Robust Declassification

Steve Zdancewic
Andrew Myers
CSFW 01

CS711, 12 Nov 03
Stephen Chong

Declassification

m Real systems intentionally leak
(declassify) confidential information
m Purchase of information
m Aggregated data
= Encryption
m Security protocols

e Commit-reveal, challenge-verify, ...
m E.g. Password checker

Password Example

// passwd 7s the password

// h 7s secret and shouldn’t be revealed
// guess 7s the user’s guess
// t 7s time (0 before guess checked;
// 1 after)
// r 7s the result (1 7f passwd == guess)
~l if (passwd == guess) {

(9]

= r :=1;

N } assignment to r in a

<l else { context that depends

= r :=0; on passwd

] I

c

gl t =t + 1;

Password Example

// passwd 7s the password

// h 7s secret and shouldn’t be revealed
// gquess 7s the user’s guess
// r 7s the result (1 7f passwd == guess)
// t 7s time (0 before guess checked;
// 1 after)

5 if (passwd == guess)) {

= r:=1;

3 } Program does not satisfy

ol else { noninterference!

] r:=0; In general, declassification

% } violates noninterference.

gl t =t + 1

Life in a World Without Noninterference

m What useful info flow security properties can
we describe that permit declassification?
m Statically check authority (as in Jif, PKI)
= Intransitive noninterference
= Quantify information declassified
= Robust declassification
= Other notions?

m Still trying to define suitable security
properties
= Proving/guaranteeing properties another issue

Robust Declassification: Definitions

m System S=(Z, o)

= 3: set of states

= o c IxX: transition relation
m Trace t

= A finite sequence of states

= 0)0\0;..-G,

= Equivalent up to stuttering

* 0)0\0/010,0, = 0,0,0,0,0, = 0,0,0;

= View ~

= An equivalence relation on

= What observations can be made on a state

= E.g. Low-equivalence: low security locations can
be observed, high security locations cannot.

Password example

(p, h,g,r,t)

TN

passwd secret guess result time

Password example

Transitions:
(0,h,0,r,000, (0, h,1,r,00 (1,h,0,1,0) Gy (1,h,1,r,0)

K K K K

(0,h,0,1,1) (0, h, 1,0, 1) (1, h,0,0,1) (1, h, 1,1, 1)

A view ~, (for low equivalence):

(Ol hl 0! r, O) L (11 hl Ol r, O)
(Ol hl 1! r, O) :/L (11 hl Ol r, O)

Lattice of Views

m [(X): the set of all views of the system
= Forms a lattice:
®~y IIzB & V0,0, 0,7306,= 6,7,0,
m Example

m Consider states with 2 locations, each
location having value 0 or 1.

m 4 possible states: 00, 01, 10, 11

Doh! Stupid lattice...
IOO 01110 11[

{00]01 10[11]
11

00 01[10[11}—

0001 10 11

Observations

m Observations of S wrt ¢, and =
m All sequences of equivalence classes of
traces of S starting from o,
m Obs(S,=,0y) =
{[ovlidail.. . .[0,.4]. | 0y0;...0;, is a trace of S}

Password Observations

m Traces
= 7,:(0,0,0,1,0)(0,0,0,1,1)
= 7,:(0,0,0,1,0)(0,0,1,1,0)(0,0,1,0,1)
= 7,:(0,0,0,1,0)(0,0,1,1,0)(0,0,0,1,0)(0,0,0,1, 1)
" ...
m Obs(S,~.,(0,0,0, 1, 0))={
(*, *,0,1,0)(* *0,1,1),

(*,*0,1,0)(**1,1,0)(** 1,0,1),
(*,*0,1,0)(**1,1,0(*0,1,0)(*0,1,1),

!

