
channels?

o Idea: static analysis (type
system) verifies timing leakage
is bounded at every layer



Security lattice

e For now, a simple lattice of security levels:
e L=public, H=secret, LCHZ L
o Richer lattices enable

multiuser systems and more
expressive policies

secret

public

o Strong adversary = strong security:

o Sees everything at level L, e.g., timing of updates
to low memory



A timing channel
.

if (h)
sleep(1);

else
sleep(2);



A subtler example

if (h1)
h2=l1;

else
h2=12;

13=l1;

Data cache affects timing!
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A language-level abstraction

® Fach operation has read label, write label
governing interaction with underlying
machine

§

program
(X := e)[fr,lfw] layer

machine state
affecting timing machine
but invisible at layer
language level

machine
layer




Read label

(X =€)y 1]

(h1:=h3)

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence




Write label

(X .= e)[[r,[w]
(h1:=h2)[L,H]

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects




Security properties

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property
2.Write label property

3.Single-step noninterference: no
machine-level leaks from high
environment to low

e Provides guidance to compiler writers and
designers of future secure architectures




Type system

e We analyze programs using a type system

that tracks timing.

c: T = time to run c depends on

information of (at most) label T

o A “standard” information flow type
system, plus read and write labels.

« Standard part controls data (storage)
channels (e.g., forbids | := h)

e labels can be generated by analysis,
inference, programmer...

Examples:

CH,LJ -

(hi: -hz) L |_]
sleep(h) :

if (h1)
(h2:=l1) 1

else
(h2:=2) L H;

(L3:=l1),13

low cachd read

cannot be affected by
hi



Formal results

Memory and machine environment
noninterference [PLDI'12]:

Assuming hardware satisfies the contract, a
well-typed program™ leaks nothing via either
timing or data channels

« Can we express interesting
computations as well-typed programs?

 Can we build reasonably efficient
hardware that satisfies the contract?

*using no dynamic mitigation



Language-level timing channels

e What about language-level timing

dependencies?

for (i = ©0; 1 < guess.length; i++) {
if (pwd[i] !'= guess[i]) return false
}

e Sometimes avoidable:

for (i = 0; i < MAX PWD LEN; i++) {
count += (pwd[i] == guess[i]);

¥

return count == pwd.length;

e In general, language-level timing
channels cannot be eliminated entirely.



Dynamic timing mitigation
o Idea: predict timing to mitigate timing leakage
[CCS 10, "11]
mitigate(l) { s }

label of running time mitigated command

e Running time of mitigate padded based on
predictions using only information at level L.

e Well-typed program running on compliant
hardware has bounded leakage

(e.g., O(log2T))



Are we done?

e Read and write labels provide a
contract that controls timing leaks
across abstraction layers

e Information-flow type systems and
predictive mitigation can be used to
verify that programs don't leak

e But... Can we build hardware that
satisfies the contract?



How to build efficient HW
that verifiably prevents illegal
information flows?
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Hardware

o Systems increasingly rely on hardware-level
protection /

o« ARM TrustZone, Intel SGX, IBM SecureBlue

e But are hardware systems trustworthy?

 Processors are complex and error-prone

» Hard to spot security issues: e.g., Intel SMM-mode escalation attack
[Wojtczuk et al., 2009]

e Need formal security guarantees



Shared HW Leaks Information

e Data cache
— AES [Osvik et al.’05, Bernstein’05, Gullasch et. al.’11]

— RSA [Percival’05]

e Instruction cache [Aciicmez’07]
e Computation unit [Z. Wang&Lee’06]
 Memory controller [Wang&suh’12)

* On—chip network [Wang et al.”14]

How to prevent the next 700 timing channel attacks?



