
A Sound Type System for Secure
Flow Analysis

Dennis Volpano, Geoffrey Smith, Cynthia Irvine

Presenter: Lantian Zheng

CS 711

September 29, 2003

Soundness of Dening’s Program
Certification Mechanism

• Define the soundness property: S(P).

– Noninterference

• Prove: certified(P) ⇒ S(P).

CS 711: Language-Based Security and Information Flow 1

Program Certification as Type Checking

v := e is certified if e → v.

v := e is welltyped if type(e) ≤ type(v).

CS 711: Language-Based Security and Information Flow 2

Program Certification as Type Checking

v := e is certified if e → v.

v := e is welltyped if type(e) ≤ type(v).

• Security levels ≈ Types

• Lattice order on security levels ≈ Subtyping

• Program certification ≈ Type checking

CS 711: Language-Based Security and Information Flow 2

Program Certification as Type Checking

v := e is certified if e → v.

v := e is welltyped if type(e) ≤ type(v).

• Security levels ≈ Types

• Lattice order on security levels ≈ Subtyping

• Program certification ≈ Type checking

welltyped(P) ⇒ noninterference(P)

CS 711: Language-Based Security and Information Flow 2

Background

• Greece and Rome

– Program certification (76, Denings)

– Noninterference (82, Goguen & Meseguer)

• Middle ages

– The orange book (85)

– More on security models

∗ Nondeducibility (86 Sutherland)

∗ Composibility of noninterference (87-88 McCullough)

– Soundness of dynamic information-flow control

∗ Proving noninterference using traces (92 McLean)

CS 711: Language-Based Security and Information Flow 3

– Connect static and dynamic information-flow mechanisms

∗ The operational semantics with labels is consistent with the

abstract semantics on labels. (92 Mizuno&Schmidt, 95 Ørbæk)

• Renaissance

– Soundness of compile-time analysis w.r.t. noninterference

(94 Banâtre&Métayer&Beaulieu)

“ ∀S, P. if `1 {Init}S{P} then C(P, S) ”

CS 711: Language-Based Security and Information Flow 4

The Core Language

Phrases p ::= e | c

Expressions e ::= x | l | n | e + e′ | e− e′ |
e = e′ | e < e′

Commands c ::= e := e′ | c; c′ | if e then c else c′ |
while e do c | letvar x := e in c

Security classes s ∈ SC (partially ordered by ≤)

Types τ ::= s

Phrase types ρ ::= τ | τ var | τ cmd

CS 711: Language-Based Security and Information Flow 5

Typing Assertion

λ ; γ ` p : ρ
�

�
�

�
�

�	

Heap: map l to ρl

@
@

@
@

@
@R

Stack: map x to ρx

• τ cmd: if λ ; γ ` c : τ cmd, then for any l assigned to in

c, τ ≤ λ(l). (Lemma 6.4)

• τ var: a variable that can store values with type τ .

CS 711: Language-Based Security and Information Flow 6

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) λ ` c : ρ c is well-typed

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) λ ` c : ρ c is well-typed

(b) µ ` c ⇒ µ′ execution one

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) λ ` c : ρ c is well-typed

(b) µ ` c ⇒ µ′ execution one

(c) υ ` c ⇒ υ′ execution two

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) λ ` c : ρ c is well-typed

(b) µ ` c ⇒ µ′ execution one

(c) υ ` c ⇒ υ′ execution two

(d) dom(µ) = dom(υ) = dom(λ)

(e) υ(l) = µ(l) for all l such that λ(l) ≤ τ the same low inputs

CS 711: Language-Based Security and Information Flow 7

Noninterference Theorem

Theorem 6.8 (Type Soundness) Suppose

(a) λ ` c : ρ c is well-typed

(b) µ ` c ⇒ µ′ execution one

(c) υ ` c ⇒ υ′ execution two

(d) dom(µ) = dom(υ) = dom(λ)

(e) υ(l) = µ(l) for all l such that λ(l) ≤ τ the same low inputs

Then υ′(l) = µ′(l) for all l such that λ(l) ≤ τ . the same low outputs

CS 711: Language-Based Security and Information Flow 7

Typing Arithmetic Operations

λ ; γ ` e : τ λ ; γ ` e′ : τ
λ ; γ ` e + e′ : τ

• Example:

x :L, y :H ` x : H x :L, y :H ` y : H
x :L, y :H ` x + y : H

• Subsumption rule:

λ ; γ ` e : τ ` τ ⊆ τ ′

λ ; γ ` e : τ ′

• Lemma 6.3: if λ ` e : τ , then for every l in e, λ(l) ≤ τ .

