Designing hardware to be
free of covert channels by
construction

Andrew Myers
Cornell University

(with Ed Suh, Danfeng Zhang, Yao Wang and Andrew Ferraiuolo)

javascript:void(0)
javascript:void(0)
javascript:void(0)

Can we trust the stack?

application code

libraries

ecire OS/hypervisor network
ﬁ fﬁ rootkitg hardware

Rowhammer

Got security mechanisms, but:

e Modern systems are compositions of complex
software & hardware.

e Buggy or malicious code and adversarial data can
break security at every level, including hardware

Compositional security?

application code

CONTRACT |
libraries
CONTRACT]

OS/hypervisor

CONTRACT]

hardware

e How to build layers so their composition
IS secure?

e Need contracts between the layers
— but what kind?

Contract = Refinement?

Upper layer U

U—L CONTRACT:
U relies on L's behavior being from set of

behaviors allowed by Ls specification.
L guarantees its behavior is from that set.

Lower layer L

o Correctness: each layer’s behavior refines its spec.
« Compositional
e« Commonly used

e Not strong enough!

Example: Meltdown/Spectre

e Attacks completely bypass OS memory
protection against reads.

Recent reports that these exploits

are caused by a ‘bug’ ... are incorrect

»

eIntel was right.

The trouble with refinement

e Processor spec makes no guarantee
about time to do a memory read

» Correctness=refinement = any delay is

allowed and is not a ‘bug.

e But: Meltdown/Spectre correlate read
delays with contents of inaccessible
memory — a timing channel

Hyperproperties

e Conventionally, correctness is a trace property.

o Specification gives set of allowed traces;
implementation must refine this set

e Absence of information flow (e.g., on timing
channels) is not a trace property — it's a
hyperproperty over sets of possible traces.

e Spectre shows layer contracts must be — at
least — hyperproperties.

Timing channel control

application code

CONTRACT |
libraries
CONTRACT]

OS/hypervisor

CONTRACT]

hardware

o« Abstractions/specs silent about execution
time = vulnerable to timing channels

e How to build layers so that timing
channels can’t be exploited?

A language-based approach

-

e Problem: how can designer _
know whether there are timing
channels?

o Idea: static analysis (type
system) verifies timing leakage
is bounded at every layer

Security lattice

e For now, a simple lattice of security levels:
e L=public, H=secret, LCHZ L
o Richer lattices enable

multiuser systems and more
expressive policies

secret

public

o Strong adversary = strong security:

o Sees everything at level L, e.g., timing of updates
to low memory

A timing channel
.

if (h)
sleep(1);

else
sleep(2);

A subtler example

if (h1)
h2=l1;

else
h2=12;

13=l1;

Data cache affects timing!

eath the surface

i 2&-
compller
optimizations *

data/ % branch

Instruction } target

cache buffer

9 data/ 4
 instruction

\

A language-level abstraction

® Fach operation has read label, write label
governing interaction with underlying
machine

§

program
(X := e)[fr,lfw] layer

machine state
affecting timing machine
but invisible at layer
language level

machine
layer

Read label

(X =€)y 1]

(h1:=h3)

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

Write label

(X .= e)[[r,[w]
(h1:=h2)[L,H]

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects

Security properties

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property
2.Write label property

3.Single-step noninterference: no
machine-level leaks from high
environment to low

e Provides guidance to compiler writers and
designers of future secure architectures

Type system

e We analyze programs using a type system

that tracks timing.

c: T = time to run c depends on

information of (at most) label T

o A “standard” information flow type
system, plus read and write labels.

« Standard part controls data (storage)
channels (e.g., forbids | := h)

e labels can be generated by analysis,
inference, programmer...

Examples:

CH,LJ -

(hi: -hz) L |_]
sleep(h) :

if (h1)
(h2:=l1) 1

else
(h2:=2) L H;

(L3:=l1),13

low cachd read

cannot be affected by
hi

Formal results

Memory and machine environment
noninterference [PLDI'12]:

Assuming hardware satisfies the contract, a
well-typed program™ leaks nothing via either
timing or data channels

« Can we express interesting
computations as well-typed programs?

 Can we build reasonably efficient
hardware that satisfies the contract?

*using no dynamic mitigation

Language-level timing channels

e What about language-level timing

dependencies?

for (i = ©0; 1 < guess.length; i++) {
if (pwd[i] !'= guess[i]) return false
}

e Sometimes avoidable:

for (i = 0; i < MAX PWD LEN; i++) {
count += (pwd[i] == guess[i]);

¥

return count == pwd.length;

e In general, language-level timing
channels cannot be eliminated entirely.