Secure HDLs

e Idea: add security annotations to
hardware description language

e SecVerilog = Verilog + information security
annotations [ASPLOS'15, ASPLOS'17, DAC'17]

e Applications:

o controlling leakage through
microarchitectural side channels

e catching bugs in hardware security
architectures (e.g., TrustZone)



SecVerilog

e A general-purpose security-typed hardware
description language

—Lightweight language design (Verilog + labels)

—Dependent typing = fine-grained resource sharing

—Low verification overhead (design-time & run-time)

» Formally proved security guarantees

» Verified MIPS processor and TrustZone
implementations



Dynamic vs Static

« Dynamic enforcement: propagate labels at run
time with information (X, Asbestos, Histar, Hails, ...)

e for statement x = y, where Ly Z Ly, system halts or
assignment is ignored.

e Weak guidance: security failures=rrun-time failures

 When coarse-grained = need to reorganize application

o Static enforcement: design verified ahead of time
(Jif [POPL'99], FlowCaml, Fabric [SOSP’09], SecVerilog, ...)

—compiler checks Ly C L

—but: capturing dynamic behavior may require complex annotations



Security Model

» Attacker sees contents of public HW

state at each clock tick

— —>EL

(synchronous logic)




Statically partitioned cache

A 4-way cache in Verilog

wire
wire
wire

case
O:
1:
2:
3:

reg[31:0]
reg[31:0]

(7:0]
(1:0]

(31:0]

(way)

begin
begin
begin
begin
endcase

do
dl

index]
index]
d2[

d3[index]

d0[256],d1[256];
d2[256],d3[256];

index;
way;
in;

index]

=in;
=in;
=in;
=in;

end
end
end
end

in—

way

\
s

do d1 d2 d3

Xapul



SecVerilog

= Verilog + security labels

Partitioned cache

reg[31l:0]{L}
reg[31l:0]{H}
wire[7:0]{L}
wire[1l:0]{L}

wire[31:0]

case (way)

0: begin
1: begin
2: begin
3: begin

endcase

do

index]
dlf
d2[
d3|

d0[256],d1[256];
d2[256],d3[256];

index;
way;
in;

index]
index]

index]

=in;
=in;
=in;
=in;

end
end
end
end

<

" Annotations on
variable declarations )

e General
e Few annotations
o Verify HW design as-is




Static labels = no resource sharing?

reg[31:0]{L} dO0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[l:0]{L} way;

wire[31:0] in;ﬁlabel?}

case (way)
0: begin dO[index]=1n; end _f _ .
l: begin dl[index]=in; end T\When way =0orl, in has label L)
2: begin d2[index]=in; end Va ~N

engéa};:gln d3[index]=1n; end 1When way = 2 or 3’ in h(JS /(JbE/ H

~

J




SecVerilog

 Verilog + dependent security labels

An example of partitioned cache

reg[31:0]{L} d0[256],d1[256]; P )
reg[31:0]{H} d2[256],d3[256]; Resource “1n” shared
wire[7:0]4L}  index; ~__——_ across security labels
wire[l:0]{L} way; \ )
wire[31:0] {Par (way)} in;

Using type-level function:
Par(0) = Par(l) = L

case (way)

0: begin dO[index]=1n; end

1: begin dl[index]=in; end Par(2) = Par(3) = H

2: begin d2[index]=in; end

3: begin d3[index]=in; end LESS HW needed for
endcase

secure designs




A permissive yet sound type system

Soundness

A well-typed HW design provably

enforces observational determinism

[ L info. at each clock tick leaks no H info. J

Permissiveness

Verifies an efficient MIPS processor




Soundness challenges

—Label channels [ASPLOS’15]

—Statically preventing implicit
downgrading [DAC'17]

—Enforcing robust declassification and
transparent endorsement [CCS'17]



Label Channels

reg{L} ¥ |
reg{H} s; Type-level function:
reg{LH(x)} Xx;

LH(0)=L LH(l)=H

if (s) begin x = 1; end
if (x==0) begin
dP = 0; Change of label leaks
en
information
When p = 1,
s=0

When p =1,

s =1



No-Sensitive-Upgrade

[Austin&Flanagan’09]

“No update to public variable in secret context”

From a real

NSU rejects secure designs
processor desig

reg{H} hit2, hit3; 4©

reg[l1:0]{Par(way)} way;
if (hit2 || hit3)

way < hit2 ? 2 : 3;
else
way < 2;

