
1

Introduction to Information Flow

CS 711
17 Sep 03

Andrew Myers

CS 711, 17 Sep 03 2

Lampson, 1973
Identifies difficulty of confining information to a

process [actually a reprint of an earlier note]

– Problem later called information flow control
– Confinement is easy if you are draconian, but…
– Storage channels: explicit information

transmission (writes to sockets, files, assignments)
– Covert channels: transmit by mechanisms not

intended for signaling information (system load,
run time, locks)

– Too optimistic about masking covert channels

CS 711, 17 Sep 03 3

Bell and LaPadula, 1973
• An abstract model intended to control

information flow
– Objects have a security level (e.g., unclassified,

classified, secret, top secret)
– Subjects (think: principals, processes) have a level
– subjects cannot read objects at a higher level

(simple security property)
– subjects cannot write objects at a lower level

(*-property, confinement property)
• Coarse-grained
• Multics/AIM ring model

– doesn’t help users…
kernel

user

server

CS 711, 17 Sep 03 4

Generalizing levels to lattices
[Denning, 1976]
• Security levels may in general form a lattice

(or just a partial order)
• L1 U L2 means information can flow from level

L1 to level L2
– L2 describes greater confidentiality requirements

• Lattice supports reasoning about information
channels that merge and split|
(S=LUB, T=GLB)

c := a + b La S Lb U Lc
a,b := c Lc U La T Lb

CS 711, 17 Sep 03 5

Multilevel security policies
[Feiertag et al., 1977]
• Security level is a pair (A,C) where A is from

a totally ordered set (unclassified, …) and C
is a set of categories

• Example: (secret, {nuclear}) U (top secret,
{nuclear, iraq}) but U/ (secret, {iraq})

(A1,C1)U(A2,C2) iff A1 ≤ A2 & C1 ⊆ C2

CS 711, 17 Sep 03 6

Integrity
[Neumann et al., 1976; Biba, 1977]
• Integrity can also be described as a label
• Prevent: bad data from affecting good data
• L1 U L2 means information can flow from level

L1 to level L2
– L2 describes lower integrity requirements

• Integrity is dual to confidentiality

label
lattice

Increasing
confidentiality

Decreasing
integrity

less readable

less writable

more
secure

less
secure

2

CS 711, 17 Sep 03 7

Mandatory access control
• Department of Defense “Orange Book” (a.k.a.

DoD Trusted Computer System Evaluation Criteria, 1985)

• Controlling information flow with dynamic
mechanisms ala Bell-LaPadula

• Processes that read higher level information
may have their level increased to prevent
them from leaking it
– Label creep

• Single-level channels vs. multilevel channels
– Single-level channels check
– Multilevel channels explicitly label outgoing data

CS 711, 17 Sep 03 8

Implicit flows
• Covert storage channels arising from

control flow. Example:

boolean b := <some secret>
if (b) {

x = true; f();
}

• Creates information flow from b to x, need to
enforce Lb U Lx

• Run-time check requires whole process
labeled secret after branch

CS 711, 17 Sep 03 9

Static analysis of information flow

[Denning & Denning, 1977]
• Inference algorithm for determining whether

variables are high or low
• Program-counter label tracks implicit flows

– Computed by dataflow analysis

boolean b := <some secret>
if (b) {

x = true; f();
}

pc = ⊥

pc = ⊥

pc = Lb

CS 711, 17 Sep 03 10

Noninterference
[Cohen, 1977][Goguen & Meseguer, 1982]
• Inputs only affect outputs higher in the lattice
• An end-to-end, semantic definition of security

L H1

Lʹ H1ʹ

L H2

Lʹ H2ʹ

≈L

≈L

CS 711, 17 Sep 03 11

A formalization
• Key idea: behaviors of the system C don’t

reveal more information than the low inputs
• Consider applying C to inputs s. Define:

�C� s is the result of C applied to input s
s1 =L s2 means inputs s1 and s2 are indistinguishable

to the low user at level L. E.g., (H,L) ≈L (Hʹ,L)
�C�s1 ≈L �C�s2 means results are indistinguishable :

low view relation captures observational power

Noninterference for C: s1 =L s2 ⇒ �C�s1 ≈L �C�s2

“Low observer doesn’t learn anything new”

CS 711, 17 Sep 03 12

Unwinding condition
• Induction hypothesis for proving noninterference
• Assume �C� defined by a transition relation s→sʹ

s1 s1ʹ
h

s2

=L =L

s1 s1ʹ
l

s2

=L

s2ʹ
l

=L

• Each step of execution preserves equivalence
• By induction: whole trace preserves equivalence,

equivalence inputs produce equivalent results
• =L must be an equivalence—need transitivity

(s1=L s1ʹ)
(s1=/L s1ʹ)

3

CS 711, 17 Sep 03 13

Example
• “System” is a program with a memory
if h1 then h2:= 0

else h2:= 1;
l := 1
• Define: s = 〈c, m〉
• Define: 〈c1,m1〉 =L 〈c2, m2〉 if identical after:

– erasing high pc terms from ci
– erasing high memory locations from mi

• Choice of =L controls what low observer can see at a
moment in time

• Current command c included in state to allow proof
by induction

CS 711, 17 Sep 03 14

Example
if h1 then h2 := 0 else h2 := 1; l := 1,
{h1�0, h2�1, l�0}

if h1 then h2 := 0 else h2 := 1; l := 1,
{h1�1, h2�1, l�0}

h2 := 1; l := 1, {h1�0, h2�1, l�0}

h2 := 0; l := 1, {h1�1, h2�1, l�0}

l := 1, {h1�0, h2�1, l�0} l := 1, {h1�1, h2�0, l�0}

=L

=L

{h1�0, h2�1, l�1} {h1�1, h2�0, l�1}

=L

=L

CS 711, 17 Sep 03 15

Termination sensitivity
Is this program secure?
while h > 0 do h := h+1;
l := 1

{h�0, l�0} →* {h�0, l�1}

{h�1, l�0} →* {h�i, l�0} (∀i>0)

• Low observer learns value of h by observing
nontermination, change to l

• But… might want to ignore this channel to make
analysis feasible

CS 711, 17 Sep 03 16

Low views
• Low view relation ≈L on traces modulo =L determines

ability of attacker to observe system execution
• Termination-sensitive but no ability to see

intermediate states:
(s1, s2,…,sm) ≈L (sʹ1, sʹ2,…sʹn) if sm=L snʹ
& all infinite traces are related by ≈L

• Termination-insensitive:
(s1, s2,…,sm) ≈L (sʹ1, sʹ2,…sʹn) if sm=L snʹ
& infinite traces are related by ≈L to all traces

• Timing-sensitive:
(s1, s2,…,sn) ≈L (sʹ1, sʹ2,…sʹn) if sn=L snʹ
& all infinite traces are related by ≈L

• Not always an equivalence relation!

CS 711, 17 Sep 03 17

Security specifications
• Is security proving that a program is correct?
• Ordinary correctness specifications:

{P} S {Q}
precondition P postcondition Q

• How do we know the specification satisfies security
requirements?

• Example:
– Precondition: all salaries in the database are nonnegative
– Postcondition: x contains the average salary

• Partial correctness assertions describe properties
satisfies by every execution individually; information
flow assertions compare every pair of executions