Dynamic timing mitigation
o Idea: predict timing to mitigate timing leakage
[CCS 10, "11]
mitigate(l) { s }

label of running time mitigated command

e Running time of mitigate padded based on
predictions using only information at level L.

e Well-typed program running on compliant
hardware has bounded leakage

(e.g., O(log2T))

Are we done?

e Read and write labels provide a
contract that controls timing leaks
across abstraction layers

e Information-flow type systems and
predictive mitigation can be used to
verify that programs don't leak

e But... Can we build hardware that
satisfies the contract?

How to build efficient HW
that verifiably prevents illegal
information flows?

23

Hardware

o Systems increasingly rely on hardware-level
protection /

o« ARM TrustZone, Intel SGX, IBM SecureBlue

e But are hardware systems trustworthy?

 Processors are complex and error-prone

» Hard to spot security issues: e.g., Intel SMM-mode escalation attack
[Wojtczuk et al., 2009]

e Need formal security guarantees

Shared HW Leaks Information

e Data cache
— AES [Osvik et al.’05, Bernstein’05, Gullasch et. al.’11]

— RSA [Percival’05]

e Instruction cache [Aciicmez’07]
e Computation unit [Z. Wang&Lee’06]
 Memory controller [Wang&suh’12)

* On—chip network [Wang et al.”14]

How to prevent the next 700 timing channel attacks?

Secure HDLs

e Idea: add security annotations to
hardware description language

e SecVerilog = Verilog + information security
annotations [ASPLOS'15, ASPLOS'17, DAC'17]

e Applications:

o controlling leakage through
microarchitectural side channels

e catching bugs in hardware security
architectures (e.g., TrustZone)

SecVerilog

e A general-purpose security-typed hardware
description language

—Lightweight language design (Verilog + labels)

—Dependent typing = fine-grained resource sharing

—Low verification overhead (design-time & run-time)

» Formally proved security guarantees

» Verified MIPS processor and TrustZone
implementations

Dynamic vs Static

« Dynamic enforcement: propagate labels at run
time with information (X, Asbestos, Histar, Hails, ...)

e for statement x = y, where Ly Z Ly, system halts or
assignment is ignored.

e Weak guidance: security failures=rrun-time failures

 When coarse-grained = need to reorganize application

o Static enforcement: design verified ahead of time
(Jif [POPL'99], FlowCaml, Fabric [SOSP’09], SecVerilog, ...)

—compiler checks Ly C L

—but: capturing dynamic behavior may require complex annotations

Security Model

» Attacker sees contents of public HW

state at each clock tick

— —>EL

(synchronous logic)

Statically partitioned cache

A 4-way cache in Verilog

wire
wire
wire

case
O:
1:
2:
3:

reg[31:0]
reg[31:0]

(7:0]
(1:0]

(31:0]

(way)

begin
begin
begin
begin
endcase

do
dl

index]
index]
d2[

d3[index]

d0[256],d1[256];
d2[256],d3[256];

index;
way;
in;

index]

=in;
=in;
=in;
=in;

end
end
end
end

in—

way

\
s

do d1 d2 d3

Xapul

SecVerilog

= Verilog + security labels

Partitioned cache

reg[31l:0]{L}
reg[31l:0]{H}
wire[7:0]{L}
wire[1l:0]{L}

wire[31:0]

case (way)

0: begin
1: begin
2: begin
3: begin

endcase

do

index]
dlf
d2[
d3|

d0[256],d1[256];
d2[256],d3[256];

index;
way;
in;

index]
index]

index]

=in;
=in;
=in;
=in;

end
end
end
end

<

" Annotations on
variable declarations)

e General
e Few annotations
o Verify HW design as-is

Static labels = no resource sharing?

reg[31:0]{L} dO0[256],d1[256];
reg[31:0]{H} d2[256],d3[256];
wire[7:0]{L} index;
wire[l:0]{L} way;

wire[31:0] in;ﬁlabel?}

case (way)
0: begin dO[index]=1n; end _f _ .
l: begin dl[index]=in; end T\When way =0orl, in has label L)
2: begin d2[index]=in; end Va ~N

engéa};:gln d3[index]=1n; end 1When way = 2 or 3’ in h(JS /(JbE/ H

~

J

SecVerilog

 Verilog + dependent security labels

An example of partitioned cache

reg[31:0]{L} d0[256],d1[256]; P)
reg[31:0]{H} d2[256],d3[256]; Resource “1n” shared
wire[7:0]4L} index; ~__——_ across security labels
wire[l:0]{L} way; \)
wire[31:0] {Par (way)} in;

Using type-level function:
Par(0) = Par(l) = L

case (way)

