
1

Robust Declassification

Steve Zdancewic
Andrew Myers
CSFW ’01

CS711, 12 Nov 03
Stephen Chong

Declassification

Real systems intentionally leak
(declassify) confidential information

Purchase of information
Aggregated data
Encryption
Security protocols
• Commit-reveal, challenge-verify, …

E.g. Password checker

Password Example
// passwd is the password
// h is secret and shouldn’t be revealed
// guess is the user’s guess
// t is time (0 before guess checked;
// 1 after)
// r is the result (1 if passwd == guess)

if (passwd == guess) {
r := 1;

}
else {
r := 0;

}
t := t + 1;co

n
te

xt
 (

a.
k.

a.
 p

c)

assignment to r in a
context that depends

on passwd

Password Example
// passwd is the password
// h is secret and shouldn’t be revealed
// guess is the user’s guess
// r is the result (1 if passwd == guess)
// t is time (0 before guess checked;
// 1 after)

if (declassify(passwd == guess)) {
r := 1;

}
else {
r := 0;

}
t := t + 1;co

n
te

xt
 (

a.
k.

a.
 p

c)

Program does not satisfy
noninterference!

In general, declassification
violates noninterference.

Life in a World Without Noninterference

What useful info flow security properties can
we describe that permit declassification?

Statically check authority (as in Jif, PKI)
Intransitive noninterference
Quantify information declassified
Robust declassification
Other notions?

Still trying to define suitable security
properties

Proving/guaranteeing properties another issue

Robust Declassification: Definitions

System S=(Σ, α)
Σ: set of states
α ⊆ Σ×Σ: transition relation

Trace τ
A finite sequence of states
σ0σ1σ2…σn-1
Equivalent up to stuttering

• σ0σ1σ1σ1σ2σ2 ≡ σ0σ0σ0σ1σ2 ≡ σ0σ1σ2

View ≈
An equivalence relation on Σ
What observations can be made on a state
E.g. Low-equivalence: low security locations can
be observed, high security locations cannot.

2

(p, h, g, r, t)

Password example

passwd secret guess result time

(0, h, 0, r, 0) ≈L (1, h, 0, r, 0)
(0, h, 1, r, 0) ≈L (1, h, 0, r, 0)

(1, h, 0, r, 0)

Password example

(0, h, 0, r, 0) (0, h, 1, r, 0) (1, h, 1, r, 0)

(1, h, 0, 0, 1)(0, h, 0, 1, 1) (0, h, 1, 0, 1) (1, h, 1, 1, 1)

α α α α
Transitions:

A view ≈L (for low equivalence):

α α α α

Lattice of Views

Ι(Σ): the set of all views of the system
Forms a lattice:
• ≈A Ι ≈B ⇔ ∀σ1,σ2. σ1 ≈B σ2 ⇒ σ1 ≈A σ2

Example
Consider states with 2 locations, each
location having value 0 or 1.
4 possible states: 00, 01, 10, 11

Doh! Stupid lattice…
00 01 10 11

00 01 10 11

00 01 10 11 00 01 10 11

00 01 10 11 00 10 01 11
00 11 01 10

01 11 00 10

00 01 10 11
00 10 01 11

00 11 10 01

00 01 10 11 01 00 10 11 10 01 00 11
11 01 10 00

Observations

Observations of S wrt σ0 and ≈
All sequences of equivalence classes of
traces of S starting from σ0

Obs(S,≈,σ0) =
{[σ0]≈[σ1]≈…[σn-1]≈ | σ0σ1…σn-1 is a trace of S}

Password Observations
Traces

τ0: (0, 0, 0, 1, 0) (0, 0, 0, 1, 1)

τ1: (0, 0, 0, 1, 0) (0, 0, 1, 1, 0) (0, 0, 1, 0, 1)

τ2: (0, 0, 0, 1, 0) (0, 0, 1, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 1)

…

Obs(S,≈L,(0, 0, 0, 1, 0)) = {
(*, *, 0, 1, 0) (*, *, 0, 1, 1),
(*, *, 0, 1, 0) (*, *, 1, 1, 0) (*, *, 1, 0, 1),
(*, *, 0, 1, 0) (*, *, 1, 1, 0) (*, *, 0, 1, 0) (*, *, 0, 1, 1),

…}

3

Observational Equivalence
Obs(S,≈,⋅):Σ→Observations induces another
equivalence relation S[≈]

(σ,σ′) ∈ S[≈]
⇔ Obs(S,≈,σ) = Obs(S,≈,σ′)
⇔ “σ,σ′ are observationally equivalent”

