A Core Calculus of Dependency

Abadi, Banerjee,
Heintze, Riecke

POPL 99

CS711
Amal Ahmed

Contributions

m Identify a central notion of dependency

m Connection between secure information flow and
3 types of program analyses
= Program slicing
= Binding-time analysis
= Call-tracking

m Develop dependency core calculus (DCC) and
translate calculi into DCC

m Define a semantic model for DCC that simplifies
noninterference proofs

Amal Ahmed CS 711 - 15 October 2003 2

Outline

= Why information flow(SLam), slicing, binding-
time, call-tracking are all dependency analyses

m SlLam proof of noninterference

= uses a logical-relations argument and
denotational semantics

= Heintze and Riecke, POPL '98

m Dependency Core Calculus

Amal Ahmed CS 711 - 15 October 2003 B

Information Flow — SLam

m Heintze and Riecke, POPL 98
m Lambda calculus with security annotations on
types
m Well-typed programs have noninterference
property:
= No information flows from high-security
values to low-security ones

= Low-security data does not depend on high-
security data.

Amal Ahmed CS 711 - 15 October 2003 4

Information Flow — SLam
m Types s := (tx)

t::=bool | s»>s|s+s|sxs H
k € Security Lattice

K, K. Kg
= Exprs W

bv ::= true | false | xx.e K K, Ks
vV i:= bv,
e:i=x|v | (ee’) | protect, e | L

if e then el else e2

Amal Ahmed CS 711 - 15 October 2003 3

SLam - Typing Rules

[True] I |- true,:(bool,x)
[False] I |- false:(bool,x)
[Lam] I',x:isl|-e:s2

I'|-(Ax:sl.e), : (s1>s2,x)

[If] T |-e:(bool,x) T'l-el:s I'l-e2:s
I'-ifethenelelsee2:s

Amal Ahmed CS 711 - 15 October 2003 6

SLam - Typing Rules

m Example
if truey then true| else false, : (bool,L) Wrong!

m Increase security level of result type to security
level of “truey”. Let (t,xl)ex2 = (t,x1®k2)
[If] T |-e:(bool,x) I|-el:s I|l-e2:s
I'|-if e then el else e2 : sex

m if truey then true, else false_ : (bool,L)eH
m (bool,L)eH = (bool,L® H) = (bool,H)

Amal Ahmed CS 711 - 15 October 2003 7

SLam - Typing Rules

m Principle: At every elimination rule, properties
(security level) of the destructed constructor are
transferred to the result type of the expression.

n [App] I'|-e:(s1>s2,x) I'-e’:sl
[|-(ee’) : s2ex

Amal Ahmed CS 711 - 15 October 2003 8

SLam - Typing Rules

[Protect] I'-e:s

I |- (protectce) : sex

SLam - Subtyping

[SubBool] K [(|
(bool,x) < (bool,«")

[SubFun] kCx' sl'<sl s2 <s2'
(s1>s2,x) < (s1'>s2’,x")

[SubTrans] sl <s2 s2 <s3
sl <s3
Amal Ahmed CS 711 - 15 October 2003 10

[Sub] F-e:s s<s’

Iy = elis/
Amal Ahmed CS 711 - 15 October 2003 9
Slicing

m Determine which parts of the program
(subterms) may contribute to the output

m Parts that do not contribute may be replaced by
any expression of the same type

m Idea: label each part of the program and track
dependency using type system

Amal Ahmed CS 711 - 15 October 2003 Ll

Slicing Calculus

m Types s = (tx)
t::=bool | s»s | ... {n1,n2,n3}
k e Security Lattice
{n1,n2} {n1,n3}{n2,n3}

Example: (Ax.true)false

(Ax:(bool,{n3}).true,,),1(false,3) {HW3}

Func: ((bool,{n3})>(bool,{n2}), {n1}) 1%
Prog: (bool,{n2})e{n1} = (bool,{n1,n2})

Amal Ahmed CS 711 - 15 October 2003 12

Binding-Time Calculus

Separate static from dynamic computation

Dynamic values may be replaced by any expr of
same type without affecting static results

m Types s = (tx)
t::=bool | s>s| ...
k ::= sta | dyn where sta < dyn

Example: (1x:(bool,dyn).truesis)sta €dyn
Func: ((bool,dyn)>(bool,sta),sta)
Prog: (bool,sta) - i.e., result cannot depend on e

Amal Ahmed CS 711 - 15 October 2003 18}

Call-tracking Calculus

m Determine which functions are called during
evaluation; others may be replaced

m Types s ::=bool | s >*s | ...
k ::= <sets of labels of lambda exprs>
[Lam] I,x:sl|-e:s2,x

[|- (Ax:sl. e)q:(s1 > {nexs2),&

[App] I'|-e:(sl »>¢s2),xl I'|-e’:sl,x2
I'l-(ee’) :s2, koxklaox2

Amal Ahmed CS 711 - 15 October 2003 14

SLam

m Operational Semantics
((rAx:s.e)cVv) — (protect, e[v/x])
(if true, then el else e2) — (protect, el)