0: begin dO[index]=1n; end

1: begin dl[index]=in; end Par(2) = Par(3) = H

2: begin d2[index]=in; end

3: begin d3[index]=in; end LESS HW needed for
endcase

secure designs

A permissive yet sound type system

Soundness

A well-typed HW design provably

enforces observational determinism

[L info. at each clock tick leaks no H info. J

Permissiveness

Verifies an efficient MIPS processor

Soundness challenges

—Label channels [ASPLOS’15]

—Statically preventing implicit
downgrading [DAC'17]

—Enforcing robust declassification and
transparent endorsement [CCS'17]

Label Channels

reg{L} ¥ |
reg{H} s; Type-level function:
reg{LH(x)} Xx;

LH(0)=L LH(l)=H

if (s) begin x = 1; end
if (x==0) begin
dP = 0; Change of label leaks
en
information
When p = 1,
s=0

When p =1,

s =1

No-Sensitive-Upgrade

[Austin&Flanagan’09]

“No update to public variable in secret context”

From a real

NSU rejects secure designs
processor desig

reg{H} hit2, hit3; 4©

reg[l1:0]{Par(way)} way;
if (hit2 || hit3)

way < hit2 ? 2 : 3;
else
way < 2;

(incorrectly) rejected

Insight: Label of way is always H after branch

Solution: definite assighment

No update to public variable in secret context,

if the variable is not updated in all branches

reg{H} hit2, hit3;
reg[1:0]{Par(way)} way;
if (hit2||hit3)

way < hit2 » 2 : 3; (correctly) accepted

else
way < 2;

Also more permissive than
flow-sensitive systems jHunt&sands06, Russo&Sabelfeld’10]

Precision of dependent labels

reg[31:0]{L} de[256],d1[256]; Type—level function:
reg[31:@:EHi d25256],d3[256]; par.(@)=par\(1)=|_
wire[7:0]{L index;

wire[1:0]{L} way; Par(2)=Par(3)=H
wire[31:0] {Par (way)} in;

case (way)

0: begin do[index]=in; end Jf
1: begin dl[index]=in; end CDP?
2: begin d2[index]=1in; end < Par (WaY) =P
3: begin d3[index]=in; end _

endcase

Predicate generation

P(c): a predicate that holds before c executes

reg[31:0
reg[31 0

wire [l
wire[31

]

case (way)
0: begin
1l: begin d
2: begin d
3: begin d

endcase

{L}
{H}

] dO0[256],

]
wire[/:0] {L}

0]

0

d2[2506],
index;

1[2506];
3[256];

{L}
{Par (way)}

Par (way) CE L
when way=0!

; end -

index
index
index

Type-level function:
Par(0)=Par(1)=
Par(2)=Par(3)=S

index

Approximated by propagating postconditions

Soundness Permissiveness

Other analyses

Type system

Variables not always updated

Predicate generation

Typing obligations discharged using Z3 SMT solver.

41

Formally verified MIPS processor

Rich ISA: runs OpenSSL with off-the-shelf GCC

—extended with instruction to set current
security level

Classic 5-stage in-order pipeline
— Typical pipelining techniques
 data hazard detection

e stalling

e data bypassing/forwarding

Overhead of SecVerilog

 Verification time:
2 seconds for complete MIPS processor
e Designer effort

— Annotation burden:

one label/variable declaration (mostly inferable, as
shown in forthcoming work)

— Imprecision leads to little extra logic:
27 LoC to establish necessary invariants

Overhead of secure processor

e Added HW resources

e Performance overhead on SW

Overhead of verification

Believed
secure but not

Rt i

Delay w/ FPU (ns) 4.20 4.20

Delay w/o FPU (ns) 1.67 1.66 -0.6%
Area (u2) 401420 402079 0.2%
Power (mW) 575.6 575.6 0%

Verification overhead is very small!

Overhead of secure processor (HW)

unmodified,
insecure
I e L
Delay w/ FPU (ns)
Delay w/o FPU (ns) 1.64 1.66 1.21%
Area (u?) 399400 402079 0.67%
Power (mW) 575.5 575.6 0.02%

Enabled by the SecVerilog type system

Normalized # clock cycles

SW-level overhead

baseline === verified ! |

MiBench OpenSSL

TN

TNk nlﬂiﬂl{

Xy O 4 e0eX® P DS
\t{\i\ 66\)&\ g \b\&\ P~6\)&‘\ \“0 \0?/ ?‘ @‘\‘\ 5‘(\ Yri,‘(\ \?\6\?’ fg&\\(\Qo
)

9% overhead on average
same cache area = smaller effective cache

Prior HDL-level info flow control

Lightweight Fine-grained Low verification Security bugs
design resource sharing overhead change run-time

behavior

Caisson
[Lietal’11]

Sapper
[Li et al.”14]

SecVerilog

Implementing TrustZone

e Goal: map security requirements of a
practical processor arch to IFC.

