
1

Encapsulating Objects with
Confined Types

Kevin O’Neill
CS 711

September 15, 2003

A Security Breach in Java

• Suppose we have a Java package that
implements a security architecture.

• Each object of class Class has a list of
signers, principals under whose authority
the class acts.

• Consider two methods:
– One returns an array of principals in the

system.
– Another allows a class to get the list of

principals that signed it.

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

return signers;
}

}
• Oops! The method returns a reference to the

system’s internal array!
• Now a caller armed with such a reference, as

well as the list of principals, can get whatever
access rights they want

• This was a problem in JDK 1.1.1

A Security Breach in Java

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

Identity[] pub;
pub = new Identity[signers.length];
for (int i=0; i<signers.length; i++)

pub[i] = signers[i];
return pub;

}
}

An Ad-hoc Fix:

Is this fix good enough?

• The better getSigners() fixes this
particular example, but what’s to stop it
from happening again?

• No standard mechanism seems to apply:
– Type abstraction isn’t relevant.
– Restricting use of Identity objects doesn’t

help; an attacker only needs references to
them.

– Information flow isn’t relevant.
– We can’t do dynamic checks of every array

update in Java!

Confined Types

• Could we ensure that references to
Identity objects can’t leak outside of
some protection domain?
– In particular, the package that the class

belongs to?
• Imagine two types:

– SecureIdentity, which cannot be leaked
– Identity, a clone for external use only

• not a subclass or superclass, so there’s no confusion
– Can we check that SecureIdentity is

confined to its package?

2

The General Problem

• Unlimited sharing of object references
can lead to problems.
– If an object doesn’t know who might have

references, every method might be called
by an adversary.

• Security checks are a problem:
– Explicit security checks are tedious, but

automatic ones are very slow.
• Class restrictions don’t help:

– We could cast an object to Object and ship
it out on the sly!

One Solution: Confined Types

• Introduced by Bokowski & Vitek, 1999
– “A machine-checkable programming discipline that

prevents leaks of sensitive object references.”
• Confined types do not require a change to the

language:
– They enforce “static scoping of dynamic object

references”.
• CoffeeStrainer checks code at compile-time,

and checked code goes straight to a standard
Java compiler.
– So no extra runtime overhead.

The Big Picture

It’s kind of like information flow, except
that the only “flow” we’re concerned
about is references to confined objects.

How to check confinement?

• Prevent all inappropriate reference
transfers:
– Don’t let “this” ever leak out of the package.

• Be really uptight about inheritance:
– Prevent “widening”, or casts from a confined

type to an unconfined type.
– Use anonymous methods to ease restrictions

on inheritance.

Bad reference transfers

package inside;
public class C extends outside.B {

void putReferences() {
C c = new C();
outside.B.c1 = c;
outside.B.storeReference(c);
outside.B.c3s = new C[] {c};
badParentMethod(); // stores “this”
badSubclassMethod();
throw new BadException();

}
static C f = new C();
static void C m() { return new C(); }

}

Widening

• “Bad widening” occurs when a
reference to a confined type is widening
to an unconfined supertype.

• Examples:
– Assignments where the LHS is a supertype of the

assigned expression
• (Doesn’t this require an explicit cast?)

– A method call where the declared parameter is a
supertype

– A return statement where the declared result type is
a supertype

– A cast expression:
• Object o = (Object) myConfinedObject;

3

Hidden Widening

• Hidden widening may occur if a method
inherited from an unconfined superclass
is invoked on a confined object.

• But we can’t rule out inheritance
completely, obviously.

• So we require that methods invoked on a
confined object be either:
– Defined in a confined class, or
– Anonymous.

Anonymous Methods

• Do not depend on the identity of the
current instance, i.e., based entirely by its
arguments and fields.

• Non-native methods that use this only
for accessing fields or calling other
anonymous methods on itself.

• The definition is recursive:
– To find anonymous methods, we label non-

anonymous methods and iterate until a
fixpoint is reached.

Example

class Example {
int count;
int anon okMethod(A arg) {

alsoOkMethod(arg.foo());
return count;

}
Example notOkMethod(A arg) {

arg.bar(this);
arg.o = this;
alsoNotOkMethod(arg);
if (this == arg) …
return this;

}
}

With Anonymous Methods…

• It’s okay to inherit methods from an
unconfined superclass, as long as all the
methods are anonymous.

• Anonymous methods can’t leak
confined object references to the
outside.

• Anonymous methods are the norm:
– E.g., 94% of methods in java.util and

83% in java.awt are anonymous.

Finally, today’s paper

• Encapsulating Objects with Confined
Types (Grothoff, Palsberg, Vitek, 2001)

• Extends the original paper by simplifying
the confinement rules and doing a
constraint-based confinement analysis.

• Checks confinement rules for a large-
scale Java benchmark suite.
– Thesis: All package-scoped classes in Java

programs should be confined.

Simpler Confinement Rules

4

The Main Simplification

• ALL methods invoked on confined types
must be anonymous.

• Is this a reasonable simplification?
• Confined types within a package may

want to pass references around…

Inferring Anonymity and Confinement

• They use a constraint-based analysis.
– Like for type inference and flow analysis.

• Analysis proceeds in two steps:
1. Generate a system of constraints from

program text.
2. Solve the constraint system.

• A solution to the constraint system says
which methods are anonymous and
which classes are confined.

Constraints

• Constraints are all ground Horn clauses.
• They take the following form:

A :== not-anon(methodId)
T : == not-conf(ClassId)
C :== A | T | T A | A A |

A T | T T

Solving the Constraint System

• Confinement and anonymity rules are
used to generate Horn clauses, based on
program text.

• Solving the system to answer queries of
the form “not-conf(ClassId)” can be
done in linear time.
– (Presumably in the length of the program

text.)
• Kacheck/J does bytecode analysis to

infer confinement for a large Java
benchmark suite.

The Purdue Benchmark Suite

• Includes 33 Java programs and libraries of
various size, purpose, and origin.

• 46,165 classes and 1,771 packages.
• Main thesis: package-scoped classes should

be confined.

Results

• Of the package-scoped classes in the
PBS, 25% are confined.

• In 6 of the 33 programs, > 40% were
confined.

• Manual inspection of code indicates that
programming style is essential to
confinement.

• Don’t forget: the confinement tests here
are fairly conservative because of the
simple confinement rules.

5

Typical Confinement Violations

• Anonymity violations
– Methods in AWT library register the current

object for notification
• Widening to superclass
• Sloppy access modifiers (public)
• Widening in containers

– Vectors and hashtables take arguments of
type Object
• Java needs parametric polymorphism!

– Adding generics would give 30%
confinement, up from 25%

Thoughts/Summary

• Confinement is an important property for
high-security software.

• Kacheck/J infers confinement in a fast
and scalable way.

• The errors that confinement prevents are
probably too subtle for mainstream
software engineering, especially for non-
secure applications.