(incorrectly) rejected

Insight: Label of way is always H after branch



Solution: definite assighment

No update to public variable in secret context,

if the variable is not updated in all branches

reg{H} hit2, hit3;
reg[1:0]{Par(way)} way;
if (hit2||hit3)

way < hit2 » 2 : 3; (correctly) accepted

else
way < 2;

Also more permissive than
flow-sensitive systems jHunt&sands06, Russo&Sabelfeld’10]



Precision of dependent labels

reg[31:0]{L} de[256],d1[256]; Type—level function:
reg[31:@:EHi d25256],d3[256]; par.(@)=par\(1)=|_
wire[7:0]{L index;

wire[1:0]{L} way; Par(2)=Par(3)=H
wire[31:0] {Par (way)} in;

case (way)

0: begin do[index]=in; end Jf
1: begin dl[index]=in; end CDP?
2: begin d2[index]=1in; end < Par (WaY) =P
3: begin d3[index]=in; end \_

endcase




Predicate generation

P(c): a predicate that holds before c executes

reg[31:0
reg[31 0

wire [l
wire[31

]

case (way)
0: begin
1l: begin d
2: begin d
3: begin d

endcase

{L}
{H}

] dO0[256],

]
wire[/:0] {L}

0]

0

d2[2506],
index;

1[2506];
3[256];

{L}
{Par (way)}

Par (way) CE L
when way=0!

; end -

index
index
index

Type-level function:
Par(0)=Par(1)=
Par(2)=Par(3)=S

index

Approximated by propagating postconditions



Soundness Permissiveness

Other analyses

Type system

Variables not always updated

Predicate generation

Typing obligations discharged using Z3 SMT solver.
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Formally verified MIPS processor

Rich ISA: runs OpenSSL with off-the-shelf GCC

—extended with instruction to set current
security level

Classic 5-stage in-order pipeline
— Typical pipelining techniques
 data hazard detection

e stalling

e data bypassing/forwarding



Overhead of SecVerilog

 Verification time:
2 seconds for complete MIPS processor
e Designer effort

— Annotation burden:

one label/variable declaration (mostly inferable, as
shown in forthcoming work)

— Imprecision leads to little extra logic:
27 LoC to establish necessary invariants



Overhead of secure processor

e Added HW resources

e Performance overhead on SW



Overhead of verification

Believed
secure but not

Rt i

Delay w/ FPU (ns) 4.20 4.20

Delay w/o FPU (ns) 1.67 1.66 -0.6%
Area (u2) 401420 402079 0.2%
Power (mW) 575.6 575.6 0%

Verification overhead is very small!



Overhead of secure processor (HW)

unmodified,
insecure
I e L
Delay w/ FPU (ns)
Delay w/o FPU (ns) 1.64 1.66 1.21%
Area (u?) 399400 402079 0.67%
Power (mW) 575.5 575.6 0.02%

Enabled by the SecVerilog type system



Normalized # clock cycles

SW-level overhead

baseline === verified ! |

MiBench OpenSSL

TN

TNk nlﬂiﬂl{

Xy O 4 e0eX® P DS
\t{\i\ 66\)&\ g \b\&\ P~6\)&‘\ \“0 \0?/ ?‘ @‘\‘\ 5‘(\ Yri,‘(\ \?\6\?’ fg&\\(\Qo
)

9% overhead on average
same cache area = smaller effective cache



Prior HDL-level info flow control

Lightweight Fine-grained Low verification Security bugs
design resource sharing overhead change run-time

behavior

Caisson
[Lietal’11]

Sapper
[Li et al.”14]

SecVerilog



Implementing TrustZone

e Goal: map security requirements of a
practical processor arch to IFC.

