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Bell and LaPadula, 1973

An abstract model intended to control

information flow

— Objects have a security level (e.g., unclassified,
classified, secret, top secret)

— Subjects (think: principals, processes) have a level

— subjects cannot read objects at a higher level
(simple security property)

— subjects cannot write objects at a lower level
(*-property, confinement property)

(‘nqrcp-gminpd

Lampson, 1973

Identifies difficulty of confining information to a

Process [actually a reprint of an earlier note]

— Problem later called information flow control

— Confinement is easy if you are draconian, but...

— Storage channels: explicit information
transmission (writes to sockets, files, assignments)

— Covert channels: transmit by mechanisms not
intended for signaling information (system load,
run time, locks)

— Too optimistic about masking covert channels

Multics/AIM ring model
— doesn’t help users...
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Multilevel security policies

[Feiertag et al., 1977]

Security level is a pair (A,C) where A is from
a totally ordered set (unclassified, ...) and C
is a set of categories

Example: (secret, {nuclear}) = (top secret,
{nuclear, iraq}) but & (secret, {iraq})

(A;,C1)E(A,.C,) iff A, <A, & C,c C,

Generalizing levels to lattices

[Denning, 1976]

Security levels may in general form a lattice
(or just a partial order)

L, £ L, means information can flow from level
L, to level L,
— L, describes greater confidentiality requirements

Lattice supports reasoning about information
channels that merge and split|
(L=LUB, M=GLB)

c:=a+b

ab:=c
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Integrity

[Neumann et al., 1976; Biba, 1977]
Integrity can also be described as a label
Prevent: bad data from affecting good data
L, E L, means information can flow from level
L, to level L,
— L, describes lower integrity requirements
Integrity is dual to confidentiality

less readable

|attice less more
Decreasing Increasing Secure secure
integrity confidentiality
CST711,1

less writable
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Mandatory access control

Department of Defense “Orange Book” (ak.a.
DoD Trusted Computer System Evaluation Criteria, 1985)

Controlling information flow with dynamic
mechanisms ala Bell-LaPadula

Processes that read higher level information
may have their level increased to prevent
them from leaking it

— Label creep

Single-level channels vs. multilevel channels
— Single-level channels check

— Multilevel channels explicitly label outgoing data
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Static analysis of information flow

[Denning & Denning, 1977]
Inference algorithm for determining whether
variables are high or low
Program-counter label tracks implicit flows
— Computed by dataflow analysis
pc=1_,
boolean b := <some secret>

_ if (b) {
pe= L, — x = true; £();

}
pc= 1L —>
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A formalization

Key idea: behaviors of the system C don’t
reveal more information than the low inputs
Consider applying C to inputs s. Define:

[C] s is the result of C applied to input s

s, =.8, means inputss, and s, are indistin,guishable

B v v

[CTs, =, [Clls, means results are indistinguishable :
low view relation captures observational power

Noninterference for C: s, =, s, = [CIs, =, [Cls,

“Low observer doesn’t learn anything new”

Implicit flows

Covert storage channels arising from
control flow. Example:

boolean b := <some secret>
if (b) {
x = true; £();

}

Creates information flow from b to x, need to
enforce L, = L,

Run-time check requires whole process

labeled secret after branch

Noninterference

[Cohen, 1977][Goguen & Meseguer, 1982]
Inputs only affect outputs higher in the lattice
An end-to-end, semantic definition of security

B

Unwinding condition

Induction hypothesis for proving noninterference
Assume [C] defined by a transition relation s—s"

h
Sq S

,

(31:L51’) =L (S,#LS, )
s2

Each step of execution preserves equivalence

By induction: whole trace preserves equivalence,
equivalence inputs produce equivalent results

=_must be an equivalence—need transitivity
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Example

“System” is a program with a memory
if h, then h,:

Define: {c,,m,) = {c,, m,) if identical after:
— erasing high pc terms from ¢;
— erasing high memory locations from m;

Choice o controls what low observer can see at a

moment in time

Current command c included in state to allow proof
by induction
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Termination sensitivity

Is this program secure?

while h > 0 do h := h+l;
1 :=1

{h~o0,1~0}—>*{h~o0,1~1}
{h+~1,1~0}—>*{h~i, 10} (V>0

Low observer learns value of h by observing
nontermination, change to |

But... might want to ignore this channel to make
analysis feasible
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Security specifications

Is security proving that a program is correct?
Ordinary correctness specifications:
{P} s {Q}

precondition P =» postcondition Q
How do we know the specification satisfies security
requirements?
Example:
— Precondition: all salaries in the database are nonnegative
— Postcondition: x contains the average salary

Partial correctness assertions describe properties

satisfies by every execution individually; information

flow assertions compare every pair of executions
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Example

if h, then h, := 0 else h, :
{h *(i h,—1, l>—~0‘

if h, then h, := 0 else h, ;1=

{h,~1,h,~1, 10}

= 1; := 1, {h~0,h,~1, 1~0}

h,
‘ =, h, :=0; 1 := 1, {h~1,h=1,1-0}

1 :=1,{h~0,h,~1,1-0} = := 1, {h;~1,h,~0, 1~0}

l

{h,;~0,h,~1,1~1} = {h~»1,h,~0,1~1}

Low views

Low view relation =, on traces modulo =_determines
ability of attacker to observe system execution
Termination-sensitive but no ability to see
intermediate states

infinite traces are related by =
Termination-| |nsensmve
(s, ) ~L(\ I s 2
& infinite traces are related by I_to all traces
Timing-sensitive:
@, ) =, (5"}, -
& all infinite traces are related by
Not always an equivalence relatlon!




