
1

A Core Calculus of Dependency

Abadi, Banerjee,
Heintze, Riecke
POPL ’99

CS711
Amal Ahmed

CS 711 – 15 October 2003 2Amal Ahmed

Contributions

Identify a central notion of dependency
Connection between secure information flow and
3 types of program analyses

Program slicing
Binding-time analysis
Call-tracking

Develop dependency core calculus (DCC) and
translate calculi into DCC
Define a semantic model for DCC that simplifies
noninterference proofs

CS 711 – 15 October 2003 3Amal Ahmed

Outline

Why information flow(SLam), slicing, binding-
time, call-tracking are all dependency analyses

SLam proof of noninterference
uses a logical-relations argument and
denotational semantics
Heintze and Riecke, POPL ’98

Dependency Core Calculus

CS 711 – 15 October 2003 4Amal Ahmed

Information Flow – SLam

Heintze and Riecke, POPL ’98
Lambda calculus with security annotations on
types
Well-typed programs have noninterference
property:

No information flows from high-security
values to low-security ones
Low-security data does not depend on high-
security data.

CS 711 – 15 October 2003 5Amal Ahmed

Information Flow – SLam

Types s ::= (t,κ)
t ::= bool | s s | s+s | sxs
κ ∈ Security Lattice

Exprs
bv ::= true | false | λx.e

v ::= bvκ
e ::= x | v | (e e’) | protectκ e |

if e then e1 else e2
LL

HH

κκ11 κκ22 κκ33

κκ44 κκ55 κκ66

CS 711 – 15 October 2003 6Amal Ahmed

SLam – Typing Rules

[True] Γ |− trueκ:(bool,κ)

[False] Γ |− falseκ:(bool,κ)

[Lam] Γ,x:s1 |− e : s2
� Γ |− (λx:s1.e)κ : (s1 s2,κ)

[If] Γ |− e:(bool,κ) Γ |− e1:s Γ |− e2:s
Γ |− if e then e1 else e2 : s

2

CS 711 – 15 October 2003 7Amal Ahmed

SLam – Typing Rules

Example
if trueH then trueL else falseL : (bool,L) Wrong!

Increase security level of result type to security
level of “trueH”. Let (t,κ1)• κ2 = (t, κ1⊕ κ2)

[If] Γ |− e:(bool,κ) Γ |− e1:s Γ |− e2:s

Γ |− if e then e1 else e2 : s• κ

if trueH then trueL else falseL : (bool,L)•H

(bool,L)•H = (bool,L ⊕ H) = (bool,H)

CS 711 – 15 October 2003 8Amal Ahmed

SLam – Typing Rules

Principle: At every elimination rule, properties
(security level) of the destructed constructor are
transferred to the result type of the expression.

[App] Γ |− e:(s1 s2,κ) Γ |− e’:s1

Γ |− (ee’) : s2• κ

CS 711 – 15 October 2003 9Amal Ahmed

SLam – Typing Rules

[Protect] Γ |− e:s

Γ |− (protectκ e) : s• κ

[Sub] Γ |− e : s s ≤ s’
Γ |− e : s’

CS 711 – 15 October 2003 10Amal Ahmed

SLam – Subtyping

[SubBool] κ ⊑ κ’
(bool,κ) ≤ (bool,κ’)

[SubFun] κ ⊑ κ’ s1’ ≤ s1 s2 ≤ s2’
(s1 s2,κ) ≤ (s1’ s2’,κ’)

[SubTrans] s1 ≤ s2 s2 ≤ s3
s1 ≤ s3

CS 711 – 15 October 2003 11Amal Ahmed

Slicing

Determine which parts of the program
(subterms) may contribute to the output
Parts that do not contribute may be replaced by
any expression of the same type
Idea: label each part of the program and track
dependency using type system

CS 711 – 15 October 2003 12Amal Ahmed

Slicing Calculus

Types s ::= (t,κ)
t ::= bool | s s | …
κ ∈ Security Lattice

Example: (λx.true)false

(λx:(bool,{n3}).truen2)n1(falsen3)

Func: ((bool,{n3}) (bool,{n2}), {n1})

Prog: (bool,{n2})•{n1} = (bool,{n1,n2})
∅∅

{n1,n2,n3}{n1,n2,n3}

{n1}{n1} {n2}{n2} {n3}{n3}

{n1,n2}{n1,n2} {n1,n3}{n1,n3}{n2,n3}{n2,n3}

3

CS 711 – 15 October 2003 13Amal Ahmed

Binding-Time Calculus

Separate static from dynamic computation
Dynamic values may be replaced by any expr of
same type without affecting static results
Types s ::= (t,κ)

t ::= bool | s s | …
κ ::= sta | dyn where sta ≤ dyn

Example: (λx:(bool,dyn).truesta)sta edyn

Func: ((bool,dyn) (bool,sta),sta)
Prog: (bool,sta) – i.e., result cannot depend on e

CS 711 – 15 October 2003 14Amal Ahmed

Call-tracking Calculus

Determine which functions are called during
evaluation; others may be replaced
Types s ::= bool | s κ s | …

κ ::= <sets of labels of lambda exprs>

[Lam] Γ,x:s1 |− e:s2,κ
Γ |− (λx:s1. e)n:(s1 {n}⊕ κ s2),∅

[App] Γ |− e:(s1 κ s2),κ1 Γ |− e’:s1,κ2
Γ |− (e e’) : s2, κ ⊕ κ1 ⊕ κ2

CS 711 – 15 October 2003 15Amal Ahmed

SLam

Operational Semantics

((λx:s.e)κ v) → (protectκ e[v/x])

