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Abstract

A module system ought to enable assembly-line program-
ming using separate compilation and an expressive link-
ing language. Separate compilation allows programmers to
develop parts of a program independently. A linking lan-
guage gives programmers precise control over the assembly
of parts into a whole. This paper presents models of pro-
gram units, MzScheme’s module language for assembly-line
programming. Units support separate compilation, indepen-
dent module reuse, cyclic dependencies, hierarchical struc-
turing, and dynamic linking. The models explain how to
integrate units with untyped and typed languages such as

Scheme and ML.

1 Introduction

Henry Ford had a better idea. His assembly line revolu-
tionized manufacturing with two innovations: standardized
parts and a controlled assembly process. Standardized parts
can be independently manufactured, tested, and replaced.
A controlled assembly process ensures that parts are assem-
bled rehably. Module systems ought to enable assembly-
line programming. A module system should provide sepa-
rate compilation to support the independent development
of parts, and it should provide a linking language to give
the programmer control over assembling parts.

Existing module systems for HOT (higher-order, typed)
languages do not enable assembly-line programming. Some
HOT module languages do not provide separate compila-
tion, making it impossible to test and distribute individ-
ual modules [3]. In other module languages, e.g., the pack-
age languages of Ada, Modula-3, and Java, connections are
hard-wired within modules instead of specified in a separate
assembly process. Some HOT module systems fail to scale
essential features of the core language to modules, which re-
stricts the ways that modules can be defined, e.g., ML! does
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not support mutually recursive procedure and type defini-
tions at the module level. Finally, few HOT module lan-
guages handle dynamic program construction and dynamic
linking, which are needed for programs with “some assembly
required,” e.g., web-based applets.

For MzScheme [8], we designed and implemented a lan-
guage of modules, called program units, to support assembly-
line programming. In particular, the following properties of
our unit language enable the independent development of
parts:

¢ Encapsulation: A unit encapsulates a program part,
clearly delineating the interface between the unit and
all other parts of the program.

e Separate compilation: A unit’s interface provides
enough information for the separate compilation of the
unit.

To support the assembly process, the unit language provides
the following mechanisms:

e Individual reuse and replacement: Individual
units are reusable and replaceable. This implies that
the connections between units are specified outside the
units themselves rather than hard-wired within each
unit. In addition, the language supports multiple in-
stances of a unit in different contexts within a program.

e Hierarchical structuring: The unit language al-
lows units to be linked together to create a single,
larger unit, possibly hiding selected details of the com-
ponent units in the process.

e Dynamic linking: Units support dynamic linking,
connecting new and executing code through a well-
defined and localized interface.

This paper presents untyped and typed models of units that
are suitable for Scheme-like and ML-like languages. For
these core languages, scaling essential core features to the
module level implies two final properties:

e Types: If the core programming language supports
static type definitions, units import and export types
as well as values.

e Mutual dependencies: In whatever manner the
core language supports mutually recursive definitions
(usually procedure and type definitions), the unit lan-
guage allows definitions with mutual references across
module boundaries.



Although our unit language specifies how units are de-
fined and linked, there is no specific mechanism for describ-
ing which units are linked together to form a program. In
general, the process of selecting units for a program can be
quite complex, as evidenced by elaborate makefiles used to
build programs in traditional languages. In our unit lan-
guage, the programmer writes program-linking programs in
the core language itself; units are integrated as first-class val-
ues in the core language, and the unit definition and linking
forms are core expression forms. The only primitive oper-
ations on units are linking and invocation, which preserves
separate compilation for individual units, but programmers
can exploit the full flexibility of the core language to apply
these operations.

Section 2 explains how our unit model relates to exist-
ing module languages. Section 3 provides an overview of
programming with units, and Section 4 defines the precise
syntax, type checking, and semantics of units. Section 5
briefly considers extensions to the typed unit model. The
last two sections relate our work to other current research
in module languages, and put our work into perspective.

2 Existing Module Languages and Units

The unit model synthesizes ideas from three popular exist-
ing module systems: .o files, packages, and ML modules.
The first represents the traditional view of modules as com-
pilation units. The second extends this view by moving
the module language into the programming language. The
last gives programmers greater control over how modules are
combined into a program.

Traditional languages like C have relied on the filesys-
tem as the language of modules. Programs (makefiles) ma-
nipulate .o files to select the modules that are linked into
a program, and module files are partially linked to create
new .o or library files. Modern linking systems such as
ELF [27] support dynamic linking. However, even the most
advanced linking systems rely on a global namespace of func-
tion names and module (:.e., file) names. As a result, mod-
ules can be linked and invoked only once in a program.

Many modern languages (e.g., Ada 95 [1], Modula-2 [30],
Modula-3 [11], Haskell [15], and Java [10]) use packages. A
package system delineates the boundaries of each module
and forces the specification of static dependencies between
modules. Since module linking and invocation are clearly
separated, packages allow mutually recursive function and
type definitions across package boundaries.

The main weakness of a package system is its reliance on
a global namespace of packages with hardwired connections
among packages. Package systems do not permit the reuse
of a single package for multiple invocations in a program
or the external selection of connections between packages.
(Ada and Modula-3’s generics allow the former but not the
latter.) Packages cannot be merged into a new package that
hides parts of the constituent packages. In addition, among
the languages with packages, only Java provides a mecha-
nism for dynamic linking. This mechanism is expressed indi-
rectly via the language of class loaders, and is not fully gen-
eral due to the constraints of a global package namespace.?

