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Can we trust the stack?

Got security mechanisms, but: 

• Modern systems are compositions of complex 
software & hardware. 

• Buggy or malicious code and adversarial data can 
break security at every level, including hardware

application code

libraries

OS/hypervisor

hardware
networkSpectre 

SMM rootkits 
Rowhammer



Compositional security?

• How to build layers so their composition 
is secure? 

• Need contracts between the layers  
— but what kind?

application code

libraries

OS/hypervisor

hardware
contract ↕

contract ↕

contract ↕



Contract = Refinement?

• Correctness: each layer’s behavior refines its spec. 

• Compositional 

• Commonly used 

•Not strong enough!

U→L contract: 
U relies on L’s behavior being from set of 

behaviors allowed by L’s specification. 
L guarantees its behavior is from that set.

Upper layer U

Lower layer L



Example: Meltdown/Spectre

• Attacks completely bypass OS memory 
protection against reads. 

•Intel was right.

Recent reports that these exploits 
are caused by a ‘bug’ … are incorrect



The trouble with refinement

• Processor spec makes no guarantee 
about time to do a memory read 

• Correctness=refinement ⇒ any delay is 

allowed and is not a ‘bug’. 

• But: Meltdown/Spectre correlate read 
delays with contents of inaccessible 
memory — a timing channel



Hyperproperties

• Conventionally, correctness is a trace property. 

• Specification gives set of allowed traces; 
implementation must refine this set 

• Absence of information flow (e.g., on timing 
channels) is not a trace property — it’s a 
hyperproperty over sets of possible traces. 

•Spectre shows layer contracts must be — at 
least — hyperproperties.



Timing channel control

• Abstractions/specs silent about execution 
time ⇒ vulnerable to timing channels 

• How to build layers so that timing 
channels can’t be exploited?

application code

libraries

OS/hypervisor

hardware
contract ↕

contract ↕

contract ↕

t



A language-based approach 

• Problem: how can designer 
know whether there are timing 
channels? 

• Idea: static analysis (type 
system) verifies timing leakage 
is bounded at every layer

t?



Security lattice
• For now, a simple lattice of security levels: 

• L=public,  H=secret, L ⊑ H ⋢ L 

• Richer lattices enable 
multiuser systems and more 
expressive policies 

• Strong adversary ⇒ strong security: 

• Sees everything at level L, e.g., timing of updates 
to low memory

H

L

secret

public



A timing channel
if (h) 
  sleep(1); 
else 
  sleep(2);



A subtler example
if (h1) 
  h2=l1; 
else 
  h2=l2; 
l3=l1;

 Data cache affects timing!



Beneath the surface
if (h1) 
  h2=l1; 
else 
  h2=l2; 
l3=l1; compiler 

optimizations

data/
instruction 

cache

branch 
target 
buffer

data/
instruction 

TLB

guarantees?

interface?



A language-level abstraction

L H
machine 

layer

program 
layer

machine 
layer

•Each operation has read label, write label 
governing interaction with underlying 
machine 

(x := e)[ℓr,ℓw]

machine state 
affecting timing 
but invisible at 
language level



Read label

abstracts how machine 
environment affects 
time taken by next 
language-level step. 

= upper bound on influence

(x := e)[ℓr,ℓw]

L H

machine 
environment

(h1:=h2)[L, ℓw]



Write label

abstracts how machine 
environment is affected 
by next language-level 
step 

= lower bound on effects
L H

machine 
environment

(x := e)[ℓr,ℓw]

(h1:=h2)[L,H]



Security properties

• Language implementation must satisfy 
three (formally defined) properties: 

1. Read label property 

2. Write label property 

3.Single-step noninterference: no 
machine-level leaks from high 
environment to low 

• Provides guidance to compiler writers and 
designers of future secure architectures

L H

L’ H



Type system
• We analyze programs using a type system 

that tracks timing. 

c : T   ⇒ time to run c depends on 

information of (at most) label T 

• A “standard” information flow type 
system, plus read and write labels. 

• Standard part controls data (storage) 
channels (e.g., forbids l := h) 

• labels can be generated by analysis, 
inference, programmer... 

c[H,L] : H  
(h1:=h2)[L,L] : L  
sleep(h) : H

if (h1) 
  (h2:=l1)[L,H]; 
else 
  (h2:=l2)[L,H]; 
(l3:=l1)[L,L]

low cache read 
cannot be affected by 

h1

Examples:



Formal results
Memory and machine environment 
noninterference [PLDI’12]: 
 
Assuming hardware satisfies the contract, a 
well-typed program* leaks nothing via either 
timing or data channels

*using no dynamic mitigation

• Can we express interesting 
computations as well-typed programs? 

