
1

Detecting Format String
Vulnerabilities with Type Qualifiers
Shankar, Talwar, Foster, & Wagner (May 2001)

James Ezick
CS 711: Advanced PL Seminar on
Language Based Security and Information Flow
1 October 2003

Contributions

Type System for detecting “format
string vulnerabilities” in C
Technique for presenting the results
of the analysis to a user
Empirical results demonstrating
effectiveness at finding previously
unknown bugs with a low rate of false
positives

Format String Vulnerabilities
Arise from “design misfeatures” in the C
Standard Library + “problematic
implementation” of var-arg functions

printf(“%s”, buf); (correct)

printf(buf); (may be incorrect)

No checking is done, either at run-time or
compile-time, to verify that printf() is called
with the correct number and types of args.

Format String Vulnerabilities

printf(buf);

If buf contains a format specifier (e.g.,
“%s”), printf() will naively attempt to
read non-existent arguments off the
stack, most likely causing the
program to crash!

Format String Vulnerabilities

Other Examples Include:
syslog() : message logging function
setproctitle() : set X-window name

When combined with other tricks this
bug can be used to write to arbitrary
memory locations (see: “Format
String Attacks”, Tim Newsham, 2000)

Approach

A Type System!
Static, Type-theoretic Analysis
Combine user-supplied type quantifiers
(annotations) with a constraint-based
inference engine

Claim: This is superior to testing and
manual code inspection

All paths are created equal
Bugs manifest from remote code

2

Type System
Introduce two C type
quantifiers (tainted,
untainted)
Syntax rules mirror
const
Induce a subtyping
relationship:
untainted P < tainted P

Tainted ≈ “may be
tainted”

Examples:

tainted int foo();
return value should be
considerd tainted

int bar(untainted int x);
Argument must not be
tainted

Static Analysis

Input
A few user-provided taint-qualifiers
Type constraints inferred from syntax

Algorithm
Constraint solver to assign taint-qualifiers to
every variable (+ implicit pointer targets)

Output
Report if a solution to constraint system exists
Report any instance where a format string
command has a tainted argument

Example Constraint System

By transitivity:
tainted = genenv_ret_p = s_p = t_p ≤
printf_arg0_p = untainted

Incorrect, since tainted ≤ untainted does not hold

Example Generation

Identifiers are colored by inferred
qualifiers (tainted, untainted, either)
Constraint Dependence Graph
Paths in dependence graph from
tainted to untainted indicates a type
error
Display shortest paths via BFS, list
“hotspot” qualifers

Polymorphism
As presented,
algorithm is both
context- and flow-
insensitive
x is tainted by actual
parameter t, therefore
b is also tainted since
b = ret_id = x;
This problem is
trivially solved by
introducing
polymorphism on the
function’s qualified
type

Example:

char id(char x) {
return x;

}
…
tainted char t;
untainted char u;
char a, b;
a = id(t);
b = id(u);

Explicit Type Casts

Taint-qualifier is preserved through
ordinary type-casts
Casts to (void *) are matched as
deeply as possible, then all remaining
qualifiers are “collapsed” and equated
Programmer can “cast-away” taint:
char *x = (untainted char *) y;
x in now untainted regardless of y

3

Unsoundness of Casting

Collapsing
qualifiers on
structure fields
generated false-
positives
Qualifier-collapsing
does not fully
model casts from
pointers to ints

Variable Argument Functions

Cannot deal individually with variable
arguments
Grammar extended to qualify “…”
sprintf(s,”%s”,t)
Would like to infer s is tainted if t is
Add a constraint!

const Allows Deep Subtyping

Take advantage of “const” to relax
constraints

Example:
const char *s;
char *t;
…
s = t;

Replace “s_p = t_p” constraint with “t ≤ s and
t_p ≤ s_p”

Empirical Results

Preparation took 30-60 minutes each
System reliably found “all known bugs”
“Hotspots pinpointed the actual bug in most
cases” (2 out of 3?)

Other Techniques

Lexical Techniques
Perl’s taint mode
Static Bug Detection

LCLint
Meta-level compilation

Run-time techniques

Discussion

How much time is wasted dealing with
untainted data?
Analysis suffers from flow-insensitivity
Why not just use data-flow analysis
augmented with an OTS pointer-analysis?
Values: sets of tainted variables
Could use standard techniques to get
context-sensitivity, flow-sensitivity

