|

MASKED TYPES
for Sound Object Initialization

Xin Qi and Andrew C. Myers
Cornell University

Friday, June 3, 2011

Fix the initialization problem

Current mechanisms for object
Initialization are unsound

This talk: a lightweight type system for
sound Initialization

Gets rid of null-pointer exceptions
Handles inheritance and cycles

Implementation — J\mask

Xin Qi Masked Types

Friday, June 3, 2011

Alice wants a data structure...

A data
structure...

Xin Qi Masked Types

Friday, June 3, 2011

Alice wants a data structure...

Remember:
initialize
before use!

Invariants
established

Initialization—

Normal use —

No access fo
uninitialized data

This methodology does not work!

Xin Qi

Masked Types

Friday, June 3, 2011

An example with inheritance

class Point {
int x, y;
Point(int x, int y) {
this.x = x;
this.y = vy;
display();

void display() {

Super System.out.println(x + “ “ + y);
constructor }
} Virtual method call
class CPoint extends Point {
Color c; _
CPoint(int x, int y, Color c) { Field ¢ not

super(x, y);
this.c = c;

/ initialized yet!
}
void display() {

System.out.println(x + “ “ +y + “ “ + c.name());
}

Xin Qi Masked Types

Friday, June 3, 2011

A bug with no one to blame

/~ class Point {

int x, y; . L.
Point(int x, int y) { Each individual
this.x = x;
this.y = y; class looks OK
display()}

void display() { :)
System.out.println(x + “ “ + y); /
y Classes don't

"} agree on the
/~ class CPoint extends Point { initialization
Color c;
CPoint(int x, int y, Color c) { contract

super(x, y);
this.c = c;

}
void display() {
System.out.println(x + “ “ + y + “ “ + c.name());

}

_ J

Xin Qi Masked Types 6

Friday, June 3, 2011

Unsound initialization

Problem: initialization is unsound:

Can read uninitialized object fields
“Solution” (Java/C#): fields pre-initialized
with default “null” values

Null is a value of all object types

Ubiquitous null checks and possible null-pointer
exceptions

Result: unreliable software

Xin Qi Masked Types

Friday, June 3, 2011

Current language support

Object-oriented initialization is
unsound

Inheritance

Cyclic data structures
Functional languages trade
expressiveness for soundness

Cyclic data structures need encoding/refs

O« >0

Xin Qi Masked Types

Friday, June 3, 2011

MASKED TYPES

= T\f

© Base type T

O Field mask on f
= Possibly uninitialized
= Not readable

= Assignments remove masks
/I x . CPoint\ c

X.c = new Color(“Blue”);
/I X : CPoint

= Typestates

Xin Qi Masked Types

Friday, June 3, 2011

M

Xin Qi

ore masks

T\~
© Disallows reading any field

Point \ Point.sub

© Disallows reading fields declared in
subclasses

© Point\ * = Point \ x \ y \ Point.sub
Abstract masks for data abstraction

Masked Types

10

Friday, June 3, 2011

Inheritance

Make initialization contracts explicit

Methods and constructors have mask
effects

© Capture initialization contracts

o Support modular type-checking

Xin Qi Masked Types 11

Friday, June 3, 2011

Back to the example

class Point {
int x, y;

Point\ x \ y \ Raimttsub-Point(int x,

: : this.x = x;
Point\ y \ Pomt.sub~this.y -y

Point\ Point.sub— g 513y (33 If we blame the
oid display() effect {} -> {} { Point class, ...

System.out.println(x + “ “ + y);

}
}

class CPoint extends Point {
Color c;
CPoint(int x, int y, Color c) {
super(X, Y);
this.c = c;

int y) gffect * -> Point.sub {

}
void display() {
System.out.println(x + “ “ +y + “ “ + c.name());

}
}

Xin Qi Masked Types 12

Friday, June 3, 2011

Back to the example

class Point {
int x, y; .
Point(int x, int y) cjszect * -> Point.sub {
this.x = x;
this.y = vy;
display(); If we blame the

________________ \};oid display() effect {} -> {} { Point ClaSS, -

Point \ Point.sub—

ihﬂeﬂuxjca” | System.out.println(x + “ “ + y);
 disallowed! | ; _
"""""""" Compiler
class CPoint extends Point { .
Color c; inserts default
CPoint(int x, int y, Color c) {
super(x, y); eﬂ:eCtS

this.c = c;
}
void display() {
System.out.println(x + “ “ +y + “ “ + c.name());

}

Xin Qi Masked Types 13

Friday, June 3, 2011

Cyclic data structures

Cyclic data structures are common
Doubly-linked lists
Circular lists
Binary trees with parent pointers

Sound initialization is challenging

Disallow reading fields pointing to
“iIncomplete” objects

Know when initialization completes

Xin Qi Masked Types

14

Friday, June 3, 2011

An example

class Node {

Node next;
}
Node x = new Node();
Node y = new Node();
X.next = vy;
y.next = x;

next
X o oy
next

y.next uninitialized
= not safe to read x.next

“ties the knot”
= both objects are safe to use

Conditional masks
© Dependencies between masks
© Graph theory-based type checking

Xin Qi

Masked Types

15

Friday, June 3, 2011

An example

class Node {
Node next;

}

Node x = new Node();
Node y = new Node();
x.next = vy;

Conditionally
masked type

X : Node \ next[y.next]

y.next = x;

X : Node \ next[y.next]

Depends on

x.next y.next

Depends on

Xin Qi

y : Node \ next[x.next]

@Removal of circular dependencies

X : Node
y : Node

Masked Types 16

Friday, June 3, 2011

J\mask calculus

Xin Qi

Object calculus with heap
© No special value “null”
© Uninitialized fields cannot be read

Obiject initialization is sound

© Evaluation never gets stuck

O Proof:

Encoding of graph theoretical problems
progress + preservation

Masked Types

17

Friday, June 3, 2011

J\mask language

Xin Qi

Constructors not special

Default effects reduce annotation
burden
Implementation

Polyglot compiler framework (Nystrom,
Clarkson & Myers 03)

Flow-sensitive type system
Translation to Java by type erasure

Masked Types

18

Friday, June 3, 2011

Experience

Java Collections Framework (1.4.2)

© LinkedList, ArrayList, HashMap, TreeMap,
Stack, ...

O 29 source files, 18,000 LOC

Results
© Handled JCF initialization patterns
O Removed nulls for initialization

© Low annotation burden
11 explicit effects
11 explicit masked types

Xin Qi Masked Types

19

Friday, June 3, 2011

Related work

Non-null types
© @NonNull annotations (Java 6/7)
© Delayed types (Fahndrich & Xia 07)

Typestates
© Typestates for objects (DelLine & Fahndrich 04)
© Heap monotonic typestates (Fahndrich & Leino 03)

Static analysis
o Detecting null-pointer exceptions (FindBugs)
© Shape analysis

Xin Qi Masked Types 20

Friday, June 3, 2011

Summary

Xin Qi

Sound and expressive initialization
© Handles inheritance and cycles

Local, modular reasoning
O Mask effects
O Abstract masks

Lightweight

O Low annotation burden
No aliasing information
Default annotation

© No run-time overhead
Maybe the end of null-pointer exceptions!

Masked Types

21

Friday, June 3, 2011

MASKED TVYPES

J\mask source code available at
http://www.cs.cornell.edu/Projects/jmask/

Xin Qi Masked Types 22

Friday, June 3, 2011

