
Checking Secure Interactions of
Smart Card Applets

extended version

P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, G. Zanon

CS 711 • 5 November 2003

René Rydhof Hansen

CS 711 • 5 November 2003 – p.1/24



Overview

Java Card and Applet Security

Example: Electronic Purse

Security Policy and Property

Modelling and Verifying Applets

CS 711 • 5 November 2003 – p.2/24



Java Card

Java Card: variant of Java for smart cards
No threads
No reflection
No Security Manager
No long, float, double, character, string, . . .

No garbage collection

Java smart cards
On-card Java Card Virtual Machine
Multiapplet platform
Dynamic download of applets

Java Card Bytecode

CS 711 • 5 November 2003 – p.3/24



Applet Security

Security features
Type safety
Byte-code verification
Applet firewall

Security problems
Inter-applet communication

Across firewall boundaries
Information leaks

Dynamic download of applets
Timing and power-consumption attacks
. . .

Verify and certify applets

CS 711 • 5 November 2003 – p.4/24



Example: Electronic Purse

An electronic purse with two loyalty applets: AirFrance
and RentaCar

logFull invocation results in leak from AirFrance to
RentaCar

Not caught by the applet firewall

CS 711 • 5 November 2003 – p.5/24



Security Policy for Electronic Purse

Assume lattice of security levels: (Levels ,�)

Seperate levels for each applet: P , AF , RC

Separate levels for sharing data: AF + P and AF + RC

RC AF P

RC + AF AF + P

Public

CS 711 • 5 November 2003 – p.6/24



Security Policy for Electronic Purse

Assume lattice of security levels: (Levels ,�)

Seperate levels for each applet: P , AF , RC

Separate levels for sharing data: AF + P and AF + RC

Private

RC AF P

RC + AF AF + P RC + P

Public

CS 711 • 5 November 2003 – p.6/24



The “semantics” of Programs

Programs are represented as objects that evolve over time:

Ev ⊆ Objects × Dates → Values

where

Objects = Input not computed & observable
] Output computed & observable
] Internal computed & not observable

Security level assigned to input and output objects

lvl : Input ] Output → Levels

CS 711 • 5 November 2003 – p.7/24



Secure Dependency (SecDep)

Output objects should only depend on input objects of a
lower level:

∀ot ∈ Output .∀e ∈ Ev .∀e′ ∈ Ev . e ∼aut(ot) e′ ⇒ e(ot) = e′(ot)

where

aut(ot) =
{

o′t ∈ Input
∣

∣ t′ < t, lvl(o′t) � lvl(ot)
}

and

e ∼aut(ot) e′ ⇐⇒ ∀o′t′ ∈ aut(ot). e(o
′

t′) = e′(o′t′)

CS 711 • 5 November 2003 – p.8/24



Sufficient Conditions for SecDep

Problem: SecDep is not well-suited for model-checking
with SMV

Solution: Find checkable sufficient conditions for
SecDep

Exploit dependencies given by program structure:
dep(i, ot) : contains objects at t − 1 used by
instruction at i to compute calue of ot (explicit
flows)
Whenever ot−1 6= ot then pct−1 ∈ dep(i, ot) (implicit
flows)

Reformulate SecDep in terms of dep(i, ot)

CS 711 • 5 November 2003 – p.9/24



Hypothesis 1 (SecDep Reformulated)

Hyp 1: The value of ot computed by the program is
determined by the values of objects in dep(e(pct−1), ot):

∀ot ∈ Output .∀e ∈ Ev .e′ ∈ Ev .

e ∼dep(e(pct−1),ot) e′ ⇒ e(ot) = e′(ot)

Need to prove only that:

∀o′t′ ∈ dep(e(pct−1), ot) : lvl(o′t′) � lvl(ot)

But what about internal objects?

CS 711 • 5 November 2003 – p.10/24



Internal Objects

Problem: Internal objects are not assigned a security
level

Solution: Trace internal objects back to input
For input objects: lvldep(e, ot) = lvl(ot)

Otherwise:

lvldep(e, ot) =
⊔

{

lvldep(e, o′t−1)
∣

∣ o′t−1 ∈ dep(e(pct−1), ot)
}

CS 711 • 5 November 2003 – p.11/24



Theorem 1

Thm 1: A program satisfies SecDep if the computed
level of an output object is always dominated by its
security level:

∀o ∈ Objects .∀e ∈ Ev .lvldep(e, ot) � lvl(ot) ⇒ “SecDep”

Proof by induction on t and using Hypothesis 1.

Still not quite there yet. . .

CS 711 • 5 November 2003 – p.12/24



Hypothesis 2 (Abstract Interpretation?)

To avoid state explosion, work on abstract evolutions.

Hyp 2: We suppose that the set of abstract evolution
Eva is such that the image of Ev under abs is included in
Eva, where abs(e)(ot) = lvldep(e, ot) if o 6= pc and
abs(e)(pct) = e(pct).

In other words: leave the program counter alone and
abstract all other objects to their (computed) security
level.

CS 711 • 5 November 2003 – p.13/24



Theorem 2

Thm 2: If ∀ot ∈ Output .∀ea ∈ Eva. ea(ot) � lvl(ot) then
the concrete program guarantees SecDep.

Proof by Theorem 1 and Hypothesis 2.