» Multi-core RTL prototype of ARM TrustZone
» Demonstrate that security bugs can be caught

» Low overhead

e« HDL type system extensions

» Heterogeneous security labels for arrays and vectors

» Downgrading to permit communication



ARM TrustZone

e Normal world: only accesses normal-world data

e Secure world: can access data in either world

Normal World Secure World

User Mode

Privileged Modes




TrustZone Prototype Implementation

r-- - - - T~ T77 r. - -, 77

'Normal World 1Secure World

E e NS bit indicates world

|

|

|

|

|

: Core O
|

[

Core 1
-k -1--A---- T A - A--- » Cache blocks have an
NS bit
~1$ | ={D$ ~11$ | =D$ o Network transactions
| are appended with the
On-chip Network NS bit
1 ‘ Debug
Bik qu_lues‘t | .y
L2 — e DRAM Is partitione
= DMA [«=——— Debug

| e Access control
DRAM modules enforce
security




TrustZone as an Information Flow

Policy

o Policy enforces integrity and confidentiality protection

e Secure world is CT, Normal World is PU

e Control registers and

o Policy mismatch with

t

ne NS bit are labeled PT.

‘rustZone spec, where secure world can

access normal world (secure-world SW must be careful!)



Language Extension: Bit Vector Types

wil
wil
wil

e Bit vectors are a convenient hardware data structure

» Security information is lost when bits are grouped

e Solution: types that are functions describing each bit’s level

(1=
he

ne

(0:31
(32:41 ]

(0:41 |

{CT} sw data;
{PT} addr;
{1 -> 1f (1 <= 31) CT PT} packet;

assign packet = {addr, sw_data};

« Type Rules:

« Precisely capture per-bit label propagation

« Enforce security policy for each bit



Language Extension: Array Support

e Describing cache blocks: needed to unroll the
array

Y
o

5 reg {PT} block 1bl 23;

146 reg {world(block 1bl 24)} block 34;

147 reg {PT} block 1bl 24,

148 reg {world(block 1bl 24)} block 24:
. ..
2 reg {PT}; block 1bl [©0:1023];
3 reg [0:31] { 1 -> jJ -> world(block 1bl[i]) } block[©:1623];
Z

153 reg {FI1}; DLOCK 1bl Z2/;

154 reg {world(block 1bl 27)} block 27,

155 reg {PT} block 1bl 28,

156 reg {world(block 1bl 28)} block 28;

e More expressive dependent labels avoid unrolling



Downgrading

e Information flow analysis reveals
potentially dangerous flows

» Secure-world writes to control registers

 But: overly restrictive

« Downgrading — release of information

o Like typecasts: downgrade(expr, label)

» Potential problems are limited to downgrades



Security Results

e Extended type system — same security as
original SecVerilog

e The processor type-checks...

e Downgrading relaxes noninterference

e ...onlyin the secure world

o We audit and categorize each use of
downgrading.



Security Vulnerability Detection

e Implemented 9 hardware vulnerabilities

e 3 modeled on real-world vulnerabilities:

e Backdoor in Actel ProASIC3 [Sergei et al.,, CHES 2012]
e Security-critical AMD errata [Hicks et al., ASPLOS 2015]

e Intel SMM-mode [Wojtczuk et al., 2009]

e Only undetected bug was designed to
thwart type system:

» Uses downgrading incorrectly, adds a nonsensical constant to
an address



Overheads

e Programmer effort in lines of code:

o Unverified: 16234
» Verified: 16700

» Overhead: 2.9%

e Hardware overheads:

» Clock frequency and CPIl unchanged

 The area and power overheads are negligible (0.37% and 0.32%)



HDL information flow?

e Seems to be effective way to gain
security assurance for hardware designs

o A lightweight development methodology that
allows building efhicient hardware with verified
properties

e Implemented a MIPS processor verified to have
no timing channels or other leaks

e Implemented a multicore prototype of ARM
TrustZone and detected vulnerabilities found in
commercial processors



Conclusions

application code

o Want trustworthy stack of abstractions?
Need new kinds of contracts — beyond
safety and liveness to hyperproperties

libraries

e Timing channels can be controlled
with static analysis at the language
level — if hardware obeys a contract

e Timing channel contracts and other
policies can be enforced at the hardware
level by a security-typed HDL, with
reasonable overhead