(protect, v) — vex

Amal Ahmed CS 711 - 15 October 2003 15}

SLam - Proving Noninterference

= Give a denotational semantics for SLam

= A high-security computation can depend on a
high-security input, but a low-security
computation cannot; the 2 computations have
different “views” of the same high-security input
= ((bool,H)>(bool,L),L) looks like Va.a>bool
= ((bool,H)>(bool,L),H) looks like bool>bool

m For each type (t,x), specify CPO as well as a
view for each level kelattice

m Functions must preserve the view

Amal Ahmed CS 711 - 15 October 2003 16

SLam - Specifying Views

m Views can be specified using binary relations
If (x,y) e R then x and y “look the same”

Concrete View Abstract View
true false

true false

true 1 0 true 1 1
false| 0 il false il 1
Amal Ahmed CS 711 - 15 October 2003 187}

SLam - Semantics of Types

|(bool,x)| = {true,false}
m |(s1>s2,x)| = |s1l]| >p |s2|
= all partial continuous functions from |s1]| to |s2|

m R[s,x] = “view of s at level x”

m R[s,x] < |s| x |s|

Amal Ahmed CS 711 - 15 October 2003 18

SLam - Views of Types

m If s = (t,x), then for all lower ¥’ (xZ x’)
R[s,x’] = |[s| x|s|] = A

m If s = (bool,x) and x £ x’ then
R[s,x’] = C

m If s = (s1»s2,x) and k c ¥’ then
Rs,x’1 = {(f,9) | v(X,y)eR[s1,x’].
(f(x),9(y))eR[s2 e,k]}

Amal Ahmed CS 711 - 15 October 2003 19

Adequacy, Related Environments

m Typing context T = x1:s1, x2:s2, ..., Xn:sn
IT] = |s1] x [s2] X ... X |sn|
Environment n e|l|
m Theorem (Adequacy):
If & |- e:s then [[D |- e:s]]n is defined iff e »>* v

m Theorem (Related Environments):

Suppose I |- e:s and n,n'e|T’| are related
environments at k, then

([[T |-e:s]In, [[T |-e:s]In’) € R[s,x]

Amal Ahmed CS 711 - 15 October 2003 20

Equivalence, Noninterference

m C[] is a context with a hole

m e ~e' = whenever es*vande —>* v, v=v’
m Theorem(Noninterference):

Suppose I |- ei:(t,x) and & |- C[el]:(bool,x")
where « z «’ then C[el] ~ C[e2].

Amal Ahmed CS 711 - 15 October 2003 21

Proof

m Consider open term: vy:(t,x) |- Cly] : (bool,")

di = [[@ |-ei:(t,)]]10)
m We must show (d1,d2)e R[(t,x),«']
= Proof: Since ¥ Z k' R[(t,x), k'] is abstract.
m fi = [[y:(t,x) |- C[y] : (bool,x")]]di
m By Related Environments theorem, we have:
(f1, f2) e R[(bool,x"), x'] = C
m Thus, f1=f2. Easy to show that
fi = [[D |- v:i(bool,x')]](). Since vi~v2, done.

Amal Ahmed CS 711 - 15 October 2003 22

Recursion

m Need to deal with termination issues

m Call-by-name vs. Call-by-value
= Strong vs. Weak noninterference

m Strong Noninterference: if a program terminates
with one input and produces result v, then it also
terminates with any other “related” input and
the result is related to v

m Weak Noninterference: if 2 related inputs cause
a program to terminate the outputs are related

Amal Ahmed CS 711 - 15 October 2003 23

Dependency Core Calculus

m Types s::=unit| s>s | s, | T(s) | s+s | sxs
k € Security Lattice

m Exprs bv ::= () | Ax.e
e:ii=x|bve| (ee)|lifte|nce ...

m Pointed types — to deal with termination

m Protected types
= if x C k1, then T, (s) is protected at level k

Amal Ahmed CS 711 - 15 October 2003 24

DCC - Protected Types

DT

m DCC: CBN operational semantics

= easy to translate CBN calculi to DCC and prove strong
interference

= hard to translate CBV calculi to DCC

m VDCC: CBN operational semantics, but definition
of protected types is slightly different
= if t is protected at level k then t, is protected at level

= can translate CBV calculi to vDCC and prove weak
noninterference

Amal Ahmed CS 711 - 15 October 2003 26

m Protected types

m if k C x1, then T (s) is protected at level «

= T, adjusts the views: makes views of lower security

levels abstract
m Semantics of protected types
= |T(s)| = Is|
m R[T(s),x'] = R[s, k'] ifxck
= |s| x |s| otherwise

Amal Ahmed CS 711 - 15 October 2003 25
Discussion
m Limitations?

= Cannot translate Davies and Pfenning’s binding-time
analysis into DCC - cannot model coercion of run-time
objects to compile-time objects

m Can DCC help with other analyses?
= semantic dependencies in optimizing compilers
= region-based memory management

m How about a call-by-value DCC?

= Uniform Type Structure for Secure Information Flow —
Honda, Yoshida, POPL 02

= Translate DCCv into linear/affice Pi-calc for info flow
m Extensions: imperative features, concurrency, ...

Amal Ahmed CS 711 - 15 October 2003 27