MI.’s functor system [22, 24] is the most notable example
of a language that lets a programmer describe abstractions
over modules and gives a programmer direct control over

?Java’s class system can also be viewed as a kind of module system
or as a complement to the package system. Classes suffer the same
drawbacks as packages: links, such as a superclass name, are hard-
wired to a specific class [9].

assembling modules. Unlike package languages, the basic
ML module, a structure, is not a fragment of unevaluated
code. Instead, a structure is a record with fields contain-
ing the module’s exported values and types. A module with
dependencies is defined as a functor, a first-order function
that consumes a structure and produces a new structure.
Functors separate the specification of module dependencies
from module linking. Unfortunately, linking by functor ap-
plication prevents the definition of mutually recursive types
or procedures across module boundaries. Worse still, ML
provides no mechanism for dynamic linking.

3 Programming with Units

Like a package in Java or Modula-3, a program unit is an
unevaluated fragment of code, but there is no global names-
pace of units. Instead, like an ML functor, a unit describes
its import requirements without specifying a particular unit
that supplies those imports. The actual linking of the unit
is specified externally at a later stage. Unlike in ML, unit
linking is specified for groups of units with a graph of connec-
tions, which allows mutual recursion across unit boundaries.
Furthermore, the result of linking a collection of units is a
new (compound) unit that is available for further linking.
This section illustrates the basic design elements of our
unit language using an informal, semi-graphical program-
ming language. (The graphical language is currently be-
ing implemented for our Scheme programming environment.
Programmers will define modules and linking by actually
drawing boxes and arrows.) The examples assume a core
language with lexical blocks and a sub-language of types.
The syntax used for the core language mimics that of ML.

3.1 Defining Units

Figure 1 defines a unit called Database. In the graphical
notation, a unit is drawn as a box with three sections:

e The top section lists the unit’s imported types and val-
ues. The Databaseunit imports the type info (of kind®
Q) for data stored in the database, and the function
error (of type str—void) for error-handling.

e The middle section contains the unit’s definitions and
an initialization expression. The latter performs start-
up actions for the unit at run-time. The Database unit
defines the type db and the functions new, insert, and
delete (plus some other definitions that are not shown).
Database entries are keyed by strings, so Database ini-
tializes a hash table for strings with the expression

strTable := makeStringHashTable().

e The bottom section enumerates the unit’s exported
types and values. The Database unit exports the type
db and the functions new, insert, and delete.

In a statically-typed language, all imported and exported
variables have a type, and all imported and exported types
have a kind.® Imported and defined types can be used in
the type expressions for imported and exported values. All
exported variables must be defined within the unit, and the
type expression for an exported value must use only im-
ported and exported types. In Database, both the imported

3A kind is a type for a type. Most languages have only one kind,
1, and do not ask programmers to specify the kind of a type. Some
languages (such as ML, Haskell, and Miranda) also provide type con-
structors or functions on types, which have the kind Q*—Q.



Database
info::€) erroristr—void } imports
type db = ...
fun new():db = ---
fun insert(d:db, key:str, viinfo) = --- definitions

fun delete(d:db, key:str) = ---

strTable := makeStringHashTable()

db::Q new:void—db insert:dbXxstrxinfo—void
delete: dbxstr—void

} exports

Figure 1: An atomic database unit
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Figure 3: Linking units to define a complete program

type info and the exported type db are used in the type
expression for insert: dbxstrxinfo—void.

A unit is specifically not a record of values. It encap-
sulates unevaluated code, much like the .o file created by
compiling a C+4 module. Before a unit’s definitions and
initialization expression can be evaluated, it must first be
linked with other units to resolve all of its imports.

3.2 Linking Units

In the graphical notation, a programmer links units together
by drawing arrows to connect the exports of one box with
the imports of another. Linking units together creates a
compound unit, as illustrated in Figure 2 with the Phone-
Bookunit. This unit links Database with NumberInfo, a unit
that implements the info type for phone numbers.

Figure 2 also shows how to link units in stages. The error
function is not defined by either Database or Numberinfo, so
PhoneBook imports error and passes the imported value on
to Database. At the same time, PhoneBook hides the delete
function, but re-exports all of the other values and types

from Database and NumberInfo.

A complete program is a unit without imports. Fig-
ure 3 defines a complete interactive phone book program,
IPB (Interactive Phone Book), which links PhoneBook with
a graphical interface implementation Gui. The Main® unit
contains an initialization expression that creates a database
and an associated graphical user interface.

A program unit is analogous to an executable file; in-
voking the unit evaluates the definitions in all of the pro-
gram’s units and then executes their initialization expres-
sions. Thus, invoking IPB executes Main’s initialization
expression, which creates a new phone book database and
opens a phone book window. The variables exported by a
program are ignored. The result of invoking a program is
the value of its last initialization expression—a bool value
in IPB (assuming Main’s expression is evaluated last).®

A compound unit’s links must satisfy the type require-

*The name Main is not special.

5Qur informal graphical notation does not specify the order of
units in a compound unit, but the textual notation in Section 4 covers
this aspect of the language.