• Can we build reasonably efficient 
hardware that satisfies the contract?



Language-level timing channels
• What about language-level timing 

dependencies?
for (i = 0; i < guess.length; i++) { 
  if (pwd[i] != guess[i]) return false 
}

for (i = 0; i < MAX_PWD_LEN; i++) { 
  count += (pwd[i] == guess[i]); 
} 
return count == pwd.length;

• Sometimes avoidable:

• In general, language-level timing 
channels cannot be eliminated entirely.



Dynamic timing mitigation
• Idea: predict timing to mitigate timing leakage 

[CCS ’10, ’11] 

• Running time of mitigate padded based on 
predictions using only information at level l. 

• Well-typed program running on compliant 
hardware has bounded leakage 
(e.g., O(log2 T))

mitigate(l) { s } 

label of running time mitigated command



Are we done?

• Read and write labels provide a 
contract that controls timing leaks 
across abstraction layers 

•Information-flow type systems and 
predictive mitigation can be used to 
verify that programs don’t leak 

•But… Can we build hardware that 
satisfies the contract?

[ℓr, ℓw]
L H
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How to build efficient HW 
that verifiably prevents illegal 
information flows?



Hardware 
• Systems increasingly rely on hardware-level 

protection 

• ARM TrustZone, Intel SGX, IBM SecureBlue 

• But are hardware systems trustworthy? 

• Processors are complex and error-prone 

• Hard to spot security issues: e.g., Intel SMM-mode escalation attack 
[Wojtczuk et al., 2009] 

• Need formal security guarantees



Shared HW Leaks Information
• Data cache 

– AES [Osvik et al.’05, Bernstein’05, Gullasch et. al.’11] 

– RSA [Percival’05] 

• Instruction cache [Aciiçmez’07] 

• Computation unit [Z. Wang&Lee’06] 

• Memory controller [Wang&Suh’12] 

• On-chip network [Wang et al.’14] 

How to prevent the next 700 timing channel attacks?



Secure HDLs

• Idea: add security annotations to 
hardware description language 

• SecVerilog = Verilog + information security 
annotations [ASPLOS’15, ASPLOS’17, DAC’17] 

• Applications: 

• controlling leakage through 
microarchitectural side channels  

• catching bugs in hardware security 
architectures (e.g., TrustZone)



SecVerilog

• A general-purpose security-typed hardware 
description language 

– Lightweight language design (Verilog + labels) 

– Dependent typing ⇒ fine-grained resource sharing 

– Low verification overhead (design-time & run-time) 

• Formally proved security guarantees 

• Verified MIPS processor and TrustZone 
implementations



Dynamic vs Static

• Dynamic enforcement: propagate labels at run 
time with information (IX, Asbestos, Histar, Hails, …) 

• for statement x = y, where Ly ⋢ Lx, system halts or 
assignment is ignored. 

• Weak guidance: security failures⇒run-time failures 

• When coarse-grained ⇒ need to reorganize application 

• Static enforcement: design verified ahead of time 
(Jif [POPL’99], FlowCaml, Fabric [SOSP’09], SecVerilog, …) 

–compiler checks Ly ⊑ Lx 

–but:  capturing dynamic behavior may require complex annotations



Security Model

• Attacker sees contents of public HW 
state at each clock tick 

(synchronous logic)

H

L



reg[31:0]     d0[256],d1[256];
reg[31:0]     d2[256],d3[256];
wire[7:0]     index;
wire[1:0]     way;
wire[31:0]    in;

...
case (way)
  0: begin d0[index]=in; end
  1: begin d1[index]=in; end     
  2: begin d2[index]=in; end
  3: begin d3[index]=in; end
endcase
...

A 4-way cache in Verilog

Statically partitioned cache

way

indexin

d0 d1 d2 d3



SecVerilog

= Verilog + security labels

reg[31:0]{L}  d0[256],d1[256];
reg[31:0]{H}  d2[256],d3[256];
wire[7:0]{L}  index;
wire[1:0]{L}  way;
wire[31:0]    in;

...
case (way)
  0: begin d0[index]=in; end
  1: begin d1[index]=in; end     
  2: begin d2[index]=in; end
  3: begin d3[index]=in; end
endcase
...

Partitioned cache
Annotations on 

variable declarations

• General 
• Few annotations 
• Verify HW design as-is



Static labels ⇒ no resource sharing?

reg[31:0]{L}  d0[256],d1[256];
reg[31:0]{H}  d2[256],d3[256];
wire[7:0]{L}  index;
wire[1:0]{L}  way;
wire[31:0]    in;

...
case (way)
  0: begin d0[index]=in; end
  1: begin d1[index]=in; end     
  2: begin d2[index]=in; end
  3: begin d3[index]=in; end
endcase
...