Password example
(0, 0, 0, 1, 0) and (0, 1, 0, 1, 0) are obs. equivalent
(0, 0, 0, 1, 0) and (1, 0, 0, 1, 0) are not obs. Equivalent

S[≈] gives at least as much info as ≈
• I.e. ≈ Ι S[≈]

≈-Secure System
S is ≈-secure

iff “all ≈-equiv. states are obs. equiv.”
iff ∀σ,σ′. σ ≈σ′ ⇒ (σ,σ′) ∈ S[≈]
iff S[≈] Ι ≈
iff S[≈] =Ι ≈

Intuition: a passive attacker with view ≈
cannot learn anything new about the initial
state by watching the system execute.

Essentially noninterference
Initial state contains all “important” information

A Limit to Information
Recall: S[≈] is an equivalence relation on Σ,
with ≈ Ι S[≈]

S0[≈] = ≈
Sn+1[≈] = S[Sn[≈]]

Sω[≈] = ∫n ∈ω Sn[≈]

Intuition: Sω[≈] is the lowest view that can see
all of the information that S will declassify

For any system S and view ≈, S is Sω[≈]-secure

Active Attackers
Assume we have an attacker with view ≈A, and a
system S that intentionally declassifies information

S is not ≈A-secure

Could an active attacker make S reveal more
information than S meant to?

i.e. laundering attacks

Active Attackers
Active attackers

Can add transitions αAtt to S
• i.e. (Σ, α∪αAtt)

“Fairness”: αAtt is limited to transitions that don’t themselves
declassify data, i.e. must be laundering attacks.

An ≈A-attack is a system Att = (Σ, αAtt) such that Att is ≈A-
secure

• Write Att ∪ S for (Σ, α∪αAtt)

What sort of attacks does this correspond to?
Attacker injecting code in the system that satisfies
noninterference
Randomly flipping bits in the machine, e.g. passing a magnet
over it

Robustness (at last)

A system S=(Σ, α) is robust with respect
to a class Β of ≈A-attacks if
∀ Att =(Σ, αAtt) ∈ Β. (S ∪ Att)[≈A] Ι S[≈A]
Intuition: Watching the attacked system
reveals no more information than
watching the original system

4

Add attack transitions:
(p, h, g, r, 0) αAtt (h, h, g, r, 0)

Note: Att = (Σ, αAtt) is ≈L-secure

Password program is not robust against
Att, since

((0, 1, 0, 0, 0), (0, 0, 0, 0, 0)) ∉ (S ∪ Att)[≈L]
but
((0, 1, 0, 0, 0), (0, 0, 0, 0, 0)) ∈ S[≈L]
i.e. (S ∪ Att)[≈L] Ι S[≈L]

Attacking the Password Program ≈A-security and Robustness

If S is ≈A-secure, then S is robust to all
≈A-attacks

i.e. If a system doesn’t do any
declassification, an attacker cannot launder
any data.

Dude, Where’s my Language?
Use language-level constructs/analysis
to rule out attacks that the system
would not be robust against

High integrity for the data to declassify
High integrity for the decision to declassify

But…
Vulnerable to attacks outside language
abstraction
What is the interaction with endorse, the
dual of declassify?

Language level attacks
High integrity for data to declassify

if (declassify(passwd == guess)) {

r := 1;

}

else {

r := 0;

}

t := t + 1;

Language level attacks
High integrity for data to declassify

passwd = h;

if (declassify(passwd == guess)) {

r := 1;

}

else {

r := 0;

}

t := t + 1;

Language level attacks
High integrity for decision to declassify

int revealAliceBid() {

return declassify(aliceBid);

}

…

aliceBid = …;

…

bobBid = …;

…

if (revealAliceBid() > revealBobBid()) {

// Alice wins
}

5

Language level attacks
High integrity for decision to declassify

int revealAliceBid() {

return declassify(aliceBid);

}

…

aliceBid = …;

…

bobBid = revealAliceBid() + 1;

…

if (revealAliceBid() > revealBobBid()) {

// Alice wins
}

Summary and Discussion Points
Definition of view equivalence of system traces

Lattice of views
• More general than security lattices
• Useful?

Definition of a couple of useful security properties
≈-secure

• For passive attackers
• Like noninterference

Robustness
• Active attackers

What else would we like?
Language setting?

• Ongoing work
• Endorse: dual of declassify, yet different…

Given a system S, what is the lowest view ≈A such that S is
robust to all ≈A-attacks?