Bad
PhoneBook
type db = ...
db::§2
OtherDatabase Gui "y
db:: Q)
type db = .- fun openBook(pb:db) = - --
db::Q openBook:db—bool
(db::Q new:void— db openBook:db%bool) Mismatch
openBook(new())

Figure 4: Illegal linking due to a type mismatch

ments of the constituent units. For example, in IPB (see
Figure 3), Main imports the type db from PhoneBook unit
and also the function openBook:db—bool from Gui. The
two occurrences of db must refer to the same type. A type
checker can verify this constraint by proving that the two
occurrences have the same source in the link graph, which
is the db exported by PhoneBook. In contrast, Figure 4
defines a “program” Bad in which inconsistent imports are
provided to Main. Specifically, db and openBook:db—bool
refer to types named db that originate from different units.
The type checker correctly rejects Bad due to this mismatch.

Linking can connect units in a mutually recursive man-
ner. This is illustrated in IPB (see Figure 3); links flow
both from PhoneBook to Gui and from Guito PhoneBook.
Thus, the insert function in PhoneBook may call error in
Gut, which could in turn call PhoneBook’s insert again to
handle the error.

3.3 Programs that Link and Invoke Other Programs

The IPB program relies on a fixed set of constituent units,
including a specific unit Gui¢ to implement the graphical in-
terface. In general, there may be multiple GUIs that work
with the phone book, e.g., separate GUIs for novice and
advanced users. Every GUI unit will have the same set of
imports and exports, so the linking information required to
produce the complete interactive phone book is independent
of the specific GUI unit. In short, the /PB compound unit
could be abstracted with respect to its GUI unit.

If a form for linking units is integrated into the core eval-
uation language, then the abstraction of IPB can be achieved
with a core function. Figure 5 defines MakelPB, a function
that accepts a GUI unit and returns an interactive phone
book unit. The programmer draws a dashed box for aGui
and MakelPB to indicate that the actual GUI and interac-
tive phone book units are not yet determined. MakelPB
can be applied to different GUI implementations to produce
different interactive phone book programs.

The type associated with Makel/PB’s argument is a unit
type, a signature, that contains all of the information needed

fun MakeIPB(aGui) =

| db::Q Tinsert:dbxstrXinfo—svoid |
info::) numlinfoiint—info

wvoid

| |
| |
| |
| |
| |
| aGui |
| |
| |
| |
| openBook:db—bool error:str—void!!
|

Figure 5: Abstracting over constituent units

Starter

fun MakeIPB(aGui) = [ - —|

| ——

val BapertGui = [db::Q) insert: dbxstrx info—rvoid
info::f) numlinfoiint—info

- - -zvoid

openBook:db—bool

val NoviceGui = - --
invoke MakeIPB(if expertMode() EzpertGui else Novice Gui)

Figure 6: Linking and invoking other programs

to verify its linkage in MakelPB. In the graphical notation,
a signature corresponds to a box with imports, exports, and
an 1nitialization expression type, but no definitions or ex-
pressions. The signature for aGui is defined by its dotted
box, with :void indicating the type of the initialization ex-
pression. Using only this signature, the type system can
completely verify the linking in Makel/PB and determine the
signature of the resulting compound unit.

Figure 6 shows MakelPB as part of a larger program,
Starter, that selects a GUI unit and links together a com-
plete interactive phone book program. Once MakelPB re-
turns a program unit, Starter launches the constructed pro-
gram with the special invoke form, which takes a program
unit and executes it.

3.4 Dynamic Linking

The invoke form also works on units that are not complete
programs. In this case, the unit’s imports are explicitly sat-
isfied by types and values from the invoking program. This
generalized form of invocation implements dynamic linking.
For example, the phone book program can exploit dynamic
linking to support third-party “plug-in” extensions that load
phone numbers from a foreign source. Each such loader
extension is implemented as a unit that is dynamically re-
trieved from an archive and then linked with the phone book
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fun error(s:;l.:hf) =
fun registerLoader(formatistr;
fun addLoader(formatistr, aLog

registerLoader(format, invoke

dlb::Q inslert:dbxstrxinfo%void z'n,fo::Q numllnfo:int—ﬂnfo
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Figure 7: Dynamic linking with invoke

PhoneBook

error:str—void
|

NumberInfo

type info = -%-

fun numlInfo(nsint):info = -

info: Q) numf'nfo:int—}info
i f

Databasg, !
L anfoiQ  erroristr—void

typé db= -1}
fun new():db = ---

strT(i-__ble = mak}-.:eStringHash Table()
:void— db

¥ ¥
y dbuQd ne}u:void—nlb

info::) numlinfoiint—info

PhoneBook
error:str—void

type info = .-

type db = .-

fun numlInfo(n:int):info = ---
fun new():db = ---

strTable := makeStringHashTable()

db::Q) new:void— db
info::) numlinfoiint—info

Figure 8: Graphical reduction rule for a compound unit

program.® Now, the user of the phone book can install a
loader extension at run-time via interactive dialogues.

Figure 7 defines a Gui unit that supports loader exten-
sions. The function addlLoader consumes a loader extension
as a unit and dynamically links it into the program using
invoke. The extension unit imports types and functions
that enable it to modify the phone book database. These
imports are satisfied in the invoke expression with types
and variables that were originally imported into Gut, plus
the error function defined within Gui. The result of invok-
ing the extension unit is the value of the unit’s initialization
expression, which is required (via signatures) to be a func-
tion of type dbx file—void. This function is then installed
into the GUI’s table of loader functions.

