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Contributions

Identify a central notion of dependency
Connection between secure information flow and 
3 types of program analyses 

Program slicing
Binding-time analysis
Call-tracking

Develop dependency core calculus (DCC) and 
translate calculi into DCC
Define a semantic model for DCC that simplifies 
noninterference proofs
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Outline

Why information flow(SLam), slicing, binding-
time, call-tracking are all dependency analyses

SLam proof of noninterference
uses a logical-relations argument and
denotational semantics
Heintze and Riecke, POPL ’98

Dependency Core Calculus 
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Information Flow – SLam 

Heintze and Riecke, POPL ’98
Lambda calculus with security annotations on 
types 
Well-typed programs have noninterference 
property:

No information flows from high-security 
values to low-security ones
Low-security data does not depend on high-
security data.
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Information Flow – SLam

Types s ::= (t,κ)
t ::= bool | s s | s+s | sxs
κ ∈ Security Lattice

Exprs
bv ::= true | false | λx.e

v ::= bvκ
e ::= x | v | (e e’) | protectκ e | 

if e then e1 else e2
LL

HH

κκ11 κκ22 κκ33

κκ44 κκ55 κκ66
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SLam – Typing Rules

[True]    Γ |− trueκ:(bool,κ)

[False] Γ |− falseκ:(bool,κ) 

[Lam] Γ,x:s1 |− e : s2
� Γ |− (λx:s1.e)κ : (s1 s2,κ)

[If] Γ |− e:(bool,κ)      Γ |− e1:s    Γ |− e2:s
Γ |− if e then e1 else e2 : s
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SLam – Typing Rules 

Example
if trueH then trueL else falseL : (bool,L) Wrong!

Increase security level of result type to security 
level of “trueH”.  Let  (t,κ1)• κ2 = (t, κ1⊕ κ2) 

[If] Γ |− e:(bool,κ)      Γ |− e1:s    Γ |− e2:s

Γ |− if e then e1 else e2 : s• κ

if trueH then trueL else falseL : (bool,L)•H 

(bool,L)•H = (bool,L ⊕ H) = (bool,H)
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SLam – Typing Rules

Principle: At every elimination rule, properties 
(security level) of the destructed constructor are 
transferred to the result type of the expression.

[App] Γ |− e:(s1 s2,κ)       Γ |− e’:s1

Γ |− (ee’) : s2• κ
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SLam – Typing Rules

[Protect] Γ |− e:s

Γ |− (protectκ e) : s• κ

[Sub]              Γ |− e : s s ≤ s’
Γ |− e : s’
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SLam – Subtyping

[SubBool] κ ⊑ κ’
(bool,κ) ≤ (bool,κ’)

[SubFun] κ ⊑ κ’ s1’ ≤ s1       s2 ≤ s2’
(s1 s2,κ) ≤ (s1’ s2’,κ’)

[SubTrans] s1 ≤ s2       s2 ≤ s3
s1 ≤ s3
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Slicing

Determine which parts of the program 
(subterms) may contribute to the output
Parts that do not contribute may be replaced by 
any expression of the same type
Idea: label each part of the program and track 
dependency using type system
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Slicing Calculus

Types s ::= (t,κ)
t ::= bool | s s | …
κ ∈ Security Lattice

Example: (λx.true)false

(λx:(bool,{n3}).truen2)n1(falsen3)

Func: ((bool,{n3}) (bool,{n2}), {n1})

Prog: (bool,{n2})•{n1} = (bool,{n1,n2})
∅∅

{n1,n2,n3}{n1,n2,n3}

{n1}{n1} {n2}{n2} {n3}{n3}

{n1,n2}{n1,n2} {n1,n3}{n1,n3}{n2,n3}{n2,n3}
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Binding-Time Calculus

Separate static from dynamic computation
Dynamic values may be replaced by any expr of 
same type without affecting static results 
Types s ::= (t,κ)

t ::= bool | s s | …
κ ::= sta | dyn where sta ≤ dyn

Example: (λx:(bool,dyn).truesta)sta edyn

Func: ((bool,dyn) (bool,sta),sta)
Prog: (bool,sta) – i.e., result cannot depend on e
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Call-tracking Calculus

Determine which functions are called during 
evaluation; others may be replaced
Types s ::= bool | s κ s | …

κ ::= <sets of labels of lambda exprs>

[Lam] Γ,x:s1 |− e:s2,κ
Γ |− (λx:s1. e)n:(s1 {n}⊕ κ s2),∅

[App] Γ |− e:(s1 κ s2),κ1 Γ |− e’:s1,κ2
Γ |− (e e’) : s2, κ ⊕ κ1 ⊕ κ2
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SLam

Operational Semantics

((λx:s.e)κ v)    → (protectκ e[v/x])

(if trueκ then e1 else e2)    → (protectκ e1)

(protectκ v)    → v• κ
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SLam – Proving Noninterference

