
Quantifying Information Flow

Gavin Lowe

Nate Nystrom
CS 711

November 24, 2003

2

Introduction

• Some information flow is inevitable and acceptable.

• Previous work: can “low” user distinguish between two dif-
ferent behaviors of a “high” user to pass at least one bit of
information?

• This work: how much information flows from “high” to “low”?

• Uses a process algebra approach (Timed CSP) to define the
information flow quantity

3

Outline

• Timed CSP

• Examples

• Information flow quantity

• No information flow

• Bounded-time information flow

4

Information Flow Quantity, informally

• Two users: High and Low.

• High is malicious: he wants to pass information to Low.

• Information flow quantity (IFQ) is the number of behaviors of
High that are distinguishable from Low’s point of view.

• If there are N such behaviors, then High can use the system
to pass log2N bits of information to Low.

• Note: log21 = 0, so an absence of information flow is repre-
sented by an IFQ of 1.

5

Timed CSP

• A process P offers to participate in events, or may refuse
events

• Events represent atomic communication between two pro-
cesses
I High events h ∈ H; low events l ∈ L; H ∩ L = ∅
I Σ = H ∪ L is the set of standard events
I tock event represents passage of one time step
∗ All processes participate in tock ; none can refuse it

I Σtock = Σ ∪ {tock}
• Channels c carry sets of events

I c.5 is an event of channel c

6

Timed CSP

STOP perform no events
WAIT t; P do nothing for t time steps, then act like P
a → P perform event a, then act like P
P � Q external ND choice decided by environment
P uQ internal ND choice outside the model

P
t
B Q act like P , become Q after t if no event occurs

P \ A act like P , but hide events of A
RUN(A) perform any events of A, but never refuse A
CHAOS(A) perform any events of A, and refuse any
P ||A Q run P and Q in parallel, sync on A ∪ {tock}

7

Example

P1 =̂ h → l → STOP
1
B STOP

• Perform h, then perform l, then stop.

• Or: if h not performed in one step, stop.

• IFQ(P1) = 2

I If High performs h within the first time step, then Low can
perform an l.

I If High does not perform an h within the first time step, then
Low will see that the event was refused up to the first tock .

⇒ High can use P1 to pass one bit of information to Low.

8

Example: timing channels

P2 =̂ h → l → STOP
N
B STOP

• Perform h, then perform l, then stop.

• Or: if h not performed in N steps, stop.

• IFQ(P1) = N + 1

I High can pass a value k ∈ {0, . . . , N − 1} by performing h
at time k. Low will observe k tocks, then can perform l.

I High can pass an additional value by not performing any
event in the first N steps.

• In P1, Low can only tell whether High performed an event.

• In P2, Low can tell when High performed an event.

9

Nondeterminism

• Previous work modeled nondeterminism probabilistically

• Better: consider all possible ways nondeterminism can be
resolved, and use the worst case

• Two types of nondeterminism:
I “don’t care”: P � Q is an external choice resolved by the

environment when the initial event of P or Q is performed:
P1

τ−→ P ′
1

P1 � P2
τ−→ P ′

1 � P2

P2
τ−→ P ′

2

P1 � P2
τ−→ P1 � P ′

2

P1
a−→ P ′

1

P1 � P2
a−→ P ′

1

P2
a−→ P ′

2

P1 � P2
a−→ P ′

2

I “don’t know”: P u Q is an internal choice resolved silently
by something outside the model:

P1 u P2
τ−→ P1 P1 u P2

τ−→ P2

10

Example: nondeterminism

P3 =

(
h1 → (l1 → STOP u l2 → STOP

� h2 → (l1 → STOP u l2 → STOP)

)
1
B STOP

• IFQ(P3) = 3

I Low can tell whether or not High has performed some event.
I Can Low distinguish the two behaviors of the system fol-

lowing h1 and h2?
I Best case: If the two nondeterministic choices (u) were

implemented identically, then IFQ(P3) = 2
I Worst case: If the first choice always selects the first ar-

gument and the second always selects the second, then
IFQ(P3) = 3.

11

Refusal traces

• A refusal is either
I a set X of events, meaning events of X are unavailable, or
I the null refusal, •, meaning nothing is refused

• A refusal trace is an alternating sequence of refusals and
events:

{b} a−→ • tock−−→ {a, b}
refuses b, performs a, refuses nothing, performs tock , refuses
a and b.

• R[[P]] is the set of refusal traces of P

12

Low’s strategy

• Low interacts with the system S through a test process T ,
which repeatedly offers events in L ∪ {tock}

• S and T are composed like this: (S ||L T) \ L

• T gives results on channel ω via events ω.k 6∈ Σ

results(S, T) =̂{k : ∃n ∈ N.• (
tock−−→ •)n ω.k−→ • ∈ R[[(S ||L T)\L]]}

i.e., k such that the refusal trace of the composition starts
with an arbitrary number of tock events, then the event ω.k is
performed.