When way = 0 or 1, in has label L

When way = 2 or 3, in has label H

label?



SecVerilog

• Verilog + dependent security labels

Using type-level function: 
Par(0) = Par(1) = L
Par(2) = Par(3) = H

reg[31:0]{L}  d0[256],d1[256];
reg[31:0]{H}  d2[256],d3[256];
wire[7:0]{L}  index;
wire[1:0]{L}  way;
wire[31:0] {Par (way)}   in;

...
case (way)
  0: begin d0[index]=in; end
  1: begin d1[index]=in; end     
  2: begin d2[index]=in; end
  3: begin d3[index]=in; end
endcase
...

An example of partitioned cache

Resource “in” shared  
across security labels

Less HW needed for 
secure designs



A permissive yet sound type system

A well-typed HW design provably 
enforces observational determinism 

L info. at each clock tick leaks no H info.

Soundness

Verifies an efficient MIPS processor

Permissiveness



Soundness challenges

–Label channels [ASPLOS’15] 

–Statically preventing implicit 
downgrading [DAC’17] 

–Enforcing robust declassification and 
transparent endorsement [CCS’17]



Label Channels

Change of label leaks 
information

When p = 1, 
  s = 0

When p = 1, 
 s = 1

p x

1 0

p x

1 0

p x

1 0

p x

1 1

p x

0 0

p x

1 1

p = s!

Type-level function: 
LH(0)=L    LH(1)=H

reg{L}     p;
reg{H}     s;
reg{LH(x)} x;
if (s) begin x = 1; end
if (x==0) begin
   p = 0;
end



No-Sensitive-Upgrade 
[Austin&Flanagan’09]

(incorrectly) rejected

“No update to public variable in secret context”

Insight: Label of way is always H after branch

NSU rejects secure designs From a real  
processor design

reg{H}     hit2, hit3; 
reg[1:0]{Par(way)} way; 
if (hit2 || hit3) 
way ⇐ hit2 ? 2 : 3; 

else 
way ⇐ 2;



Solution: definite assignment

No update to public variable in secret context, 
if the variable is not updated in all branches

(correctly) accepted

Also more permissive than  
flow-sensitive systems [Hunt&Sands’06, Russo&Sabelfeld’10]

reg{H}     hit2, hit3; 
reg[1:0]{Par(way)} way; 
if (hit2||hit3) 
 way ⇐ hit2 ? 2 : 3; 
else 
 way ⇐ 2;



Precision of dependent labels

reg[31:0]{L}  d0[256],d1[256]; 
reg[31:0]{H}  d2[256],d3[256]; 
wire[7:0]{L}  index; 
wire[1:0]{L}  way; 
wire[31:0] {Par (way)}   in; 

... 
case (way) 
  0: begin d0[index]=in; end 
  1: begin d1[index]=in; end      
  2: begin d2[index]=in; end 
  3: begin d3[index]=in; end 
endcase 
...

Type-level function: 
Par(0)=Par(1)=L 
Par(2)=Par(3)=H



Predicate generation

reg[31:0]{L}  d0[256],d1[256]; 
reg[31:0]{H}  d2[256],d3[256]; 
wire[7:0]{L}  index; 
wire[1:0]{L}  way; 
wire[31:0] {Par (way)}   in; 

... 
case (way) 
  0: begin d0[index]=in; end 
  1: begin d1[index]=in; end      
  2: begin d2[index]=in; end 
  3: begin d3[index]=in; end 
endcase 
...

 

Type-level function: 
Par(0)=Par(1)=P 
Par(2)=Par(3)=S

Par(way) ⊑ L  
when way=0?

P(c) : a predicate that holds before c executes

Approximated by propagating postconditions
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Type system
Other analyses

Variables not always updated

Predicate generation

Soundness Permissiveness

Typing obligations discharged using Z3 SMT solver.



Formally verified MIPS processor

Rich ISA: runs OpenSSL with off-the-shelf GCC 

– extended with instruction to set current 
security level 

Classic 5-stage in-order pipeline 

– Typical pipelining techniques 

• data hazard detection 

• stalling 

• data bypassing/forwarding



Overhead of SecVerilog

• Verification time: 

2 seconds for complete MIPS processor 

• Designer effort 

– Annotation burden: 
one label/variable declaration (mostly inferable, as 
shown in forthcoming work) 

– Imprecision leads to little extra logic:  
27 LoC to establish necessary invariants



Overhead of secure processor

• Added HW resources 

• Performance overhead on SW



Overhead of verification

Unverified Verified Overhead

Delay w/ FPU (ns) 4.20 4.20 0%

Delay w/o FPU (ns) 1.67 1.66 -0.6%

Area (μ2) 401420 402079 0.2%

Power (mW) 575.6 575.6 0%

Verification overhead is very small!