5The core language must provide a syntactic form that retrieves
a unit value from an archive, such as the Internet, and checks that
the unit satisfies a particular signature. This type-checking must be
performed in the correct context to ensure that dynamic linking is
type-safe. Java’s dynamic class loading is broken because it checks
types in a type environment that may differ from the environment
where the class is used [26].

4 The Structure and Interpretation of Units

In this section we develop a semantic and type-theoretic ac-
count of the unit language design in three stages. We start
in Section 4.1 with units as an extension of a dynamically
typed language (like Scheme) to introduce the basic syntax
and semantics of units. In Section 4.2, we enrich this lan-
guage with definitions for constructed types (like classes in
Java or datatypes in ML). Finally, in Section 4.3 we consider
arbitrary type definitions (like type equations in ML). For
all three sections, we only consider those parts of the core
language that are immediately relevant to units.

The rigorous description of the unit language, including
its type structures and semantics, relies on well-known type
checking and rewriting techniques for Scheme and ML [6,
13, 31]. In the rewriting model of evaluation, the set of
program expressions is partitioned into a set of values and
a set of non-values. Evaluation is the process of rewrit-
ing a non-value expression within a program to an equiva-
lent expression, repeating this process until the whole pro-
gram is rewritten to a value. For example, an atomic unit
expression—represented in the graphical language by a box



e = unit imports exports definitions e
|  compound imports exports
link e link and e link
invoke e with invoke-link
e ; e | letrec-expr
. other core forms ...

letrec-expr letrec value-defn * in e

imports import value-var-decl *
exports export value-var-decl *
definitions value-defn *
value-defn val value-var-decl = e
link with value-var-decl *

provides value-var-decl *

invoke-link value-invoke-link *

value-invoke-link =  walue-var-decl = e
value-var-decl = @
r = variable

Figure 9: Syntax for UNIT4 (dynamically typed)

containing text code—is a value, while a compound unit
expression—a box containing linked boxes—is not a value.
A compound unit expression with known constituents
can be re-written to an equivalent unit expression by merg-
ing the text of its constituent units, as demonstrated in Fig-
ure 8. Invocation for a unit is similar: an invoke expres-
sion is rewritten by extracting the invoked unit’s definitions
and initialization expression, and then replacing references
to imported variables with values. Otherwise, the standard
rules for functions, assignments, and exceptions apply.

4.1 Dynamically Typed Units

Figure 9 defines the syntax of UNITq, an extension of a dy-
namically typed core language. The core language must pro-
vide two forms that are used in the process of linking and
invoking: an expression sequence form (“;”) and a letrec
form for lexical blocks containing mutually recursive defini-
tions. The core language 1s extended with three unit-specific
forms:

e a unit form for creating units;
e a compound form for linking units; and

e an invoke form for invoking units.

4.1.1 The unit Form

The unit form consists of a set of import and export decla-
rations followed by internal definitions and an initialization
expression:

unit import z; --- export . ---
val r = e,
e

The imported variables z; are bound in the definition and
initialization expressions. The exported variables z. must
be defined within the unit. The scope of a defined variable
includes all of the definition expressions e, in the unit as
well as the initialization expression e.

In each definition val * = e,, the expression e, must
be valuable in the sense of Harper and Stone [14], with the
restriction that imported and defined variable names are
not considered valuable. The intent of this restriction is

that evaluating the expression terminates, does not incur
any computational effects (divergence, printing, etc.), and
does not refer to variables whose values may still be un-
determined (due to an ordering of the mutually recursive
definitions).”

A unit expression is a first-class value, just like a num-
ber or an object in Java. There are only two operations on
units: linking and invoking. No operation can “look inside”
a unit value to extract any information about its definitions
or initialization expression. In particular, since a unit does
not contain any values (only unevaluated expressions), there
is no “dot notation” for externally accessing values from a
unit (as in ML) and there are no “instantiated units” (ap-
proximating an ML structure) that contain the values of
unit expressions.

To simplify the presentation, UNIT4 does not allow a-
renaming for a unit’s imported and exported variables. In
MzScheme’s units, imported and exported variables have
separate internal (binding) and external (linking) names,
and the internal names within a unit can be a-renamed.

4.1.2 The compound Form

The compound form links two constituent units together
into a new unit:

compound import z; --- export . ---
link e; with z;; provides z.;
and e; with z;,; provides z.»

The constituent units are determined by two subexpressions:
e1 and es. Along with each expression, the variables that the
unit is expected to import are listed following the with key-
word, and the variables that the unit is expected to export
are listed following the provides keyword.

Variables are linked within compound by name. Thus,
the set of variables z;; linked into the first unit must be a
subset of x;Ux.2. Similarly, ;> must be a subset of x; Ux.1.
Finally, the set variables z. exported by the compound unit
must be a subset of o1 U Tes.

A compound unit expression is not a value. It evaluates
to a unit value that is indistinguishable from an atomic unit.
This unit’s initialization expression is the sequence of the
first constituent unit’s initialization expression followed by
the the second constituent unit’s.

