
Compile Jif Programs for

Distributed Systems

[ZZNM 01, ZCMZ 03]

Lantian Zheng

Cornell University

zlt@cs.cornell.edu

November 10, 2003



Problem

• Jif: well-typed programs are secure. (Wow!)

• But the execution platform is in TCB.

– Do we have to trust Microsoft Windows?

– What if my laptop is stolen?

• Let users decide: blue pill or red pill.

– Users bear the risks associated with their decisions.

• What if there is no single host trusted by all the

participating users (principals) of a program?

Partitioning and Replication 1



Distributed Systems as the Platform:

Opportunity and Challenge

• Potential to be more secure
– Decentralized trustiness
∗ Run Alice’s code on Alice’s host, and run Bob’s code on Bob’s host.

– Boost security: replication, secret sharing.

– Avoid single point of failure.

• Weaker assumption: partial failure is a given.

→ requires fault detection or tolerance

• Synchronization

Partitioning and Replication 2



Architecture

Jif Source Program

?�
�

�
�Jif Compiler Frontend

?�
�

�
�Splitter Backend

?

Distributed System

(with trust specifications)

Execution

platform

Partitioning and Replication 3



A Simple Example

x = a + b

n n n n n
h1 h2

• x, a and b: trusted
by Alice and Bob.

• h1: trusted by Alice

• h2: trusted by Bob

Partitioning and Replication 4



A Simple Example

x = a + b

n n n n n
h1 h2

• x, a and b: trusted
by Alice and Bob.

• h1: trusted by Alice

• h2: trusted by Bob

'

&

$

%
H: trusted by Alice and Bob

Partitioning and Replication 5



A Simple Example

x = a + b

n n n n n
h1 h2

• x, a and b: trusted
by Alice and Bob.

• h1: trusted by Alice

• h2: trusted by Bob

'

&

$

%
H: trusted by Alice and Bob

?

Partitioning and Replication 6



A Simple Example

x = a + b

n n n n n
h1 h2

• x, a and b: trusted
by Alice and Bob.

• h1: trusted by Alice

• h2: trusted by Bob

'

&

$

%
H: trusted by Alice and Bob

?

x = a + b x = a + b

Partitioning and Replication 7



Overview of Code Generation

• Phase 1: [[e1; . . . ; en]] = e1@H1; . . . ; en@Hn

– Hi is trusted to run ei: P (Hi) ≤ P (ei)

– Hi is a virtual host.

→ provides a hook for applying replication.

• Phase 2: [[ei@Hi]] = ei1@h1 ‖ . . . ‖ eim@hm.

• Phase 3: insert calls to the run-time system after eij

– Transfer control between hosts

– Transfer data between hosts

Partitioning and Replication 8



Virtual Host

• Single host [ZZNM, SOSP 01]

• Simple replication (with hashing) [ZCMZ, Oakland 03]

• Quorum systems [future work]

• Secret sharing [future work]

Partitioning and Replication 9



Security Labels and Hosts

• General security policy: {o : f1, . . . , fn}.

– You can only hurt by friends.

– Confidentiality labels: {o : r1, . . . , rn}.

– Integrity labels: {o : w1, . . . , wn}

• Host labels: the trustworthiness of hosts.

– E.g. C(h) = {o : A,B} and I(h) = {o : A}

Partitioning and Replication 10



Simple Replication with Hash

• Replication increases integrity.

– Replicate data d on h1 and h2.

– Replicas need to be consistent.

– H = {h1, h2}: I(H) = I(h1)u I(h2)

– Sufficient trustiness: I(H) v I(d)

– E.g. I(d) = {o : congress}, I(h1) = {o : senate}, I(h2) = {o : house}.

• Replication may jeopardize confidentiality.

– E.g. C(d) = {o : senate}

– h1← d h2← md5(d, nonce)

– H = 〈{h1, h2}, {h2}〉: I(H) = I(h1)u I(h2) C(H) = C(h1).

– Implicit flow: Cif(H) = C(h1)uC(h2)

Partitioning and Replication 11



Replicating Computation

• H = {h1, . . . , hn}

→ [[e@H]] = e@h1 ‖ . . . ‖ e@hn

• H = 〈{h1, . . . , hn}, {hi1, . . . , him}〉

– If e is x = y, then [[e@H]] = e@h1 ‖ . . . ‖ e@hn.

– Otherwise, e@H cannot be compiled.

Partitioning and Replication 12



Run-time System: Control Transfer (I)

• e1@H1→ e2@H2

– H1 sends a request (run e2) to H2.

– H2 checks I(H1) v I(e2).

• Simple replication: H1 = {h1, . . . , hn} H2 = {h′
1, . . . , h

′
m}

– h1, . . . , hn send the request to h′
j.

– h′
j checks Gj:

d
1≤i≤n I(hi) v I(e2)t I(h′

j).

• Correctness: G1 ∧ . . . ∧Gm⇒ I(H1) v I(e2)

Partitioning and Replication 13



Run-time System: Control Transfer (II)

• What if I(e1) 6v I(e2)?

• Consider the whole control flow: . . . e0; e
′
1; . . . ; e

′
m; e1; e2.

– I(e0) v I(e2) and ∀i ∈ [1..m] I(e′i) 6v I(e2)

e0@H0
- e2@H2

�
�

�
�e′1@H ′1; . . . ; e

′
m@H ′m; e1@H1

A
A
A
A
A
A
A
AU

HHHHHHHHHHHY

1: run e′
1
, T

2: return with T

Partitioning and Replication 14



• Simple replication: H1 = {h1, . . . , hn}

– Each hi generates a token ti.

– T = {t1, . . . , tn}

– Return to hi by presenting ti.

Partitioning and Replication 15



Conclusion

• Hypothesis: it’s impossible or too expensive to

implement a provably secure platform.

• Key ideas:

– Let users specify the trustworthiness of hosts and take

the corresponding risk.

– Use distributed systems as the platform.

→ analyze and apply existing techniques: replication, secure

hashing, nonces...

• Technical contributions: splitter, run-time protocols.

Partitioning and Replication 16


