
1

CS 711
Advanced Programming Languages Seminar

Language-Based Security and Information Flow

Understanding Stack Inspection

Fall 2003
Andrew Myers

Cornell University
www.cs.cornell.edu/courses/cs711

CS 711 3 Sept 2003 2

Java
• Java is a type-safe language in which type 

safety is security-critical
• Memory safety: programs cannot fabricate 

pointers to memory
• Encapsulation: private fields, methods of 

objects cannot be accessed without using 
object operations

• Bytecode verifier ensures compiled bytecode
is type-safe

CS 711 3 Sept 2003 3

Java stack inspection
• Java goal: execute untrusted code on same 

machine, address space as trusted code
• Early Java security model based on 

“sandbox” model
– applets isolated from each other (sort of) by 

inability to name each others’ classes
– Access mediated by capability model
– need type safety + inability to generate arbitrary 

object refs (enforce encapsulation)
– Hard to apply applet-specific security policies, and 

capabilities leak
• Stack in[tro]spection intended to fix it…

CS 711 3 Sept 2003 4

Objects as capabilities
• Single Java VM may contain processes with 

different levels of privilege (e.g. different 
applets)

• Some objects are capabilities [DV66] to 
perform security-relevant operations:
FileReader f = new FileReader(“/etc/passwd”);
// now use “f” to read password file

• Original 1.0 security model: use type safety, 
encapsulation to prevent untrusted applets 
from accessing capabilities in same VM

• Problem: tricky to prevent capabilities from 
leaking (downcasts, reflection, …)

CS 711 3 Sept 2003 5

Java Stack Inspection
• Dynamic authorization mechanism

– close (in spirit) to Unix effective UID
– attenuation and amplification of privilege

• but with a richer notion of context
– operation can be good in one context and bad in 

another
– Operations represented by targets
– E.g: local file access 

• may want to block applets from doing this
• but what about accessing a font to display something?

CS 711 3 Sept 2003 6

Security operations
• Each method has an associated protection domain

– e.g., applet or local
• doPrivileged(P){S}:  

– fails if method's domain does not have priv. P.
– switches from the caller's domain to the method's while 

executing statement S (think setuid).
• checkPrivilege(P) walks up stack S doing:

for (f := pop(S); !empty(S) ; f := pop(S)) {
if domain(f) does not have priv. P then error;
if f is a doPrivileged frame then break;

}

• Very operational description! But ensures integrity of 
control flow leading to a security-critical operation



2

CS 711 3 Sept 2003 7

Example
Font Library:
...
doPrivileged(ReadFiles) {

load("Courier");
}
...

FileIO:
...
checkPrivilege(ReadFiles);
read();
...

Font library
load

read
…

Applet
stack frames

Requires:
• Privilege enabled by some caller (applet can’t do this!)
• All code between enabling and operation is trustworthy

CS 711 3 Sept 2003 8

Some pros and cons?
• Pros:

– rich, dynamic notion of context that tracks some of 
the history of the computation.

– low overhead, no real state needed.
• Cons:

– implementation-driven (walking up stacks)
– policy is smeared over program
– possible to code around the limited history

• e.g., by having applets return objects that are invoked 
after the applet's frames are popped.

– danger of over/under-amplification

CS 711 3 Sept 2003 9

Logic model
• Paper: uses ABLP authentication logic to describe 

stack inspection
• Code, stack frames, targets represented by principals
• Logic: principal P can speak for Pʹ (P⇒Pʹ) and can 

say things
– Models relationship between code signer, code:

• Ksigner⇒Signer
• Ksigner says Code⇒Signer 
• Code⇒Signer
• Frame⇒Code
• Frame⇒Signer

– Models relationships between principals and groups
– Models relation between targets (macro targets, implies)

CS 711 3 Sept 2003 10

Reasoning procedure
• EF is environment of frame F:

– Frame credentials Φ established by code signing
– Belief set BF from enablePrivilege(…) calls
– Access matrix  AVM expressed as set P⇒T

• Result: success of stack inspection implies 
existence of ABLP proof of EF ⊃ Ok(T) for 
target T
– If we have F1 says F2 says…Fk says Ok(T)

• via BF

– And Fi ⇒T, 1 ≤ i ≤ k
• via Φ (Fi⇒P),  AVM (P⇒T)

– derive T says Ok(T)

CS 711 3 Sept 2003 11

Security-passing style
• Idea: do reasoning ahead of time, pass 

authorizations or belief set down the stack
– no special JVM support needed
– permits more compiler optimization via dead-code 

elimination, inlining, tail calls?

CS 711 3 Sept 2003 12

Stack inspection over RPC
• Idea: use security-passing style to support 

stack inspection across RPC
– Send belief set with remote call
– Beliefs are “said” by caller, i.e. signed by KCVM

– Receiver gets
KCVM says K1 says…says Kk says Ok(T)

where Fi ⇒ Ki and Ki⇒Pi ⇒… ⇒T
• Effect: beliefs from untrusted machine are 

ignored
• Equivalent to distributed stack walk?

AVM



3

CS 711 3 Sept 2003 13

Some questions
• Is this a useful formalization?
• disablePrivilege = revocation?
• What doesn’t this do?
• Is security-passing style an optimization? Can 

we do better?
• Is proposed RPC mechanism flexible 

enough?