Observational Equivalence

m Obs(S~,"):2—0bservations induces another
equivalence relation S[~]
= (0,0') €SI~
& 0bs(S,=,0) = Obs(S,=,0")
< “o,0 are observationally equivalent”
m Password example
= (0,0,0,1,0)and (0, 1, 0, 1, 0) are obs. equivalent
= (0,0,0,1,0)and (1,0, 0, 1, 0) are not obs. Equivalent

m S[~] gives at least as much info as ~
ele. = I‘S[:]

~-Secure System

m S is ~-secure
iff “all =~-equiv. states are obs. equiv.”
iff Vo,0. 0~0 = (6,6 € S[~|
iff S[=] |Iz
iff S~ =~
m Intuition: a passive attacker with view ~
cannot learn anything new about the initial
state by watching the system execute.
= Essentially noninterference
= Initial state contains all “important” information

A Limit to Information

m Recall: S[~] is an equivalence relation on X,
with = |IS[z]
m S~ =~
= S"1Ix] = SIS'[~1]

= Se[~] =Lem S"[=]
m Intuition: S¢[~] is the lowest view that can see

all of the information that S will declassify
= For any system S and view =, § is S°[~]-secure

Active Attackers

m Assume we have an attacker with view ~,, and a
system S that intentionally declassifies information
= §is not =,-secure

m Could an active attacker make S reveal more
information than § meant to?
= j.e. laundering attacks

Active Attackers

= Active attackers
= Can add transitions a,,, to §
eie. Cavay,)
= “Fairness”: a,, is limited to transitions that don’t themselves
declassify data, i.e. must be laundering attacks.

= An = -attack is a system 41 = (£, a,) such that 4 is -
secure
e Write 4z L S for (2, auUa,,)

m What sort of attacks does this correspond to?
= Attacker injecting code in the system that satisfies
noninterference
= Randomly flipping bits in the machine, e.g. passing a magnet
over it

Robustness (at last)

m A system S=(Z, o) is robust with respect
to a class B of ~,-attacks if
V At =(Z, o) € B. (Sudin)~,] |, S[=,]

m Intuition: Watching the attacked system
reveals no more information than
watching the original system

Attacking the Password Program

m Add attack transitions:
(pl hl gl rl 0) aAtt (h, h, gl rI 0)
m Note: A = (%, a,) is ,-Secure
m Password program is not robust against
Att, since

= ((0, 1, 0,0,0),(0,0,0,0,0)) & (SU AtH)[~]
but

= ((0,1,0,0,0),(0,0,0,0, 0)) € S[~]
wie. (SUAn~] | /S,

~,-security and Robustness

m If S is =,-secure, then S is robust to all
~,-attacks

mi.e. If a system doesn’t do any
declassification, an attacker cannot launder
any data.

Dude, Where’s my Language?

m Use language-level constructs/analysis
to rule out attacks that the system
would not be robust against
= High integrity for the data to declassify
= High integrity for the decision to declassify

= But...

= Vulnerable to attacks outside language
abstraction

= What is the interaction with , the
dual of ?

Language level attacks

m High integrity for data to declassify

if ((passwd == guess)) {

Language level attacks

= High integrity for data to declassify

passwd = h;

if ((passwd == guess)) {
r :=1;

}

else {
r = 0;

}

t =t + 1;

Language level attacks
= High integrity for decision to declassify

int revealAliceBid() {
return (aliceBid);

}

;11'ceB1'd = .

.li.).obB‘id = o

45 (revealAliceBid() > revealBobBid()) {

// Alice wins

}

Language level attacks

= High integrity for decision to declassify
int revealAliceBid() {
return (aliceBid);
3
aliceBid = ..;
bobBid = revealAliceBid() + 1;
if (revealAliceBid() > revealBobBid()) {

// Alice wins

}

Summary and Discussion Points

m Definition of view equivalence of system traces
= Lattice of views
e More general than security lattices

e Useful?
= Definition of a couple of useful security properties
m ~-Secure

e For passive attackers
e Like noninterference

= Robustness
¢ Active attackers

» What else would we like?

= Language setting?
¢ Ongoing work
e Endorse: dual of declassify, yet different...

= Given a system S, what is the lowest view =, such that S is
robust to all ~,-attacks?