Once again, MzScheme’s syntax is less restrictive than
UNITg’s. In MzScheme, the compound form links any
number of units together at once (a simple generalization
of UNIT4’s two-unit form), and links imports and exports
via source and destination name pairs, rather than requir-
ing the same name at both ends of a linkage.

4.1.3 The invoke Form

The invoke form evaluates its first subexpression to a unit
and invokes it:

invoke e with z; = ¢; ---

If the unit requires any imported values, they must be pro-
vided through x; = e; declarations, which associate values €;
with names z; for the unit’s imports. An invoke expression
evaluates to the invoked unit’s initialization expression.

"This last restriction simplifies the presentation of the formal se-
mantics, but it can be lifted for an implementation, as in MzScheme,
where accessing an undefined variable returns a default value or sig-
nals a run-time error.
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Figure 10: Checking the form of UNIT4 expressions

invoke (unit import z; export 7o —
val z = e in €;)
with 7, = vy

compound import z; export T
link (unit import z;7 export 7.1
val o1 = o1 in 1)
and (unit import z;3 export 7.5

val zo = €3 In ep)

with 7,1 provides 7,1

with 7,7 provides 7,3

[vw/zw]|(letrec val ¢ = ein ep) if 77 C T

— unit import z;
export ¢
val 21 = ¢4
val 75 = es

m €p1 ; €p2

if TTUTZUT, distinct, Z;1 C Twi, Tpl C Tel, T2 C Tw2, and Tpz C Tez

Figure 11: Reducing UNIT4 expressions

414 Unrry Context-sensitive Checking

The rules in Figure 10 specify the context-sensitive proper-
ties that were informally described in the previous section.
The checks ensure that a variable is not multiply defined,
imported, or exported, that all exported variables are de-
fined, and that the link clause of a compound expression
is locally consistent.

4.1.5 UNniTy Evaluation

The unit-specific reduction rules for UNITy, defined in Fig-
ure 11, generalize the graphical example in Figure 8. The
rules extend those for Scheme [6] and resemble equations in
the higher-order module calculus of Harper, Mitchell, and
Moggi [13]. The first rule specifies that an invoke expres-
sion reduces to a letrec expression containing the invoked
unit’s definitions and initialization expression. In this le-
trec expression, imported variables are replaced by values.
The set of variables supplied by invoke’s with clause must
cover the set of the imports required by the unit; otherwise,
a run-time error is signalled.

The second rule defines how a compound expression
combines two units: their definitions are merged and their
initialization expressions are sequenced. The compound
rule requires that the constituent units provide at least the
expected exports (according to the provides clauses) and
need no more than the expected imports (according to the
with clauses). Also, all bindings introduced by definitions
in the two units must be appropriately a-renamed to avoid
collisions.

unit import even
export odd
val odd = fn 0 = false
| n = even (n-1)
odd 18

=
fn (evencell, oddcell) =
(oddcell := (fn 0 = false

| n = (tevencell) (n-1));
fn () = (‘oddcell) 15)

Figure 12: An example of UNIT4 compilation

4.1.6 UNIT4 Implementation

In MzScheme’s implementation of UNIT4, units are compiled
by transforming them into functions. The unit’s imported
and exported variables are implemented as first-class ref-
erence cells that are externally created and passed to the
function when the unit is invoked. The function is respon-
sible for filling the export cells with exported values and for
remembering the import cells for accessing imports later.
The return value of the function is a closure that evaluates
the unit’s initialization expression. Figure 12 illustrates this
transformation on an atomic unit.

A compound unit is also compiled to a function. The
function encapsulates a list of constituent units and a clo-
sure that propagates import and export cells to the con-
stituent units, creating new cells to implement variables in



letrec-expr letrec type-defn * value-defn * in e

imports = import type-var-decl* value-var-decl *
exports = export type-var-decl* value-var-decl*
definitions =  datatype-defn * value-defn *
datatype-defn = typet =z 7|z T>U®
link = with type-var-decl * value-var-decl *

provides type-var-decl * value-var-decl *

type-invoke-link * value-invoke-link *
type-var-decl = 1

ti R

T T

invoke-link
type-invoke-link
type-var-decl
value-var-decl

7,0 = t|7— 7|signature
signature = sig imports ewports T
t = type variable

k= type kind

Figure 13: Syntax for UNIT. (constructed types)

the constituents that are hidden by the compound unit.
The transformed units have the same code-sharing prop-
erties as traditional shared libraries. The definition and ini-
tialization expressions of a unit are compiled in the body of
the function produced by its transformation, and this one
function is used for all instances of the unit. Thus, there
exists a single copy of the definition and initialization code
regardless of how many times the unit is linked or invoked.®

4.2 Units with Constructed Types

Figure 13 extends the language in Figure 9 for a statically
typed language with programmer-defined constructed types,
such as ML datatypes. In the new language, UNIT., the im-
ports and exports of a unit expression include type variables
as well as value variables. All type variables have a kind®
and all value variables have a type. The compound and in-
voke expressions are extended in the natural way to handle
imported and exported types.

