Quantifying Information Flow

Gavin Lowe

Nate Nystrom
CS 711
November 24, 2003

Introduction

e Some information flow is inevitable and acceptable.

e Previous work: can “low” user distinguish between two dif-
ferent behaviors of a “high” user to pass at least one bit of
iInformation?

e This work: how much information flows from “high” to “low”?

e Uses a process algebra approach (Timed CSP) to define the
iInformation flow quantity

Outline

e Timed CSP

e Examples

¢ Information flow quantity

e No information flow

e Bounded-time information flow

Information Flow Quantity, informally

e Two users: High and Low.
¢ High is malicious: he wants to pass information to Low.

¢ Information flow quantity (IFQ) is the number of behaviors of
High that are distinguishable from Low’s point of view.

e If there are NV such behaviors, then High can use the system
to pass logs N bits of information to Low.

e Note: log,1 = 0, so an absence of information flow is repre-
sented by an IFQ of 1.

Timed CSP

e A process P offers to participate in events, or may refuse
events

e Events represent atomic communication between two pro-
cesses
» Highevents h ¢ H;loweventsl € L; HNL =0
»> = H U L Is the set of standard events
> tock event represents passage of one time step
* All processes participate in tock; none can refuse it
> Ytoer = 2 U {tock}
e Channels c carry sets of events
» c.b IS an event of channel ¢

Timed CSP

STOP perform no events

WAIT ¢; P do nothing for ¢ time steps, then act like P

a— P perform event a, then act like P

POQ external ND choice decided by environment

PQ Internal ND choice outside the model

t .
Pr>Q act like P, become () after ¢ if no event occurs

P\ A act like P, but hide events of A

RUN(A) | perform any events of A, but never refuse A

CHAOS(A) | perform any events of A, and refuse any

P|l[4Q |run P and @ in parallel, sync on A U {tock}

Example

Pléh—>l—>STOPI;STOP
e Perform h, then perform [, then stop.
e Or: if h not performed in one step, stop.
e [FQ(P) =2

> If High performs A within the first time step, then Low can
perform an /.

> If High does not perform an A within the first time step, then
Low will see that the event was refused up to the first tock.

= High can use P, to pass one bit of information to Low.

Example: timing channels

ngh—>l—>STOPgSTDP
e Perform h, then perform [, then stop.
e Or: if h not performed in N steps, stop.
e [FQ(P))=N+1

» High can pass a value k£ € {0,..., N — 1} by performing h
at time k. Low will observe k£ tocks, then can perform |.

» High can pass an additional value by not performing any
event in the first IV steps.

e In P, Low can only tell whether High performed an event.
e In P, Low can tell when High performed an event.

Nondeterminism

¢ Previous work modeled nondeterminism probabilistically

e Better: consider all possible ways nondeterminism can be
resolved, and use the worst case

e Two types of nondeterminism:

» “don’t care”. P [(@ is an external choice resolved by the
environment when the initial event of P or () is performed:
P 5P P, 5 P} P 5 P P, % Pj
pOR,LPOPR, pPOPRLPOP, PORSP POPLP

» “don’t know™. P (@ is an internal choice resolved silently
by something outside the model:

PNPS P PMNPL PR

10

Example: nondeterminism

o hl — (ll — STOP 1 l2 — STOP 1
P3 B ([] h2 — (ll — STOP 1 lg — STDP) > ST0P

» Low can tell whether or not High has performed some event.

» Can Low distinguish the two behaviors of the system fol-
lowing h; and hy?

» Best case: If the two nondeterministic choices (') were
implemented identically, then 1FQ(P;) = 2

» \Worst case: If the first choice always selects the first ar-
gument and the second always selects the second, then
IFQ(P;) = 3.

11

Refusal traces

e A refusal is either

» a set X of events, meaning events of X are unavailable, or
» the null refusal, e, meaning nothing is refused

e A refusal trace is an alternating sequence of refusals and

events:
{b} a> o tock> {CL,b}

refuses b, performs a, refuses nothing, performs tock, refuses
a and b.

e R[P] is the set of refusal traces of P

12

Low’s strategy

e Low interacts with the system S through a test process T,
which repeatedly offers events in L U {tock}

e S and T are composed like this: (S'||. T) \ L
e I gives results on channel w via events w.k € X

results(S,T)= {k: In € N.o (2L o) 22 o ¢ R[(S ||, T)\ L]}

l.e., k£ such that the refusal trace of the composition starts
with an arbitrary number of tock events, then the event w.k Is
performed.

