
1

CS 711
Advanced Programming Languages Seminar
Language-Based Security and 

Information Flow

Fall 2003
Andrew Myers

Cornell University
www.cs.cornell.edu/Courses/cs711

CS 711 Fall 2003Lecture 1 2

Language-based security

• Language-based security: using language 
tools to specify and enforce security
– End-to-end security specifications
– Program analysis
– Program transformation

• This seminar: explicitly integrating security 
policies into the programming model
– Programmers need help writing secure 

applications
– What’s the right programming model to achieve 

this?

CS 711 Fall 2003Lecture 1 3

Explicit security models

• How can we specify security requirements?
– Access control policies?
– Confidentiality? Availability? Anonymity?

• Static or dynamic enforcement?
• How to show that complex systems/programs 

satisfy security requirements?
– Formal validation
– Scalable, modular analysis

• How should security requirements appear in 
or be connected to programs?
– Program annotations? External specifications?

CS 711 Fall 2003Lecture 1 4

Not about:

• Buffer overruns
• Proof-carrying code
• Memory safety
• Type safety

Instead: How to prevent attacks that misuse or 
exploit application code but don’t violate 
“simple” safety properties?

CS 711 Fall 2003Lecture 1 5

Plan of action
• Participants participate!
• Read recent papers on language-based security

(+ a few seminal papers)
• Some lectures for background

– 611 dependency only later in course
• 35-minute student presentation, 15-30 minute 

discussion
– Presentation: review paper, kick off discussion
– Each student: 1-2 presentations

• Readers:
– Come prepared with issues, questions, criticisms
– Speak up (constructively)

• Final project or survey
– 10-minute presentation
– One paragraph proposal due Nov. 3

CS 711 Fall 2003Lecture 1 6

Language-based security models
• Access control

“You can’t scram the core unless you are a reactor supervisor”
– Principals/authentication
– Capabilities
– Static access control
– Java stack inspection

• Information flow control
“The plane’s location should only be known by traffic 

controllers” 
– Confidentiality, integrity
– Absolute security?

• Need both and more
“The aggregate salaries in this demographic database are only 

accessible to subscribers who have paid”
– Inference controls, quantitative information flow, intransitive 

noninterference



2

CS 711 Fall 2003Lecture 1 7

Computer security

• Goal: prevent bad things from happening
– Clients not paying for services
– Critical services unavailable
– Confidential information leaked
– Important information damaged
– System used to violate law

CS 711 Fall 2003Lecture 1 8

When to enforce security

Possible times to respond to security violations:
• Before execution:

analyze, reject, rewrite
• During execution:

monitor, log, halt, change
• After execution:

roll back, restore, audit, sue, call police

CS 711 Fall 2003Lecture 1 9

Conventional security mechanisms

• Encryption, firewalls, memory protection
• Treat the program as a black box

– Not fine-grained enough
– No help with validation
– Internal behavior of program is important!

CS 711 Fall 2003Lecture 1 10

Conventional �OS� security

• Program is black box
• Program talks to OS via protected interface 

(system calls)
– Multiplex hardware
– Isolate processes from each other
– Restrict access to persistent data (files)

+ Language-independent, simple

User-level Program

Operating System
Kernel

Hardware
memory

protection

CS 711 Fall 2003Lecture 1 11

OS: Coarse-grained control

• Operating system enforces security at
system call layer

• Hard to control application when it is not 
making system calls

• Security enforcement decisions made with 
regard to large-granularity operating-system 
abstractions
– Files, sockets, processes, ports

CS 711 Fall 2003Lecture 1 12

Need: fine-grained control
• Modern programs make security decisions with 

respect to application abstractions
– UI: access control at window level
– mobile code: no network send after file read
– E-commerce: no goods until payment
– intellectual property rights management

• Need extensible, reusable mechanism for enforcing 
security policies

• Language-based security can support an extensible 
protected interface to control access
– E.g., Java security
– Capabilities, access control lists, stack inspection

• Language-based security can also support analyses 
of information security



3

CS 711 Fall 2003Lecture 1 13

End-to-end security

• Near-term problem: ensuring programs are 
memory-safe, type-safe so fine-grained 
access control policies can be enforced

• Long-term problem: ensuring that complex 
(distributed) computing systems enforce 
system-wide information security policies
– Confidentiality
– Integrity
– Availability

• Confidentiality, integrity: end-to-end security 
described by information-flow policies

CS 711 Fall 2003Lecture 1 14

Information security: confidentiality

• Confidentiality: valuable information should not be 
leaked by computation

• Also known as secrecy; sometimes a distinction is 
made:
– Secrecy: information itself is not leaked
– Confidentiality: nothing can be learned about information

• Simple (access control) version:
– Only authorized processes can read from a file
– But… when should a process be “authorized” ?

• End-to-end version:
– Information should not be improperly released by a 

computation no matter how it is used
– Requires tracking information flow in system
– Encryption provides end-to-end secrecy—but prevents 

computation

CS 711 Fall 2003Lecture 1 15

Information security: integrity

• Integrity: valuable information should not be 
damaged by computation

• Simple (access control) version:
– Only authorized processes can write to a file
– But… when should a process be “authorized”

• End-to-end version:
– Information should not be updated on the basis of 

less trustworthy information
– Requires tracking information flow in system

CS 711 Fall 2003Lecture 1 16

Availability

• System is responsive to requests
• DoS attacks: attempts to destroy availability 

(perhaps by cutting off network access)
• Fault tolerance: system can recover from 

faults (failures), remain available, reliable
• Benign faults: not directed by an adversary

– Usual province of fault tolerance
• Malicious or Byzantine faults: adversary can 

choose time and nature of fault
– Byzantine faults are attempted security violations
– usually limited by not knowing some secret keys

CS 711 Fall 2003Lecture 1 17

Security Property Landscape

Memory safety
Type safety

Discretionary access control
Confinement

Availability

Fault Tolerance

Safety properties Liveness properties

Mandatory access control

Noninterference

Privacy

“System does exactly what it should”

Memory protection

Digital rights

Byzantine Fault Tolerance

CS 711 Fall 2003Lecture 1 18

Why put security in the program?

• Part of the programming model – can support 
conveniently

• Can tie program directly to policy and enforce
• Limits toproperties enforceable through 

libraries and hardware
• Support separate compilation and modular 

analysis
Why not?

separation of policy and program



4

CS 711 Fall 2003Lecture 1 19

Security specifications

• Is security proving that a program is correct? 
• Ordinary correctness specifications:

{P} S {Q}
precondition P postcondition Q

• How do we know the specification satisfies security 
requirements?

• Example:
– Precondition: all salaries in the database are nonnegative
– Postcondition: x contains the average salary

• Partial correctness assertions describe properties 
satisfies by every execution individually; information 
flow assertions compare every pair of executions