The definition section of a unit expression contains both
type and value definitions. Type definitions are similar to
ML datatype definitions, but for simplicity, every type de-
fined in UNIT. has exactly two variants. Type definitions
have the form type t = za,x4 71 | Ter,Tar 7 > Tt Instances
of the first variant are constructed with the z¢ function,
which takes a value of type 7| and constructs a value of type
t. They are deconstructed with z4. Instances of the sec-
ond variant are constructed with x. given a value of type
7. and deconstructed with z4.. Applying a deconstructor to
the wrong variant signals a run-time error. To distinguish
variants, the z; function returns true for an instance of the
first variant and false for an instance of the second.

The 71 and 7 type expressions can refer to ¢ or other
type variables to form recursive or mutually recursive type
definitions. We assume that the core language for UNIT.
provides a letrec form for mutually recursive procedure and
datatype definitions.

The type of a unit expression is a signature of the form
sig imports exports T where imports specifies the kinds and

8Qur native code compiler transforms a unit expression to a
shared library that is managed by the operating system.

® Although the only kind in this language is §2, we declare kinds ex-
plicitly in anticipation of future work that handles type constructors
and polymorphism.

Te1 S Te2  tirikgl C diniingn feriikel D fenitRen
Vai1:7i1 € Ti1t7e1, 341572 € T2z Tiz < Tl
Vx€2:7—€2 € 1,62:7—62731,62:7—61 € TeliTel & Tel S Te2

sig[il,el,b1] < sig[i2, e2, b2]

Fre: 7 <7
I'ke: 7

Figure 14: Subtyping and subsumption in UNIT. signatures

types of a unit’s imports and exports describes the kinds
and types of its exports. In a sig form, as in a unit form,
types in either imports or exports can be used in the type
expressions within the signature. The type expression 7 is
the type of the unit’s initialization expression, which cannot
depend on type variables listed in exports.

4.2.1 UniT. Type Checking

For economy, we introduce the following unusual abbrevia-
tion, which summarizes the content of a signature with the
indices used on names:

sig[¢, e, b] = sig import ik 7517,
export teitke TeiTe

Tb

Signatures have a subtype relation to allow the use of
specialized units in place of more general units. As defined
in Figure 14, a specific signature ¢, is a subtype of a more
general signature tg (& < tg) if:

1. the type of the initialization expression in s is a sub-
type of the one in tg;

2. ts has fewer imports and more exports than tg;

3. for each imported variable in ¢, its type in ¢z is a
subtype of its type in ts; and

4. for each exported variable in tg, its type in ¢ is a sub-
type of its type in tg.

The typing rules for UNIT. are shown in Figure 15. These
rules are typed extensions of the rules from Section 4.1.4.
The special judgement b is used when subsumption is al-
lowed on an expression’s type. Subsumption is used care-
fully so that type checking is deterministic. For example,
subsumption is not allowed for the e, expression in the in-
voke rule because the initialization expression type 74 in
e,,’s signature supplies the type of the entire invoke expres-
sion.

The first typing rule checks the well-formedness of a sig-
nature. Each of the type expressions in a signature must
be well-formed in an environment containing the signature’s
imported and exported type variables, and the type expres-
sion for the initialization expression must not refer to any
of the exported type variables.

The second rule checks invoke expressions, first ensuring
that the with clause is well-formed. The first expression in
an invoke form must have a signature type whose imports
match the with clause. The exports in the signature are ig-
nored. The initialization expression’s type in this signature
is the type of the complete invoke expression.
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Figure 15: Type checking for UNIT,

The third rule determines the signature of a unit expres-
sion. The first line of antecedents contains simple context-
sensitive syntax checks as in UNIT4. In the second line, all
of the type expressions in the unit are checked in an en-
vironment that is extended with the unit’s imported and
defined types. Once the type expressions are validated, the
environment is extended again, this time with the types for
imported and defined variables. Finally, the types of all
definition expressions are verified. Subsumption is allowed
for all expressions except the initialization expression, which
helps determine the overall signature for the unit.

The fourth and final rule verifies the linking in a com-
pound expression and determines its signature. The first
four lines of antecedents are simple context-sensitive syntax
checks. Then, the constituent unit expressions are checked,
obtaining signatures for the constituent units. Each of these
signatures must approximate a signature derived from the
with and provides clauses in the corresponding linking
line. Finally, the signature of the compound unit is de-
fined by the import and export clauses and the type of
the initialization expression in the second constituent unit.

4.2.2 UNniT. Evaluation

The reduction rules for UNIT. are nearly the same as the
rules for UNITq4 in Figure 11. The only difference for UNIT.
is that the invoke and compound reductions propagate
type definitions as well as val definitions.

4.2.3 Type Soundness

If we were to combine UNIT. with the monomorphic subset of
ML, we could prove a Milner-style type soundness theorem
using a subject reduction argument along the lines of Wright
and Felleisen [31].

4.2.4 UniT. Implementation

Closed units in UNIT. can be compiled separately in the
same way as closed functors in ML.. When compiling a unit,
imported types are obviously not yet determined and thus
have unknown representations. Hence, expressions involving
imported types must be compiled like polymorphic func-
tions in ML [19, 28]. Otherwise, the restrictions implied
by a unit’s interface allow inter-procedural optimizations
within the unit (such as inlining, specialization, and dead-
code elimination). Furthermore, since a compound unit is
equivalent to a simple unit that merges its constituent units,
intra-unit optimization techniques naturally extend to in-
ter-unit optimizations when a compound expression has
known constituent units.