High's strategy

13

e Model High’s behavior by a process () with alphabet ;..

e High’s behavior includes the behavior of the scheduler.
e Low’s view of the system is given by (P ||z Q) \ H.

e Example: P; = (I — STOP [J h — STOP) é STOP
» High could pass one value by performing h:
QQ = h — STOP

» Or, High can pass a different value by not performing h:

Q=1 — STOP

14

Combining the strategies

e To pass value £ to Low, High will act like process Q(k)
e Low’s possible views of the system are the set:

{(Pllz QK)\ H : k € dom(Q)}
e Can a particular test 71" for Low distinguish these processes?
e Define
results(P, Q,T) = results((P ||y Q) \ H,T)

e Should only consider strategies where if High wants to send
k, then Low gets results £; that is,

ok(P,Q,T)=Vk € dom(Q).results(P, Q(k), T) = {k}

(and some other conditions I'm leaving out)

Example

15

e Consider the process:

1
P, =h — | — STOP > STOP

e and the strategy:
Q(0) =RUN(L)
Q(1)=h — RUN(L)
T = — SUCCESS(1) > SUCCESS(0)
where SUCCESS(k) = w.k — STOP

e (P ||y Q(0))\ H behaves like STOP
= results(Py, Q(0),T) = {0}

o (P ||y Q(1)) \ H behaves like | — STOP
= results(Py, Q(1),T) = {1}

16

Defining IFQ

e Given some process P and some strategy O and test 7", such
that ok(P, Q,T), the associated flow is the number of different
values that can be sent, i.e., # dom(Q).

e But, want to consider, not just P, but all refinements R of P
to account for possible ways nondeterminism is resolved:

P =7 P'=VT.results(P,T) = results(P',T)
P Cpr R=VT.results(P,T) O results(R,T)
e Then, assume the worst case scenario:
IFQ(P)=max{#dom(Q): PCr RN ok(R,Q,T)}

Example

17

e Consider the process:

1
P, = (I — STOP O h — STOP) > STOP

e and the strategy:

Q(0) = RUN(L)
Q(1) = h — RUN(L)

1
T = — SUCCESS(0) > SUCCESS(1)

e Note:
results(Ps, Q(0),T) = {0} and results(Ps, Q(1),

o [FQ(P;) = #dom(Q) = 2.

T) =

1}

18

Whenis IF(Q) =17

e P satisfies testing nondeducibility on composition (TNDC) iff:
VQ € CSPy.PllgSTOP =1 (P ||lg Q) \ H
where CSPy is the set of processes with alphabet HU{tock}.

e They strengthen TNDC to strong testing nondeducability on
composition (STNDC). P satisfies STNDC iff:

VR Jr P.R satisfies TDNC

e Let LEAK be an insecure process. LEAK M CHAOS(L) satisfies
TNDC, but not STNDC.

> This program is analogous to: [:= h [J[:= rand(2)

e Main result: their definition of IFQ gives IFQ of 1 to precisely
those processes that satisfy STNDC.

19

Bounded-time information flow

e Given time, some process may pass unbounded information
e \Want to compute the rate of information flow
e Define results obtainable from S with test 1" before time ¢ + 1:

resultsy(S, T)={k:3In <t.e (% o) LN R[S T)\ L]}
e Can analogously define:

results; (P, Q,T) = results;((P ||x Q) \ H,T)
ok P, Q,T)=Vk € dom(Q).results;(P, Q(k), T) = {k}
IFQ,(P)=max{#dom(Q): P Cr RA ok;(R,Q,T)}

e Then, long term information flow rate is:

log, IFQ,(P
LTIFR(P) 2 lim 222 F QL)

t—00

bits per step

20

Example

e Consider:
P=h — [— STOP

e Fix N and consider the strategy:
Q(k) =WAIT k;h — | — STOP fork=0,...,N —1
Q(N) = STOP
1
T(k)=1— SUCCESS(k)>T(k+1) fork=0,...,N —1
T(N) = SUCCESS(N)
e Low cannot distinguish more than N behaviors in N tocks.
e Therefore IFQ y(P) =N + 1, and LTIFR(P) = 0.

21

Conclusions

e Defined information flow quantity (IFQ) for a process P to be
the number of behaviors of High observable by Low.

e Defined a criterion (strong testing nondeducibility on compo-
sition) for which IFQ is 1.

e Defined information flow rate.

