
1

Observational Determinism for
Concurrent Program Security

Steve Zdancewic Andrew Myers
Computer Security Foundations Workshop 2003

2

“security”

security condition

analysis

•Useful if:
– Security condition

corresponds to
desired security

– Analysis permits
interesting programs

• The security-typing game:
1. An intuitive semantic security condition that

guarantees behavior of program is secure
2. A static program analysis (type system) that

ensures the program obeys the security
condition

Security conditions vs. analyses

Useful
programs

CS711: Observational determinism for concurrent program security 3

• Various approaches have been tried (e.g.,
[AR80, SV98, HR98, SS00, S01, SM02, HY02])

• Problems:
– Some analyses allow arguably insecure programs
– Most analyses are highly restrictive

• This paper:
– A more intuitively secure notion of security
– A more permissive static analysis

Information flow in
concurrent programs

CS711: Observational determinism for concurrent program security 4

Noninterference
• Definitions:
〈M,e〉 : a configuration (memory M, program e)

〈M,e〉 ⇓ T : configuration 〈M,e〉 executes with result
T

T1 �L T2 : ‘low observer’ at L can’t distinguish
results

〈M1,e1〉 �L 〈M2,e2〉 : can’t distinguish inputs

• Noninterference:

〈Mi,ei〉 ⇓ Ti ⇒ T1 �L T2

CS711: Observational determinism for concurrent program security 5

Nondeterminism
• Noninterference:

〈M1,e1〉 �L 〈M2,e2〉 & 〈Mi, ei〉 ⇓ Ti ⇒ T1 �L T2

• Scheduler nondeterminism is critical to
concurrency:

• But breaks noninterference:
〈M,e〉 ⇓ T1 〈M,e〉 ⇓ T2 T1≠T2

• Possibilistic generalizations [Suth86,
McCu87,McLe90]: lift to sets of outcomes:

{T | 〈M1,e1〉 ⇓T } �L {T | 〈M2,e2〉 ⇓T }

e1ʹ | e2e1 | e2 →→ e1 | e2ʹ

CS711: Observational determinism for concurrent program security 6

Possibilistic problems
l := false | l := true | l := h

• Random scheduling: 2/3 probability leak
• Sequential scheduling: ~1 probability leak
• High information communicated via scheduler
• Possibilistically “secure”
h = false {l = false, l = true}
h = true {l = false, l = true}

• Information “leaked” only if attacker is
certain

• Nondeterminism doesn’t work against the
attacker!

2

CS711: Observational determinism for concurrent program security 7

Timing channels
• Time taken by program can reveal sensitive

information
• Can be converted into storage channels
• Random scheduling: possibilistically “secure”
• One solution: consider time observable
• Problem: rejects secure sequential programs

if h then sleep(100)
else skip;

x := false

x := true;

sleep(50);
l := x

Effect: l := h

CS711: Observational determinism for concurrent program security 8

Problems to solve

1. Possibilistic security: insecure
– Need a stronger security condition that’s not…

2. Ruling out all timing channels: too
restrictive
– Need a weaker security condition (& analysis)

CS711: Observational determinism for concurrent program security 9

1. A “new” security condition

• Observational determinism [McLe92, Rosc95]:

〈Mi, ei〉 ⇓ Ti ⇒ T1 �L T2

• Any observable difference between outputs
permits a refinement attack

• System may still be nondeterministic –
depends on choice of T, �L

CS711: Observational determinism for concurrent program security 10

2. Avoiding restrictiveness
• Idea: distinguish between internal and

external timing channels
– Internal: affect program data
– External: affect only timing of external

interactions

if h then sleep(100)
else skip;

x := false

x := true;

sleep(50);
l := x external

only

CS711: Observational determinism for concurrent program security 11

Controlling internal channels
• Insight: Internal timing channels require races
• Write-write race:

• Read-write race:

• Race = two memory accesses to same location, at
least one a write, that can occur in either order

• Observational determinism ⇒ rule out races
• Nondeterminism ok at different locations

if h then sleep(100)
else skip;

x := false
sleep(50);
l := x

l := false | l := true | l := h

CS711: Observational determinism for concurrent program security 12

• Idea: capture invisibility of external timing
channels in relation T1 �L T2

• Result of concurrent computation is trace T
of memory states [M1, M2, M3,…]