4.3 Units with Type Dependencies and Equations

UNIT. supports a core language where each type is associ-
ated with a distinct and independent constructor, but this
view of types is too strict for many languages. For example,
in Java, the constructor that instantiates a class depends on
the constructor for the superclass. Other languages, such as



definitions =  type-defn* datatype-defn * value-defn *
type-defn = typet i k=0
signature = sig imports exports
depends dependency* T
dependency = t~»t

Figure 16: Syntax for UNIT. (type equations)
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Figure 17: Subtyping in UNIT. signatures

ML, support type equations that introduce new types with-
out explicit constructors; a type equation of the form type
t = 7 defines the type variable ¢ as an abbreviation for the
type expression 7.

Naively mixing units with type dependencies and equa-
tions leads to problems. Since two units can contain mutu-
ally recursive definitions, linking units with type dependen-
cies may result in cyclic definitions, which core languages like
ML and Java do not support. To prevent these cycles, signa-
tures must include information about dependencies between
imported and exported types. The dependency information
can be used to verify that cyclic definitions are not created
in linking expressions.

UNIT, extends UNIT. with type dependencies and equa-
tions. Figure 16 defines syntax extensions for UNIT., includ-
ing a new signature form that contains a depends clause.
The dependency declaration t. ~+ t; means that an exported
type t. depends on an imported type ¢;. When two units
are linked with a compound expression, tracing the set of
dependencies can ensure that linking does not create a cyclic
type definition. Also, the signature for a compound expres-
sion propagates dependency information for types imported
into and exported from the compound unit.

4.3.1 UniTe Type Checking

The following abbreviation expresses a UNIT, signature:

sig[t, e, di, de, b] = sig import k] T5i77
export f.iike Teite
depends t4. ~ tg;
Tb

The subtyping rule in Figure 17 accounts for the new depen-
dency declarations. Specifically, a signature is more specific
than another if it declares more dependencies.

The type checking rules for UNIT. are defined in Fig-
ure 19. To calculate type dependencies, the type checking
rules employ the “depends on” relation, o<p. It associates a
type expression with each of the type variables it references
from the set of type equations D:

Txp tiff t € FTV(7)
or ({t'=7YeD:t' € FTV(r) and 7’ xp t)

FTV(7) denotes the set of type variables in 7 that are not
bound by the import or export clause of a sig type. Type
abbreviations are eliminated from a type or expression with
the | o |p operator, as sketched in Figure 18. The subscript
is omitted from | @ |p when D is clear from context.

4.3.2 Unit. Evaluation

Given a type equation of the form type t = 7, the vari-
able t can be replaced everywhere with 7 once the complete
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program is known. Since the type system disallows cyclic
type definitions, this expansion of types as abbreviations
is guaranteed to terminate. Meanwhile, until the complete
program is known, type equations are preserved as neces-
sary. In the rewriting semantics for units, type equations
are preserved by linking, and then expanded away by in-
vocation. This semantics formalizes the intuition that type
equations constrain how programs are linked, but they have
no run-time effect when programs are executed.

The reduction rules for UNIT. are nearly the same as
the rules for UNITq (see Figure 11) or UNIT.. Like in UNIT,,
UnNIT.’s invoke and compound reductions propagate type
definitions as well as val definitions. In addition, the com-
pound reduction propagates type abbreviations, but the
invoke reduction immediately expands all type abbrevia-
tions in the invoked unit.

5 Other Extensions

Experience with other modules systems, particularly those
of ML, suggests further extensions to UNIT., such as facil-
ities for exposing the implementation of a type, hiding the
type (or parts of the type) of a value, or type sharing. The
first two of these extensions are straightforward additions
to UNIT., but the unit analogue of the last one is less clear.
In the following subsections, we briefly discuss each of these
concepts.

5.1 Exposing Type Information

The ML module system allows signatures that reveal some
information about an exported type [12, 20]. The partially
exposed types (or translucent types) are used for propagating
type dependencies in a way that allows type sharing, but
they are also useful for assigning a name to a complex type
that is exposed to clients.

Consider exporting values of type env from an Environ-
ment unit such that env is revealed as a procedure type.
As shown in Figure 20, the translucent type env in this
case may be viewed as a type abbreviation that is preserved
within the signature. The unit Environment does not ex-
port the type env. Instead, the unit and its signature are
extended with an extra section that defines the abbreviation
env. The resulting unit and signature are equivalent to the
unit and signature that expands envin all type expressions.

5.2 Hiding Type Information

Large projects often have multiple levels of clients. Some of
the clients are more trusted than others and are thus privy
to more information about the implementation of certain
abstractions. To support this situation, UNIT. could pro-
vide mechanisms for hiding a value’s type information from
untrusted clients after linking with trusted clients.



t if 7=t and t¢D
Il if r=tand (t=71')€D
|71 p=17"1p if r=7'—7"
Ilp = sig import {;::m; @:]74|p export fetire weilre| s if T=sigli, e, di, de, b]
depends tg. ~ tg; and D' = {{t=7)[{t=7)€ D and ¢ ¢ t;Ut.}
I75lp/
z if e=z
unit import #;::k; T;:7; export fciike TeiTe if e=unit import f;:ik; Z;:7; export teiike ToiTe
type taiika = |Talp type taiithe = Ta
lelp = type t = z,zq |Tilpr | Ters@ar 76| pr > @1

type t = zc,od 71 | Ter,Tdr Tr > Ty

val z:7 = e in ¢

and D' = {(¢ = 7)[{t = 7) € D and t ¢ {;Ut. Ut UL}

val z:|7|pr = |e|pr in |ep| s

Figure 18: Expanding a type or expression with respect to a set of type abbreviations
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Figure 19: Type checking for UNIT,

Consider the example in Figure 21. The Environment
unit is linked with the Letrec unit, allowing the latter to
exploit the implementation of environments as procedures.
In contrast, other clients should not be allowed to exploit
the implementation of environments. Hence, the type of
environments should be opaque outside the compound unit
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RecFnv, which combines Environment and Letrec.