Believed 
secure but not 

verified



Overhead of secure processor (HW)

Baseline Verified Overhead

Delay w/ FPU (ns) 4.20 4.20 0%

Delay w/o FPU (ns) 1.64 1.66 1.21%

Area (μ2) 399400 402079 0.67%

Power (mW) 575.5 575.6 0.02%

Enabled by the SecVerilog type system

unmodified, 
insecure



SW-level overhead

9% overhead on average 
same cache area ⇒ smaller effective cache



Prior HDL-level info flow control
Lightweight 
design

Fine-grained 
resource sharing

Low verification 
overhead

Security bugs 
change run-time 
behavior

Caisson 
[Li et al.’11]

Sapper 
[Li et al.’14]

SecVerilog
                   [DAC’17]



Implementing TrustZone

• Goal: map security requirements of a 
practical processor arch to IFC. 

• Multi-core RTL prototype of ARM TrustZone 

• Demonstrate that security bugs can be caught 

• Low overhead 

• HDL type system extensions  

• Heterogeneous security labels for arrays and vectors 

• Downgrading to permit communication



ARM TrustZone
• Normal world: only accesses normal-world data 

• Secure world: can access data in either world

User Mode

Privileged Modes

Secure WorldNormal World

Trusted HW/SWUntrusted HW/SW



TrustZone Prototype Implementation

• NS bit indicates world 

• Cache blocks have an 
NS bit 

• Network transactions 
are appended with the 
NS bit 

• DRAM is partitioned
   

• Access control 
modules enforce 
security

Secure WorldNormal World

DRAM



TrustZone as an Information Flow 
Policy

• Policy enforces integrity and confidentiality protection 

  

• Secure world is CT, Normal World is PU 

• Control registers and the NS bit are labeled PT. 

• Policy mismatch with TrustZone spec, where secure world can 
access normal world (secure-world SW must be careful!)

CT PU

CU

PT

Integrit
y

Confidentiality

Secure World Normal World



Language Extension: Bit Vector Types

• Bit vectors are a convenient hardware data structure 

• Security information is lost when bits are grouped 

• Solution: types that are functions describing each bit’s level 

• Type Rules: 

• Precisely capture per-bit label propagation  

• Enforce security policy for each bit



Language Extension: Array Support

• Describing cache blocks: needed to unroll the 
array 

• More expressive dependent labels avoid unrolling



Downgrading

• Information flow analysis reveals 
potentially dangerous flows 
• Secure-world writes to control registers 

• But: overly restrictive 

• Downgrading – release of information 
• Like typecasts: downgrade(expr, label) 

• Potential problems are limited to downgrades



Security Results

• Extended type system – same security as 
original SecVerilog 

•The processor type-checks… 

• Downgrading relaxes noninterference 

•  …only in the secure world 

• We audit and categorize each use of 
downgrading.



Security Vulnerability Detection

• Implemented 9 hardware vulnerabilities 

• 3 modeled on real-world vulnerabilities: 

•Backdoor in Actel ProASIC3 [Sergei et al., CHES 2012] 

• Security-critical AMD errata [Hicks et al., ASPLOS 2015] 

• Intel SMM-mode [Wojtczuk et al., 2009] 

• Only undetected bug was designed to 
thwart type system: 
• Uses downgrading incorrectly, adds a nonsensical constant to 

an address



Overheads

• Programmer effort in lines of code: 

• Unverified: 16234 

• Verified: 16700 

• Overhead: 2.9% 

• Hardware overheads: 
• Clock frequency and CPI unchanged 

• The area and power overheads are negligible (0.37% and 0.32%)



HDL information flow?

• Seems to be effective way to gain 
security assurance for hardware designs 

• A lightweight development methodology that 
allows building efficient hardware with verified 
properties 

• Implemented a MIPS processor verified to have 
no timing channels or other leaks 

• Implemented a multicore prototype of ARM 
TrustZone and detected vulnerabilities found in 
commercial processors



Conclusions

• Want trustworthy stack of abstractions?
Need new kinds of contracts — beyond 
safety and liveness to hyperproperties

application code

libraries

OS/hypervisor

hardware

↕

t

• Timing channels can be controlled 
with static analysis at the language 
level — if hardware obeys a contract

• Timing channel contracts and other 
policies can be enforced at the hardware 
level by a security-typed HDL, with 
reasonable overhead

[ℓr, ℓw]
L H