• Projection of T onto location l is
T(l) = [M1(l), M2(l), …]

• Traces are indistinguishable if they look the
same at every memory location
– Can’t time updates
– Can’t time execution

Limiting observational power

T1(l) = [v1 , v1 , v2 , v3 , v3 , v4 , …]

T2(l) = [v1 , v2ʹ , v2ʹ , v3ʹ , v3ʹ]
�L

3

CS711: Observational determinism for concurrent program security 13

Synchronization
• Races considered harmful!
• Unsynchronized writes to shared memory unsafe

⇒ need synchronization and communication mechanisms

• Our choice: message passing (blocking snd/rcv)

• Supports non-block-structured communication
• Shared memory, but restricted to prevent

unsynchronized communication

snd(c,v) x := rcv(c);

CS711: Observational determinism for concurrent program security 14

A secure concurrent language

• Variant of the Join calculus [Fournet et al.]

– Explicit message passing
– High-level abstraction for synchronization
– Similar to Milner’s π-calculus

• Explicit state using ML-style references
Use an alias analysis that prevents races

• Linear/Nonlinear channels
– Adapted from linear continuations [ZM’02]

– Regulates communication & synchronization between
threads

– See also [Honda & Yoshida ’02]

par
secλ

CS711: Observational determinism for concurrent program security 15

Details

J ::= f(x,y) nonlinear channels
f(x) linear channels
(J|J) join patterns

P ::= let x = ref v in P ref creation
| set v := v in P ref assignment
| let J P in P chan. defn.
| let J P in P lin. chan. defn.
| if v then P else P conditional
| v(v,l) msg. send
| l(v) lin. msg. send
| (P|P) parallel comp.
| 0 inactive proc.

par
secλ

CS711: Observational determinism for concurrent program security 16

Examplepar
secλ

let double(c) c() | c() in
let d() P in

double(d)
let double(c) c() | c() in
let d() P in

d() | d()
let double(c) c() | c() in
let d() P in

P() | d()

CS711: Observational determinism for concurrent program security 17

let in1(x) | in2(y)
let z = x + y in out(z)

in
let c() in2(4) in

in1(3) | c()

Synchronization

let in1(x) | in2(y)
let z = x + y in out(z)

in
in1(3) | in2(4)

let in1(x) | in2(y)
let z = x + y in out(z)

in
let z = 3 + 4 in out(z)

let in1(x) | in2(y)
let z = x + y in out(z)

in
out(7)

par
secλ

CS711: Observational determinism for concurrent program security 18

Linear channels

thread

fork

join

shared
continuation

Concurrent
threads may
not have
races.

let k0() | k1() P inQ;((R0; k0())| (R1; k1()))
Q

R0 R1

P

k0() k1()

Linear synchronization
and race-freedom imply

that that P learns no
information about how

the scheduler executed R0
and R1.

4

CS711: Observational determinism for concurrent program security 19

Linear message passing

The type system also
permits rich kinds
of synchronization
behavior.

Previous type systems
reject processes with
this synchronization
structure.
[Honda et al. '02]
[Pottier '02]
[Sabelfeld '01]

Depends on
high-security

data.

CS711: Observational determinism for concurrent program security 20

External channels
• Memory locations are externally observable
• Can encode external I/O channels
• Limited observational power
⇒ external I/O channels can’t be timed

against each other

CS711: Observational determinism for concurrent program security 21

Shared memory vs message-passing

• Shared-memory programming model:
– Common shared memory locations used for

mutation, communication
– Synchronization: locks/semaphores, condition

variables

• Locks don’t help!

• Shared-memory model is fundamentally
uncongenial to information flow analysis

l := false | l := true | l := h

CS711: Observational determinism for concurrent program security 22

Compositionality
• Connecting secure programs with

communication channels isn’t secure in
general

• Composition is in the language
– Channels must agree on security labels
– Composition must not introduce races

CS711: Observational determinism for concurrent program security 23

Future work
• Need a good race freedom analysis

– Ideally, compositional (but what annotations?)

• Application to practical language (Jif?)
• Handle lock/semaphore synchronization

