Introduction to Information Flow

CS 711
17 Sep 03
Andrew Myers

Bell and LaPadula, 1973

An abstract model intended to control

information flow

— Objects have a security level (e.g., unclassified,
classified, secret, top secret)

— Subjects (think: principals, processes) have a level

— subjects cannot read objects at a higher level
(simple security property)

— subjects cannot write objects at a lower level
(*-property, confinement property)

(‘nqrcp-gminpd

Lampson, 1973

Identifies difficulty of confining information to a

Process [actually a reprint of an earlier note]

— Problem later called information flow control

— Confinement is easy if you are draconian, but...

— Storage channels: explicit information
transmission (writes to sockets, files, assignments)

— Covert channels: transmit by mechanisms not
intended for signaling information (system load,
run time, locks)

— Too optimistic about masking covert channels

Multics/AIM ring model
— doesn’t help users...

CS 711,17 Sep 03

Multilevel security policies

[Feiertag et al., 1977]

Security level is a pair (A,C) where A is from
a totally ordered set (unclassified, ...) and C
is a set of categories

Example: (secret, {nuclear}) = (top secret,
{nuclear, iraq}) but & (secret, {iraq})

(A;,C1)E(A,.C,) iff A, <A, & C,c C,

Generalizing levels to lattices

[Denning, 1976]

Security levels may in general form a lattice
(or just a partial order)

L, £ L, means information can flow from level
L, to level L,
— L, describes greater confidentiality requirements

Lattice supports reasoning about information
channels that merge and split|
(L=LUB, M=GLB)

c:=a+b

ab:=c

CS 711,11

Integrity

[Neumann et al., 1976; Biba, 1977]
Integrity can also be described as a label
Prevent: bad data from affecting good data
L, E L, means information can flow from level
L, to level L,
— L, describes lower integrity requirements
Integrity is dual to confidentiality

less readable

|attice less more
Decreasing Increasing Secure secure
integrity confidentiality
CST711,1

less writable

Sep 03

Mandatory access control

Department of Defense “Orange Book” (ak.a.
DoD Trusted Computer System Evaluation Criteria, 1985)

Controlling information flow with dynamic
mechanisms ala Bell-LaPadula

Processes that read higher level information
may have their level increased to prevent
them from leaking it

— Label creep

Single-level channels vs. multilevel channels
— Single-level channels check

— Multilevel channels explicitly label outgoing data

CS 711, 17 Sep 03

Static analysis of information flow

[Denning & Denning, 1977]
Inference algorithm for determining whether
variables are high or low
Program-counter label tracks implicit flows
— Computed by dataflow analysis
pc=1_,
boolean b := <some secret>

_ if (b) {
pe= L, — x = true; £();

}
pc= 1L —>

CS 711,17 Sep 03

A formalization

Key idea: behaviors of the system C don’t
reveal more information than the low inputs
Consider applying C to inputs s. Define:

[C] s is the result of C applied to input s

s, =.8, means inputss, and s, are indistin,guishable

B v v

[CTs, =, [Clls, means results are indistinguishable :
low view relation captures observational power

Noninterference for C: s, =, s, = [CIs, =, [Cls,

“Low observer doesn’t learn anything new”

Implicit flows

Covert storage channels arising from
control flow. Example:

boolean b := <some secret>
if (b) {
x = true; £();

}

Creates information flow from b to x, need to
enforce L, = L,

Run-time check requires whole process

labeled secret after branch

Noninterference

[Cohen, 1977][Goguen & Meseguer, 1982]
Inputs only affect outputs higher in the lattice
An end-to-end, semantic definition of security

B

Unwinding condition

Induction hypothesis for proving noninterference
Assume [C] defined by a transition relation s—s"

h
Sq S

,

(31:L51’) =L (S,#LS,)
s2

Each step of execution preserves equivalence

By induction: whole trace preserves equivalence,
equivalence inputs produce equivalent results

=_must be an equivalence—need transitivity

CS 711,17 Sep 03

Example

“System” is a program with a memory
if h, then h,:

Define: {c,,m,) = {c,, m,) if identical after:
— erasing high pc terms from ¢;
— erasing high memory locations from m;

Choice o controls what low observer can see at a

moment in time

Current command c included in state to allow proof
by induction

CS 711, 17 Sep 03

Termination sensitivity

Is this program secure?

while h > 0 do h := h+l;
1 :=1

{h~o0,1~0}—>*{h~o0,1~1}
{h+~1,1~0}—>*{h~i, 10} (V>0

Low observer learns value of h by observing
nontermination, change to |

But... might want to ignore this channel to make
analysis feasible

CS 711,17 Sep 03

Security specifications

Is security proving that a program is correct?
Ordinary correctness specifications:
{P} s {Q}

precondition P =» postcondition Q
How do we know the specification satisfies security
requirements?
Example:
— Precondition: all salaries in the database are nonnegative
— Postcondition: x contains the average salary

Partial correctness assertions describe properties

satisfies by every execution individually; information

flow assertions compare every pair of executions

CS 711,17 Sep 03

Example

if h, then h, := 0 else h, :
{h *(i h,—1, l>—~0‘

if h, then h, := 0 else h, ;1=

{h,~1,h,~1, 10}

= 1; := 1, {h~0,h,~1, 1~0}

h,
‘ =, h, :=0; 1 := 1, {h~1,h=1,1-0}

1 :=1,{h~0,h,~1,1-0} = := 1, {h;~1,h,~0, 1~0}

l

{h,;~0,h,~1,1~1} = {h~»1,h,~0,1~1}

Low views

Low view relation =, on traces modulo =_determines
ability of attacker to observe system execution
Termination-sensitive but no ability to see
intermediate states

infinite traces are related by =
Termination-| |nsensmve
(s,) ~L(\ I s 2
& infinite traces are related by I_to all traces
Timing-sensitive:
@,) =, (5"}, -
& all infinite traces are related by
Not always an equivalence relatlon!

