A Sound Type System for Secure
Flow Analysis

Dennis Volpano, Geoffrey Smith, Cynthia lrvine

Presenter: Lantian Zheng
CS 711

September 29, 2003

Soundness of Dening’s Program
Certification Mechanism

e Define the soundness property: S(P).

— Noninterference

e Prove: certified(P) = S(P).

CS 711: Language-Based Security and Information Flow

Program Certification as Type Checking

vV:.:=e 1s certified if e — w.
v:=e is welltyped if type(e) < type(v).

CS 711: Language-Based Security and Information Flow

Program Certification as Type Checking

vV:.:=e 1s certified if e — w.
v:=e is welltyped if type(e) < type(v).

e Security levels &~ Types

e Lattice order on security levels =~ Subtyping

e Program certification =~ Type checking

CS 711: Language-Based Security and Information Flow

Program Certification as Type Checking

vV:.:=e 1s certified if e — w.
v:=e is welltyped if type(e) < type(v).

e Security levels &~ Types

e Lattice order on security levels =~ Subtyping

e Program certification =~ Type checking

welltyped(P) = noninterference(P)

CS 711: Language-Based Security and Information Flow

Background

e Greece and Rome

— Program certification (76, Denings)
— Noninterference (82, Goguen & Meseguer)

e Middle ages

— The orange book (85)
— More on security models

* Nondeducibility (86 Sutherland)

+ Composibility of noninterference (87-88 McCullough)
— Soundness of dynamic information-flow control

* Proving noninterference using traces (92 McLean)

CS 711: Language-Based Security and Information Flow

— Connect static and dynamic information-flow mechanisms
x The operational semantics with labels is consistent with the
abstract semantics on labels. (92 Mizuno&Schmidt, 95 @rbak)

e Renaissance

— Soundness of compile-time analysis w.r.t. noninterference
(94 Banatre&Métayer& Beaulieu)

“ VS, P.oif by {InitpS{P} then C(P,5) "

CS 711: Language-Based Security and Information Flow 4

The Core Language

Phrases p 1= e | ¢
Expressions ¢ == x |l | n | e+e | e—¢€ |
Commands ¢ == e:=¢ | ¢ | if ethencelsed |
whileedoc | letvarz:=einc
Security classes s € SC (partially ordered by <)
Types 7 = s

Phrase types p = 71 | Tvar | 7cmd

CS 711: Language-Based Security and Information Flow

Typing Assertion

AsyFEpip

/

Heap: map [to p; Stack: map x to p,

e Tcmd. if \;vF c¢:7cmd, then for any [assigned to in
c, T < A\(). (Lemma 6.4)

e 7 var. a variable that can store values with type 7.

CS 711: Language-Based Security and Information Flow 6

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) AFc:p c is well-typed

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose
(a) AFc:p c is well-typed

(b) ubc= execution one

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) AFc:p c is well-typed
(b) ubc= execution one
(c) vkc=1 execution two

CS 711: Language-Based Security and Information Flow

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) AFc:p c is well-typed
(b) ubc= execution one
(c) vkc=1 execution two
(d)

(e) v(l) = u(l) for all I such that A(l) < the same low inputs

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose
(a) AFc:p

(b) ptc=pf

(c) vkc=1

(d)

(e) v(l) = u(l) for all I such that A\(l) < 7
Then v'(1) = p'(1) for all [such that A\(I) < 7

CS 711: Language-Based Security and Information Flow

c 18 well-typed
execution one

execution two

the same low inputs

. the same low outputs

Typing Arithmetic Operations

AMybe:T AybEée T
AvbEe+e€ T

e Example:

x:Ly:HFx: H x:Ly:HFy: H
x:Ly:HF-x+y: H

e Subsumption rule:

ANivybe:rT -7 C 7/
AivEe:7

e Lemma 6.3: if A\Fe: 7, then for every [ine, A\(I) < 7.

CS 711: Language-Based Security and Information Flow

Subtyping Rules

T <7 -7 C 7/
-7 C 7’ = 7" emd C 7 emd

Corollary: 7 var is invariant with respect to 7.

T=1
=7 var C 7" var

CS 711: Language-Based Security and Information Flow

Typing Assignments

Ay Ee:Tvar AvybEée T
ANvbke:=¢€:7cmd

e The result of € can be stored in e.

e [he assighnment command updates a location with type
T.

e Lemma 6.4: If A\;vF c:7cmd, then for every [assigned
toinc v(l) <.

CS 711: Language-Based Security and Information Flow 10

Typing Compositions

A;vyFEc:Tcemd ANivEd T emd
NivybEed:Tmemd

e The subsumption rule masks the combination of two
command types:

ANivybcec:Ttemd Ny 1 emd
Niyvbed: 7t emd

CS 711: Language-Based Security and Information Flow 11

Typing IF and WHILE

ANivkFe:m XNiybFce:mtemd N;ybd T
A;vE if ethencelsec : 7 cmd

AiyFe:Tm AjykFcec:7memd
A;yFwhileedoc: 7 cmd

e To prevent implicit flows: ¢ and ¢’ can any update location [that
satisfies type(e) < A(1).

CS 711: Language-Based Security and Information Flow 12

Typing LETVAR

AivkFe:T XNyvylz:Ttvarllc: 17 ecmd
Ay Fletvarx :=einc: 7 cmd

e [he local variable x i1s not observable outside the
command.

e Similar to the function application: (Ax.c)e.

CS 711: Language-Based Security and Information Flow 13

Proving the Noninterference Theorem

e By induction on one of the two evaluations u - ¢ = .

e [he core language Is pleasantly simple.

— No first-class functions: the two executions run the same code.

e Syntax-directed typing rules

CS 711: Language-Based Security and Information Flow 14

After 1996

SLam Heintze& Riecke (98)

The secure CPS Zdancewic&Myers

calculus (01)

MLIF Pottier&Simonet (02)

Java-light Banerjee&Naumann
(02)

CS 711: Language-Based Security and Information Flow

Induction on typing derivation,
denotational semantics

Induction on evaluation, small-
step semantics

Induction on evalution, small-
step semantics for pairing two
executions

Induction on typing derivation,
dentational semantics

15

Discussion

e 'How should secrets be introduced?”

— Safety Versus Secrecy, Dennis Volpano, 99

“Instead, we associate secrecy with the origin of a value which in
our case will be the free variables of a program. ... This origin-
view of secrecy differs from the view held by others working
with assorted lambda calculi and type system for secrecy [1,3].
There secrecy is associated with values like boolean constants. It
does not seem sensible to attribute any level of security to such
constants. After all, what exacly is high-security boolean?”

CS 711: Language-Based Security and Information Flow 16

e Is information-flow policy EM-enforceable?

— Suppose the operational semantics manipulates
security labels and does run-time label checking.

CS 711: Language-Based Security and Information Flow 17