CS 711: Language-Based Security and Information Flow 8

Subtyping Rules

τ ≤ τ ′

` τ ⊆ τ ′
` τ ⊆ τ ′

` τ ′ cmd ⊆ τ cmd

` ρ ⊆ ρ
` ρ ⊆ ρ′ ` ρ′ ⊆ ρ′′

` ρ′ ⊆ ρ′′

Corollary: τ var is invariant with respect to τ .

τ = τ ′

` τ var ⊆ τ ′ var

CS 711: Language-Based Security and Information Flow 9

Typing Assignments

λ ; γ ` e : τ var λ ; γ ` e′ : τ
λ ; γ ` e := e′ : τ cmd

• The result of e′ can be stored in e.

• The assignment command updates a location with type

τ .

• Lemma 6.4: If λ ; γ ` c : τ cmd, then for every l assigned

to in c, v(l) ≤ τ .

CS 711: Language-Based Security and Information Flow 10

Typing Compositions

λ ; γ ` c : τ cmd λ ; γ ` c′ : τ cmd
λ ; γ ` c; c′ : τ cmd

• The subsumption rule masks the combination of two

command types:

λ ; γ ` c : τ cmd λ ; γ ` c′ : τ ′ cmd
λ ; γ ` c; c′ : τ u τ ′ cmd

CS 711: Language-Based Security and Information Flow 11

Typing IF and WHILE

λ ; γ ` e : τ λ ; γ ` c : τ cmd λ ; γ ` c′ : τ
λ ; γ ` if e then c else c′ : τ cmd

λ ; γ ` e : τ λ ; γ ` c : τ cmd
λ ; γ ` while e do c : τ cmd

• To prevent implicit flows: c and c′ can any update location l that

satisfies type(e) ≤ λ(l).

CS 711: Language-Based Security and Information Flow 12

Typing LETVAR

λ ; γ ` e : τ λ ; γ[x :τ var] ` c : τ ′ cmd
λ ; γ ` letvar x := e in c : τ ′ cmd

• The local variable x is not observable outside the

command.

• Similar to the function application: (λx.c)e.

CS 711: Language-Based Security and Information Flow 13

Proving the Noninterference Theorem

• By induction on one of the two evaluations µ ` c ⇒ µ′.

• The core language is pleasantly simple.

– No first-class functions: the two executions run the same code.

• Syntax-directed typing rules

CS 711: Language-Based Security and Information Flow 14

After 1996

SLam Heintze&Riecke (98) Induction on typing derivation,
denotational semantics

The secure CPS
calculus

Zdancewic&Myers
(01)

Induction on evaluation, small-
step semantics

MLIF Pottier&Simonet (02) Induction on evalution, small-
step semantics for pairing two
executions

Java-light Banerjee&Naumann
(02)

Induction on typing derivation,
dentational semantics

CS 711: Language-Based Security and Information Flow 15

Discussion

• “How should secrets be introduced?”

– Safety Versus Secrecy, Dennis Volpano, 99

“Instead, we associate secrecy with the origin of a value which in

our case will be the free variables of a program. ... This origin-

view of secrecy differs from the view held by others working

with assorted lambda calculi and type system for secrecy [1,3].

There secrecy is associated with values like boolean constants. It

does not seem sensible to attribute any level of security to such

constants. After all, what exacly is high-security boolean?”

CS 711: Language-Based Security and Information Flow 16

• Is information-flow policy EM-enforceable?

– Suppose the operational semantics manipulates

security labels and does run-time label checking.

CS 711: Language-Based Security and Information Flow 17