As shown in Figure 21, information about RecEnv’s ex-
ports can be restricted via explicit signatures and an ex-
tended subtype relation. The extended relation allows a
subtype signature to contain an extra exported type vari-
able (e.g., env) in place of an abbreviation in the supertype



FEnvironment

fun extend envnv = .-

extend: envxX nameX value—env

} exposed

env = name—rvalue .
abbreviations

FEnvironment

Q

fun extend envnuv = ...

extend: (name—rvalue) X namex value— (name—value)

Figure 20: Exposing information for a type

RecEnv

FEnvironment

fun extend envnuv = ...

extend:(name—rvalue) X name X value— (name—value)

Letreci
extend:{name—rvalue) X name X value— (name—rvalue)

“fun recEstend env ns vs = - -

recExtend: (narri"q—)value) x namesX values—(name—rvalue)

“"'é'&'z;tend: envXnameX value— env
recExtend:envX namesX values—env

env = name—rvalue

extend: envxX nameX value—env
recExtend:envX namesXvalues—en

|
|
env::if) |
|

Figure 21: Hiding type information for an exported value

signature. As a result, the information formerly exposed
by the abbreviation becomes hidden, replaced by an opaque

type.

5.3 Sharing

Type sharing specifications are used to solve the “diamond
import” problem for ML [22]. Suppose a particular symbol
structure is provided to both a lexer functor and a parser
functor. If both lexer and parser export the type sym as
originating from symbol (via translucent types), the struc-
tures returned by parser and lezer can be joined by a functor
that accepts structure arguments agreeing on the sym type.
This “agreement” prerequisite is declared via a type sharing
specification.

In UnNiTe, the “diamond import” problem is solved by
linking lezer, parser, and symbol together at once. However,
the unit model provides nothing like after-the-fact sharing
specifications; thus, if lexer and parser are compound units
that contain internal instances of symbol, then symbol is in-
stantiated twice and there is no way to unify the two sym

types.
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Type sharing is more flexible than unit linking in one im-
portant case. Suppose that lexer links to many structures
and has many clients. In addition, suppose that most of
the clients share types with only a few of the structures.
In ML, each client can conveniently declare a few after-the-
fact sharing declarations. In UNIT, if lezer requires many
imports, each of lexer’s clients must provide all of those im-
ports, regardless of how few imports need to be shared. This
example illustrates a problem of specifying which units need
to be linked, rather than how to link them. As explained
in the introduction, integrating units with the core language
provides power for selecting which units to link. Future work
must explore how core language features can be used to ex-
press complex linking patterns for units, and whether our
model needs adjustment to accommodate common re-use
patterns.

6 Related Work

As already mentioned in Section 2, our unit model incorpo-
rates ideas from distinct language communities, particularly
those using packages and MI.-style modules. The Scheme
and ML communities have produced a large body of work
exploring variations on the standard module system, espe-
cially variations for higher-order modules [2, 4, 12, 16, 18,
20, 21, 23, 29]. Duggan and Sourelis [5] have investigated
“mixin modules” for specifying recursive and extensible defi-
nitions across modules; their work and ours have no overlap.

Cardelli [3] anticipated the unit language’s emphasis on
module linking as well as module definition. Our unit model
is more concrete than his proposal and addresses many of
his suggestions for future work. Kelsey’s proposed module
system for Scheme [17] captures most of the organizational
properties of units, but does not address static typing or
dynamic linking.

7 Conclusion

Program units deliver both the traditional benefits of mod-
ules for separate compilation and the more recent advances
of higher-order modules and programmer-controlled linking.
Our unit model also addresses the often overlooked, but in-
creasingly important, problem of dynamic linking.

The unit language was originally implemented for the
development of DrScheme [7, 25], Rice’s Scheme program-
ming environment, which is implemented using MzScheme.
DrScheme is a large and dynamic program with many in-
tegrated components, including a multimedia editor, an in-
teractive evaluator, a syntax checker, and a static debugger.
Additional components can be dynamically linked into the
environment. DrScheme also acts as an operating system for
client programs that are being developed, launching client
programs by dynamically linking them into the system while
maintaining the boundaries between clients.

Future work must focus on making units syntactically
practical for typed languages. Our text-based model is far
too verbose, and we do not address the design of a linking
language. Instead, we provide a simple construct for linking
units and rely on integration with the core language to build
up linking expressions. This integration simplifies our pre-
sentation, and we believe it is an essential feature of units.
Nevertheless, future work must explore more carefully the
implications of integrating the core and module languages.
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