13

High’s strategy

• Model High’s behavior by a process Q with alphabet Σtock .

• High’s behavior includes the behavior of the scheduler.

• Low’s view of the system is given by (P ||Σ Q) \H.

• Example: P5 = (l → STOP � h → STOP)
1
B STOP

I High could pass one value by performing h:

Q =̂ h → STOP

I Or, High can pass a different value by not performing h:

Q =̂ l → STOP

14

Combining the strategies

• To pass value k to Low, High will act like process Q(k)

• Low’s possible views of the system are the set:

{(P ||Σ Q(k)) \H : k ∈ dom(Q)}

• Can a particular test T for Low distinguish these processes?

• Define

results(P, Q, T) =̂ results((P ||Σ Q) \H, T)

• Should only consider strategies where if High wants to send
k, then Low gets results k; that is,

ok (P,Q, T) =̂ ∀k ∈ dom(Q).results(P,Q(k), T) = {k}
(and some other conditions I’m leaving out)

15

Example

• Consider the process:

P1 =̂ h → l → STOP
1
B STOP

• and the strategy:

Q(0) =̂ RUN(L)

Q(1) =̂ h → RUN(L)

T =̂ l → SUCCESS(1)
1
B SUCCESS(0)

where SUCCESS(k) =̂ ω.k → STOP

• (P1 ||Σ Q(0)) \H behaves like STOP

⇒ results(P1,Q(0), T) = {0}
• (P1 ||Σ Q(1)) \H behaves like l → STOP

⇒ results(P1,Q(1), T) = {1}

16

Defining IFQ

• Given some process P and some strategyQ and test T , such
that ok (P,Q, T), the associated flow is the number of different
values that can be sent, i.e., # dom(Q).

• But, want to consider, not just P , but all refinements R of P
to account for possible ways nondeterminism is resolved:

P ≡T P ′ =̂ ∀T.results(P, T) = results(P ′, T)

P vT R =̂ ∀T.results(P, T) ⊇ results(R, T)

• Then, assume the worst case scenario:

IFQ(P) =̂ max{# dom(Q) : P vT R ∧ ok (R,Q, T)}

17

Example

• Consider the process:

P5 =̂ (l → STOP � h → STOP)
1
B STOP

• and the strategy:

Q(0) =̂ RUN(L)

Q(1) =̂ h → RUN(L)

T =̂ l → SUCCESS(0)
1
B SUCCESS(1)

• Note:

results(P5,Q(0), T) = {0} and results(P5,Q(1), T) = {1}

• IFQ(P5) = # dom(Q) = 2.

18

When is IFQ = 1?

• P satisfies testing nondeducibility on composition (TNDC) iff:

∀Q ∈ CSPH.P ||H STOP ≡T (P ||H Q) \H

where CSPH is the set of processes with alphabet H∪{tock}.
• They strengthen TNDC to strong testing nondeducability on

composition (STNDC). P satisfies STNDC iff:

∀R wT P.R satisfies TDNC

• Let LEAK be an insecure process. LEAK u CHAOS(L) satisfies
TNDC, but not STNDC.

I This program is analogous to: l := h � l := rand(2)

• Main result: their definition of IFQ gives IFQ of 1 to precisely
those processes that satisfy STNDC.

19

Bounded-time information flow

• Given time, some process may pass unbounded information

• Want to compute the rate of information flow

• Define results obtainable from S with test T before time t + 1:

results t(S, T) =̂{k : ∃n ≤ t.• (
tock−−→ •)n ω.k−→ • ∈ R[[(S ||L T)\L]]}

• Can analogously define:

results t(P,Q, T) =̂ results t((P ||Σ Q) \H, T)

ok t(P,Q, T) =̂ ∀k ∈ dom(Q).results t(P,Q(k), T) = {k}
IFQ t(P) =̂ max{# dom(Q) : P vT R ∧ ok t(R,Q, T)}

• Then, long term information flow rate is:

LTIFR(P) =̂ lim
t→∞

log2 IFQ t(P)

t
bits per step

20

Example

• Consider:
P =̂ h → l → STOP

• Fix N and consider the strategy:

Q(k) = WAIT k; h → l → STOP for k = 0, . . . , N − 1

Q(N) = STOP

T (k) = l → SUCCESS(k)
1
B T (k + 1) for k = 0, . . . , N − 1

T (N) = SUCCESS(N)

• Low cannot distinguish more than N behaviors in N tocks.

• Therefore IFQN(P) = N + 1, and LTIFR(P) = 0.

21

Conclusions

• Defined information flow quantity (IFQ) for a process P to be
the number of behaviors of High observable by Low.

• Defined a criterion (strong testing nondeducibility on compo-
sition) for which IFQ is 1.

• Defined information flow rate.