Finally: checkable and sufficient condition for SecDep.

CS 711 • 5 November 2003 – p.14/24



Modelling Applets

Assume: given complete call graph

Analyse only methods that interact with other applets
Example: logFull, askfortransactions, update

Identify input and output
Input: Read attributes and results of external
invocations
Output: Modified attributes and parameters of
external invocations

Assign security levels to input and output
Example: logFull is assigned level AF + P

CS 711 • 5 November 2003 – p.15/24



Modelling Applets

Use “assume/guarantee” discipline for local verification
of method invocation

Assume: return values dominated by security level
Guarantee: method parameters dominated by
security level

Allows for modular (re-)verification (call graph?)

CS 711 • 5 November 2003 – p.16/24



Modelling Methods

Methods are abstracted into parameterised SMV
modules:

active: current method is invoked
context : context of caller
param: method parameters
field : attributes’ security levels
method : security levels of invoked (external)
methods

Main module
Instantiate other modules,
Assign security levels
Simulate call graph

CS 711 • 5 November 2003 – p.17/24



Modelling the update Method

module update(active, context, param, field, method){

L: levels;

pc: -1..9;

lpc: boolean;

mem: array 0..1 of boolean;

stck: array 0..1 of boolean;

sP: -1..1;

ByteCode : {invoke_108, load_0, return, nop, store_1, dup,

load_1, getfield_220,op, putfield_220};

init(pc):= 0; init(sP):= 1; init(mem[0]):= param[0];

for(i=0; i< 2; i=i+1) {init(stck[i]) := L.public; }

init(lpc) := context;

CS 711 • 5 November 2003 – p.18/24



Modelling the update Method

if (active) {

(next(pc), ByteCode) :=

switch(pc) {

-1: (-1, nop);

0: (pc+1, load_0 );

1: (pc+1, invoke_108 );

2: (pc+1, store_1 );

3: (pc+1, load_0 );

4: (pc+1, dup );

5: (pc+1, getfield_220 );

6: (pc+1, load_1 );

7: (pc+1, op );

8: (pc+1, putfield_220 );

9: (-1, return);

};}

else {next(pc) := pc; next(ByteCode) := nop;}

CS 711 • 5 November 2003 – p.19/24



Modelling the update Method

switch(ByteCode) {

nop :;

load_0 : {next(stck[sP]) := mem[0];next(sP):=sP-1;}

load_1 : {next(stck[sP]) := mem[1];next(sP):=sP-1;}

store_1 : {next(mem[1]):=(stck[sP+1]|lpc) ;next(sP):=sP+1;}

dup : {next(stck[sP]):= stck[sP+1]; next(sP):=sP-1;}

op : {next(stck[sP+2]):=(stck[sP+1]|stck[sP+2]);

next(sP):=sP+1};

invoke_108 : {next(stck[sP]):=method[0];next(sP):= sP+1;}

getfield_220 : {next(stck[sP+1]):=field[0];}

putfield_220 : {next(sP):=sP+2;}

CS 711 • 5 November 2003 – p.20/24



Verifying Properties for update

Formulate properties as Linear Temporal Logic
formulae

Check interaction with getbalance:
Smethod_108 :

assert G (m_update.ByteCode=invoke_108 ->

((m_update.stck[sP+1]|m_update.lpc) -> L.AF & L.RC));

m_update.stck[sP + 1] t m_update.lpc v AF + RC

Check use of attribute extendedbalance:
Sfield_220 :

assert G (m_aft.ByteCode=putfield_220 ->

((m_aft.stck[sP+1]|m_aft.lpc) -> L.AF));

m_aft.stck[sP + 1] t m_aft.lpc v AF

CS 711 • 5 November 2003 – p.21/24



Verification Results

The information leak is found and a counterexample is
produced

To check the full purse example: 20 analyses, 100
methods, and 60 properties

No more than 3 minutes/property

CS 711 • 5 November 2003 – p.22/24



Questions

Relevant mechanism for purse example?

Relevant security property? How do you know?

Model validation? How?

Reasonable hypotheses?

Scope of conditionals?

Which methods to analyse?

Formal enough? Level of assurance?

Precision? Label creep?

What properties to be checked?

CS 711 • 5 November 2003 – p.23/24



Quote of the Day

We also based our approach on model-checking
tools because they tend to be more generic and
expressive than type-checking algorithms. This
allowed us to obtain results faster because we did
not have to implement a particular type-checking
algorithm. This shold also enable us to perform
experiments with other security policies and
properties.

CS 711 • 5 November 2003 – p.24/24


	Overview
	Java Card
	Applet Security
	Example: Electronic Purse
	Security Policy for Electronic Purse
	The ``semantics'' of Programs
	Secure Dependency (SecDep)
	Sufficient Conditions for SecDep
	Hypothesis 1 (SecDep Reformulated)
	Internal Objects
	Theorem 1
	Hypothesis 2 (Abstract Interpretation?)
	Theorem 2
	Modelling Applets
	Modelling Applets
	Modelling Methods
	Modelling the 	exttt {update} Method
	Modelling the 	exttt {update} Method
	Modelling the 	exttt {update} Method
	Verifying Properties for 	exttt {update}
	Verification Results
	Questions
	Quote of the Day