(if trueκ then e1 else e2) → (protectκ e1)

(protectκ v) → v• κ

CS 711 – 15 October 2003 16Amal Ahmed

SLam – Proving Noninterference

Give a denotational semantics for SLam
A high-security computation can depend on a
high-security input, but a low-security
computation cannot; the 2 computations have
different “views” of the same high-security input

((bool,H) (bool,L),L) looks like ∀α.α bool
((bool,H) (bool,L),H) looks like bool bool

For each type (t,κ), specify CPO as well as a
view for each level κ∈Lattice
Functions must preserve the view

CS 711 – 15 October 2003 17Amal Ahmed

SLam – Specifying Views

Views can be specified using binary relations

If (x,y) ∈ R then x and y “look the same”

Concrete View Abstract View
C true false A true false

true 1 0 true 1 1
false 0 1 false 1 1

CS 711 – 15 October 2003 18Amal Ahmed

SLam – Semantics of Types

|(bool,κ)| = {true,false}
|(s1 s2,κ)| = |s1| p |s2|

all partial continuous functions from |s1| to |s2|

R[s,κ] = “view of s at level κ”

R[s,κ] ⊆ |s| x |s|

4

CS 711 – 15 October 2003 19Amal Ahmed

SLam – Views of Types

If s = (t,κ), then for all lower κ’ (κ ⋢ κ’)
R[s,κ’] = |s| x |s| = A

If s = (bool,κ) and κ ⊑ κ’ then
R[s,κ’] = C

If s = (s1 s2,κ) and κ ⊑ κ’ then
R[s,κ’] = {(f,g) | ∀(x,y)∈R[s1,κ’].

(f(x),g(y))∈R[s2• κ,κ’]}

CS 711 – 15 October 2003 20Amal Ahmed

Adequacy, Related Environments

Typing context Γ = x1:s1, x2:s2, … , xn:sn
|Γ| = |s1| x |s2| x … x |sn|
Environment η ∈|Γ|

Theorem (Adequacy):
If ∅ |− e:s then [[∅ |− e:s]]η is defined iff e →* v

Theorem (Related Environments):
Suppose Γ |− e:s and η,η’∈|Γ| are related
environments at κ, then
([[Γ |− e:s]]η, [[Γ |− e:s]]η’) ∈ R[s,κ]

CS 711 – 15 October 2003 21Amal Ahmed

Equivalence, Noninterference

C[] is a context with a hole

e ~ e’ = whenever e→* v and e’ →* v’, v=v’

Theorem(Noninterference):
Suppose ∅ |− ei:(t,κ) and ∅ |− C[e1]:(bool,κ’)
where κ ⋢ κ’ then C[e1] ~ C[e2].

CS 711 – 15 October 2003 22Amal Ahmed

Proof

Consider open term: y:(t,κ) |− C[y] : (bool,κ')

di = [[∅ |− ei:(t,κ)]]()
We must show (d1,d2)∈ R[(t,κ),κ']

Proof: Since κ ⋢ κ' R[(t,κ), κ'] is abstract.

fi = [[y:(t,κ) |− C[y] : (bool,κ')]]di
By Related Environments theorem, we have:

(f1, f2) ∈ R[(bool,κ'), κ'] = C
Thus, f1=f2. Easy to show that
fi = [[∅ |− v:(bool,κ')]](). Since v1~v2, done.

CS 711 – 15 October 2003 23Amal Ahmed

Recursion

Need to deal with termination issues

Call-by-name vs. Call-by-value
Strong vs. Weak noninterference

Strong Noninterference: if a program terminates
with one input and produces result v, then it also
terminates with any other “related” input and
the result is related to v
Weak Noninterference: if 2 related inputs cause
a program to terminate the outputs are related

CS 711 – 15 October 2003 24Amal Ahmed

Dependency Core Calculus

Types s ::= unit | s s | s⊥ | Tκ(s) | s+s | sxs
κ ∈ Security Lattice

Exprs bv ::= () | λx.e
e ::= x | bvκ | (e e’) | lift e | ηκ e |…

Pointed types – to deal with termination
Protected types

if κ ⊑ κ1, then Tκ1(s) is protected at level κ

5

CS 711 – 15 October 2003 25Amal Ahmed

DCC – Protected Types

Protected types
if κ ⊑ κ1, then Tκ1(s) is protected at level κ
Tκ1 adjusts the views: makes views of lower security
levels abstract

Semantics of protected types
|Tκ(s)| = |s|

R[Tκ(s),κ'] = R[s, κ'] if κ ⊑ κ'
= |s| x |s| otherwise

CS 711 – 15 October 2003 26Amal Ahmed

DCC

DCC: CBN operational semantics
easy to translate CBN calculi to DCC and prove strong
interference
hard to translate CBV calculi to DCC

vDCC: CBN operational semantics, but definition
of protected types is slightly different

if t is protected at level κ then t⊥ is protected at level κ
can translate CBV calculi to vDCC and prove weak
noninterference

CS 711 – 15 October 2003 27Amal Ahmed

Discussion

Limitations?
Cannot translate Davies and Pfenning’s binding-time
analysis into DCC – cannot model coercion of run-time
objects to compile-time objects

Can DCC help with other analyses?
semantic dependencies in optimizing compilers
region-based memory management

How about a call-by-value DCC?
Uniform Type Structure for Secure Information Flow –
Honda, Yoshida, POPL 02
Translate DCCv into linear/affice Pi-calc for info flow

Extensions: imperative features, concurrency, …