» Multi-core RTL prototype of ARM TrustZone
» Demonstrate that security bugs can be caught

» Low overhead

e« HDL type system extensions

» Heterogeneous security labels for arrays and vectors

» Downgrading to permit communication

ARM TrustZone

e Normal world: only accesses normal-world data

e Secure world: can access data in either world

Normal World Secure World

User Mode

Privileged Modes

TrustZone Prototype Implementation

r-- - - - T~ T77 r. - -, 77

'Normal World 1Secure World

E e NS bit indicates world

|

|

|

|

|

: Core O
|

[

Core 1
-k -1--A---- T A - A--- » Cache blocks have an
NS bit
~1$ | ={D$ ~11$ | =D$ o Network transactions
| are appended with the
On-chip Network NS bit
1 ‘ Debug
Bik qu_lues‘t | .y
L2 — e DRAM Is partitione
= DMA [«=——— Debug

| e Access control
DRAM modules enforce
security

TrustZone as an Information Flow

Policy

o Policy enforces integrity and confidentiality protection

e Secure world is CT, Normal World is PU

e Control registers and

o Policy mismatch with

t

ne NS bit are labeled PT.

‘rustZone spec, where secure world can

access normal world (secure-world SW must be careful!)

Language Extension: Bit Vector Types

wil
wil
wil

e Bit vectors are a convenient hardware data structure

» Security information is lost when bits are grouped

e Solution: types that are functions describing each bit’s level

(1=
he

ne

(0:31
(32:41]

(0:41 |

{CT} sw data;
{PT} addr;
{1 -> 1f (1 <= 31) CT PT} packet;

assign packet = {addr, sw_data};

« Type Rules:

« Precisely capture per-bit label propagation

« Enforce security policy for each bit

Language Extension: Array Support

e Describing cache blocks: needed to unroll the
array

Y
o

5 reg {PT} block 1bl 23;

146 reg {world(block 1bl 24)} block 34;

147 reg {PT} block 1bl 24,

148 reg {world(block 1bl 24)} block 24:
. ..
2 reg {PT}; block 1bl [©0:1023];
3 reg [0:31] { 1 -> jJ -> world(block 1bl[i]) } block[©:1623];
Z

153 reg {FI1}; DLOCK 1bl Z2/;

154 reg {world(block 1bl 27)} block 27,

155 reg {PT} block 1bl 28,

156 reg {world(block 1bl 28)} block 28;

e More expressive dependent labels avoid unrolling

Downgrading

e Information flow analysis reveals
potentially dangerous flows

» Secure-world writes to control registers

 But: overly restrictive

« Downgrading — release of information

o Like typecasts: downgrade(expr, label)

» Potential problems are limited to downgrades

Security Results

e Extended type system — same security as
original SecVerilog

e The processor type-checks...

e Downgrading relaxes noninterference

e ...onlyin the secure world

o We audit and categorize each use of
downgrading.

Security Vulnerability Detection

e Implemented 9 hardware vulnerabilities

e 3 modeled on real-world vulnerabilities:

e Backdoor in Actel ProASIC3 [Sergei et al.,, CHES 2012]
e Security-critical AMD errata [Hicks et al., ASPLOS 2015]

e Intel SMM-mode [Wojtczuk et al., 2009]

e Only undetected bug was designed to
thwart type system:

» Uses downgrading incorrectly, adds a nonsensical constant to
an address

Overheads

e Programmer effort in lines of code:

o Unverified: 16234
» Verified: 16700

» Overhead: 2.9%

e Hardware overheads:

» Clock frequency and CPIl unchanged

 The area and power overheads are negligible (0.37% and 0.32%)

HDL information flow?

e Seems to be effective way to gain
security assurance for hardware designs

o A lightweight development methodology that
allows building efhicient hardware with verified
properties

e Implemented a MIPS processor verified to have
no timing channels or other leaks

e Implemented a multicore prototype of ARM
TrustZone and detected vulnerabilities found in
commercial processors

Conclusions

application code

o Want trustworthy stack of abstractions?
Need new kinds of contracts — beyond
safety and liveness to hyperproperties

libraries

e Timing channels can be controlled
with static analysis at the language
level — if hardware obeys a contract

e Timing channel contracts and other
policies can be enforced at the hardware
level by a security-typed HDL, with
reasonable overhead