Give a denotational semantics for SLam
A high-security computation can depend on a 
high-security input, but a low-security 
computation cannot; the 2 computations have 
different “views” of the same high-security input

((bool,H) (bool,L),L) looks like   ∀α.α bool
((bool,H) (bool,L),H) looks like bool bool

For each type (t,κ), specify CPO as well as a 
view for each level κ∈Lattice
Functions must preserve the view
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SLam – Specifying Views

Views can be specified using binary relations

If (x,y) ∈ R then x and y “look the same”

Concrete View Abstract View
C  true   false A true   false

true    1      0 true      1      1
false   0      1 false     1      1
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SLam – Semantics of Types

|(bool,κ)| = {true,false}
|(s1 s2,κ)| = |s1| p |s2| 

all partial continuous functions from |s1| to |s2|

R[s,κ]  =  “view of s at level κ”

R[s,κ]  ⊆ |s| x |s|
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SLam – Views of Types

If s = (t,κ), then for all lower κ’ (κ ⋢ κ’)
R[s,κ’]  =  |s| x |s|  =  A

If s = (bool,κ) and κ ⊑ κ’ then
R[s,κ’]  =  C

If s = (s1 s2,κ) and κ ⊑ κ’ then
R[s,κ’]  =  {(f,g) | ∀(x,y)∈R[s1,κ’].

(f(x),g(y))∈R[s2• κ,κ’]}
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Adequacy, Related Environments

Typing context   Γ = x1:s1, x2:s2, … , xn:sn
|Γ| = |s1| x |s2| x … x |sn|
Environment   η ∈|Γ| 

Theorem (Adequacy): 
If ∅ |− e:s then [[∅ |− e:s]]η is defined iff e →* v

Theorem (Related Environments):
Suppose Γ |− e:s and η,η’∈|Γ| are related 
environments at κ, then                                
([[Γ |− e:s]]η, [[Γ |− e:s]]η’) ∈ R[s,κ]
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Equivalence, Noninterference

C[] is a context with a hole

e ~ e’ =  whenever e→* v and e’ →* v’, v=v’

Theorem(Noninterference):
Suppose ∅ |− ei:(t,κ) and ∅ |− C[e1]:(bool,κ’) 
where κ ⋢ κ’ then C[e1] ~ C[e2].

CS 711 – 15 October 2003 22Amal Ahmed

Proof

Consider open term:  y:(t,κ) |− C[y] : (bool,κ')

di = [[∅ |− ei:(t,κ)]]()
We must show (d1,d2)∈ R[(t,κ),κ']

Proof: Since κ ⋢ κ' R[(t,κ), κ'] is abstract.

fi = [[y:(t,κ) |− C[y] : (bool,κ')]]di
By Related Environments theorem, we have:

(f1, f2) ∈ R[(bool,κ'), κ'] = C
Thus, f1=f2.  Easy to show that
fi = [[∅ |− v:(bool,κ')]]().  Since v1~v2, done.
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Recursion

Need to deal with termination issues

Call-by-name vs. Call-by-value
Strong vs. Weak noninterference

Strong Noninterference: if a program terminates 
with one input and produces result v, then it also 
terminates with any other “related” input and 
the result is related to v
Weak Noninterference: if 2 related inputs cause 
a program to terminate the outputs are related
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Dependency Core Calculus

Types s ::= unit | s s | s⊥ | Tκ(s) | s+s | sxs
κ ∈ Security Lattice

Exprs bv ::= () | λx.e
e ::= x | bvκ | (e e’) | lift e | ηκ e |…

Pointed types – to deal with termination
Protected types

if κ ⊑ κ1, then Tκ1(s) is protected at level κ
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DCC – Protected Types

Protected types
if κ ⊑ κ1, then Tκ1(s) is protected at level κ
Tκ1 adjusts the views: makes views of lower security 
levels abstract 

Semantics of protected types
|Tκ(s)| = |s|

R[Tκ(s),κ'] = R[s, κ'] if κ ⊑ κ'
= |s| x |s|  otherwise
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DCC

DCC: CBN operational semantics
easy to translate CBN calculi to DCC and prove strong 
interference
hard to translate CBV calculi to DCC

vDCC: CBN operational semantics, but definition 
of protected types is slightly different

if t is protected at level κ then t⊥ is protected at level κ
can translate CBV calculi to vDCC and prove weak 
noninterference
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Discussion

Limitations?
Cannot translate Davies and Pfenning’s binding-time 
analysis into DCC – cannot model coercion of run-time 
objects to compile-time objects

Can DCC help with other analyses?
semantic dependencies in optimizing compilers
region-based memory management

How about a call-by-value DCC?
Uniform Type Structure for Secure Information Flow –
Honda, Yoshida, POPL 02
Translate DCCv into linear/affice Pi-calc for info flow

Extensions: imperative features, concurrency, …


