Detecting Format String

Vulnerabilities with Type Qualifiers
Shankar, Talwar, Foster, & Wagner (May 2001)

James Ezick

CS 711: Advanced PL Seminar on

Language Based Security and Information Flow
1 October 2003

Contributions

O Type System for detecting “format
string vulnerabilities” in C

O Technique for presenting the results
of the analysis to a user

O Empirical results demonstrating
effectiveness at finding previously
unknown bugs with a low rate of false
positives

Format String Vulnerabilities

O Arise from “design misfeatures” in the C
Standard Library + “problematic
implementation” of var-arg functions

printf(“%s”, buf); (correct)
printf(buf); (may be incorrect)

No checking is done, either at run-time or
compile-time, to verify that printf() is called
with the correct number and types of args.

Format String Vulnerabilities

printf(buf);

If buf contains a format specifier (e.g.,
“%s"), printf() will naively attempt to
read non-existent arguments off the
stack, most likely causing the
program to crash!

Format String Vulnerabilities

O Other Examples Include:
B syslog() : message logging function
B setproctitle() : set X-window name

O When combined with other tricks this
bug can be used to write to arbitrary
memory locations (see: “Format
String Attacks”, Tim Newsham, 2000)

Approach

O A Type System!
B Static, Type-theoretic Analysis
B Combine user-supplied type quantifiers
(annotations) with a constraint-based
inference engine
O Claim: This is superior to testing and
manual code inspection
B All paths are created equal
B Bugs manifest from remote code

Type System

Static Analysis

O Introduce two C type
quantifiers (tainted,
untainted)

O Syntax rules mirror
const

O Induce a subtyping
relationship:
untainted P < tainted P

O Tainted = “may be
tainted”

Examples:

tainted int foo();
return value should be
considerd tainted

int bar(untainted int x);

Argument must not be
tainted

O Input
m A few user-provided taint-qualifiers
B Type constraints inferred from syntax
O Algorithm
B Constraint solver to assign taint-qualifiers to
every variable (+ implicit pointer targets)
O Output
B Report if a solution to constraint system exists

B Report any instance where a format string
command has a tainted argument

Example Generation

Example Constraint System

O By transitivity:

tainted = genenv_ret p=s p=t p =<
printf_arg0_p = untainted

Incorrect, since tainted < untainted does not hold

[Identifiers are colored by inferred
qualifiers (tainted, untainted, either)

O Constraint Dependence Graph

O Paths in dependence graph from
tainted to untainted indicates a type
error

O Display shortest paths via BFS, list
“hotspot” qualifers

Polymorphism

Explicit Type Casts

O As presented,
algorithm is both
context- and flow-
insensitive

O x is tainted by actual

arameter t, therefore
is also tainted since
b =ret_id = x;

O This problem is
trivially solved by
introducing
Polymorphism on the
unction’s qualified
type

Example:
char id(char x) {

return x;
¥

tainted char t;
untainted char u;

char a, b;
a = id(t);
b = id(u);

O Taint-qualifier is preserved through
ordinary type-casts

O Casts to (void *) are matched as
deeply as possible, then all remaining
qualifiers are “collapsed” and equated

O Programmer can “cast-away” taint:
char *x = (untainted char *) y;
X in now untainted regardless of y

Unsoundness of Casting

O Collapsing
qualifiers on
structure fields
generated false-
positives

O Qualifier-collapsing
does not fully
model casts from
pointers to ints

Variable Argument Functions

O Cannot deal individually with variable
arguments

O Grammar extended to qualify “...”

O sprintf(s,”%s",t)
Would like to infer s is tainted if t is
Add a constraint!

const Allows Deep Subtyping

O Take advantage of “const” to relax
constraints

Example:
const char *s;
char *t;

s=t;
Replace “s_p = t_p” constraint with *t < s and
t.p<s_p”

Empirical Results

O Preparation took 30-60 minutes each
O System reliably found “all known bugs”

O “Hotspots pinpointed the actual bug in most
cases” (2 out of 37?)

Other Techniques

O Lexical Techniques
O Perl’s taint mode
O Static Bug Detection
m | Clint
B Meta-level compilation
O Run-time techniques

Discussion

O How much time is wasted dealing with
untainted data?

O Analysis suffers from flow-insensitivity

O Why not just use data-flow analysis
augmented with an OTS pointer-analysis?

O Values: sets of tainted variables

O Could use standard techniques to get
context-sensitivity, flow-sensitivity

