Certification of Programs for
Secure Information Flow

Dorothy E Denning & Peter J. Denning

CS 711
Sept 24, 2003

Siggi Cherem

Introduction

* Security guarantees

* Runtime mechanisms

* Compile time mechanism
o Comprehension
o Cotrectness
o No speed impact

o Run-time support

Goal and agenda

A compile-time mechanism to check for violations of
an information flow policy

* Information flow model
* Security definition
* Certification algorithm

* Applications and limitations

Information flow model

* Policies are described in a Lattice

* Assign security classes (static labels)
* Permissible flow (flow is allowed)

* Meet (LUB) and Join (GLB)

* Top (T) and Bottom (L)
Characteristics:

* Reflexive, transitive

* Finite number of labels, finite lattice

(Sl

T D] |~ 14
_ v® !
=

Lattices examples

Priority lattices Property Lattices
ILH
Top Secret N
t LL HH
Secret ~
f HL
Confidential
Unclassified

Flow of information

* Explicit (assignments, 1/O,
procedure calls)

* Implicit (conditional tests)

if x=0) theny:=1

* Direct

* Indirect (by transitivity)

I

Security requirement

A necessary, sufficient and undecidable condition:

Program p is secure iff
Any execution of p has x = yonly if x = v

A more conservative, but decidable condition:

Program p is secure iff
Any execution specified by p (any control flow)
hasx = yonlyifx > v

Certification mechanism

* A compiler phase (as a type checker, optimizer)

* Efficient, advantages of model

Basic algorithm (1)

Inference of labels

‘ 3
I'al:al

' —a2:a2

‘ X : int security class L.

I'—alopa2:al ®a2

‘e::alopaZ e:=al ®a2
. I'i—e:¢e c—x
Assignment -
I' — (x:=¢): certified
<= e ifnot (¢ > x)
Cert = false

o Transitivity if (¢) then
o Meet/Join operatots x=y
* Run-time support (external objects =%
comply with specification) else
w:=0
Basic algorithm (II)
Input/Output
input a,b,c,d from f f>a®b®c®d ‘
output a,b,c,d to f a®@b®DcDd—>f ‘
Simple Control Structures
if (e) then {s1;s2; s3} e—> sl ®s2®s3
[else s4] [®s4]
while (¢) do s e—>s
Theorem:

A program is certified only if it is secure

Advanced certification (I): goto's

Unstructured control flows

a A

if (al) goto e
b: B

goto e
aC

if (c1) goto a
d:D

if (d1) goto f
e B

if (e1) goto ¢
8 oco

Advanced certification (I): goto's

Unstructured control flows

a A

if (al) goto e
b: B

goto e
aC

if (c1) goto a
d:D

if (d1) goto f
e B

if (el) goto ¢
8 000

Advanced certification (I): goto's

Unstructured control flows

a A

if (al) goto e
b: B

goto e
aC

if (c1) goto a
d:D

if (d1) goto f
e E
if (el) goto ¢

B

Advanced certification (IT): data structures

* Array rules
[x:=ali] dilox all=a®i |

ali] :==1 i—>a
| |

* Need for runtime array bound check

* Record rules

X := r.xi £.xi = X ‘
‘outputrtof D r—o>f ‘
S:=t r.xi —> s.xi

D.r—> Qs

Advanced certification (IIT): procedure calls

* q must be secure
! procedure q(xy,...,X, Vi, --Y,)

* Secure assignment of ...
procedure p(...)
call qaj,..,a,,by,0--,b,)

o parameters 2, —> X

o returned values v, = b
* Check for implicit flows
* Modular context insensitive analysis:
o identify in p all calling contextto q:c = ¢, @ ¢, D ... D ¢,
o identify in q all object receiving flow: c = ¢, ® ¢, ® ... @ ¢

* Check ¢ — c at linking time

Advanced certification (IIT): procedure calls (cont)

procedure write(x,f)
output x to f
procedure p(...)
if (L) then
write(L,L)
if (H) then
write(H,H)

* Weak polymorphism x, = H, therefore L)‘ =H
* Context sensitive approach (generally not tractable)
* Restrict procedutes behavior: ¢ —=b, ®b,® ... ® b,

2,®2,®..@a2, >b ®b,®...0®b,

Advanced certification (IV): Traps

* Need to declare traps and handlers iint ... L
e:bool ... L
fifile ... L
x,sum: int ... H

on ovetflow sum
do e:= false;

* Mechanism to detect all possible traps

e := true
* Run-time support for exception while (¢) do
handling sum += x;
TP

outputito f

Applications

* Confinement problem: customer confidential information
o A procedure p is secure so it can’t encode H in L local vars
o Inter-procedural restrictions forbids writing H to files
o A procedure p can’t call unconfined procedures

* State variables: storage channels, locks

* DB Confidentiality: labels for users

* Doesn’t detect information leaks to covert channels

Related work & conclusions

* Use of lattices in model
* Language extension and static analysis
* Extensions

o Interference

o Synchronization

o Cryptography

