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Fix the initialization problem

Current mechanisms for object
Initialization are unsound

This talk: a lightweight type system for
sound Initialization

Gets rid of null-pointer exceptions
Handles inheritance and cycles

Implementation — J\mask
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Alice wants a data structure...

A data
structure...
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Alice wants a data structure...

Remember:
initialize
before use!

Invariants
established

Initialization—

Normal use —

No access fo
uninitialized data

This methodology does not work!
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An example with inheritance

class Point {
int x, y;
Point(int x, int y) {
this.x = x;
this.y = vy;
display();

void display() {

Super System.out.println(x + “ “ + y);
constructor }
} Virtual method call
class CPoint extends Point {
Color c; _
CPoint(int x, int y, Color c) { Field ¢ not

super(x, y);
this.c = c;

/ initialized yet!
}
void display() {

System.out.println(x + “ “ +y + “ “ + c.name());
}
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A bug with no one to blame

/~ class Point {

int x, y; . L.
Point(int x, int y) { Each individual
this.x = x;
this.y = y; class looks OK
display()}

void display() { : )
System.out.println(x + “ “ + y); /
y Classes don't

"} agree on the
/~ class CPoint extends Point { initialization
Color c;
CPoint(int x, int y, Color c) { contract

super(x, y);
this.c = c;

}
void display() {
System.out.println(x + “ “ + y + “ “ + c.name());

}

\_ J
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Unsound initialization

Problem: initialization is unsound:

Can read uninitialized object fields
“Solution” (Java/C#): fields pre-initialized
with default “null” values

Null is a value of all object types

Ubiquitous null checks and possible null-pointer
exceptions

Result: unreliable software
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Current language support

Object-oriented initialization is
unsound

Inheritance

Cyclic data structures
Functional languages trade
expressiveness for soundness

Cyclic data structures need encoding/refs

O« >0
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MASKED TYPES

= T\f

© Base type T

O Field mask on f
= Possibly uninitialized
= Not readable

= Assignments remove masks
/I x . CPoint\ c

X.c = new Color(“Blue”);
/I X : CPoint

= Typestates
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M

Xin Qi

ore masks

T\~
© Disallows reading any field

Point \ Point.sub

© Disallows reading fields declared in
subclasses

© Point\ * = Point \ x \ y \ Point.sub
Abstract masks for data abstraction
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Inheritance

Make initialization contracts explicit

Methods and constructors have mask
effects

©  Capture initialization contracts

o  Support modular type-checking
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Back to the example

class Point {
int x, y;

Point\ x \ y \ Raimttsub-Point(int x,

: : this.x = x;
Point\ y \ Pomt.sub~this.y -y

Point\ Point.sub— g 513y (33 If we blame the
oid display() effect {} -> {} { Point class, ...

System.out.println(x + “ “ + y);

}
}

class CPoint extends Point {
Color c;
CPoint(int x, int y, Color c) {
super(X, Y);
this.c = c;

int y) gffect * -> Point.sub {

}
void display() {
System.out.println(x + “ “ +y + “ “ + c.name());

}
}
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Back to the example

class Point {
int x, y; .
Point(int x, int y) cjszect * -> Point.sub {
this.x = x;
this.y = vy;
display(); If we blame the

________________ \};oid display() effect {} -> {} { Point ClaSS, -

Point \ Point.sub—

ihﬂeﬂuxjca” | System.out.println(x + “ “ + y);
 disallowed! | ; _
"""""""" Compiler
class CPoint extends Point { .
Color c; inserts default
CPoint(int x, int y, Color c) {
super(x, y); eﬂ:eCtS

this.c = c;
}
void display() {
System.out.println(x + “ “ +y + “ “ + c.name());

}
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Cyclic data structures

Cyclic data structures are common
Doubly-linked lists
Circular lists
Binary trees with parent pointers

Sound initialization is challenging

Disallow reading fields pointing to
“iIncomplete” objects

Know when initialization completes
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An example

class Node {

Node next;
}
Node x = new Node();
Node y = new Node();
X.next = vy;
y.next = x;

next
X o oy
next

y.next uninitialized
= not safe to read x.next

“ties the knot”
= both objects are safe to use

Conditional masks
© Dependencies between masks
© Graph theory-based type checking

Xin Qi
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An example

class Node {
Node next;

}

Node x = new Node();
Node y = new Node();
x.next = vy;

Conditionally
masked type

X : Node \ next[y.next]

y.next = x;

X : Node \ next[y.next]

Depends on

x.next y.next

Depends on

Xin Qi

y : Node \ next[x.next]

@Removal of circular dependencies

X : Node
y : Node
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J\mask calculus

Xin Qi

Object calculus with heap
© No special value “null”
© Uninitialized fields cannot be read

Obiject initialization is sound

© Evaluation never gets stuck

O Proof:

Encoding of graph theoretical problems
progress + preservation
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J\mask language

Xin Qi

Constructors not special

Default effects reduce annotation
burden
Implementation

Polyglot compiler framework (Nystrom,
Clarkson & Myers 03)

Flow-sensitive type system
Translation to Java by type erasure

Masked Types
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Experience

Java Collections Framework (1.4.2)

© LinkedList, ArrayList, HashMap, TreeMap,
Stack, ...

O 29 source files, 18,000 LOC

Results
© Handled JCF initialization patterns
O Removed nulls for initialization

©  Low annotation burden
11 explicit effects
11 explicit masked types
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Related work

Non-null types
©  @NonNull annotations (Java 6/7)
©  Delayed types (Fahndrich & Xia 07)

Typestates
©  Typestates for objects (DelLine & Fahndrich 04)
©  Heap monotonic typestates (Fahndrich & Leino 03)

Static analysis
o Detecting null-pointer exceptions (FindBugs)
©  Shape analysis
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Summary

Xin Qi

Sound and expressive initialization
© Handles inheritance and cycles

Local, modular reasoning
O  Mask effects
O Abstract masks

Lightweight

O Low annotation burden
No aliasing information
Default annotation

©  No run-time overhead
Maybe the end of null-pointer exceptions!

Masked Types

21

Friday, June 3, 2011




MASKED TVYPES

J\mask source code available at
http://www.cs.cornell.edu/Projects/jmask/
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