
Units� Cool Modules for HOT Languages

Matthew Flatt Matthias Felleisen

Department of Computer Science�

Rice University

Houston� Texas ���������	

Abstract

A module system ought to enable assembly�line program�

ming using separate compilation and an expressive link�
ing language� Separate compilation allows programmers to
develop parts of a program independently� A linking lan�
guage gives programmers precise control over the assembly
of parts into a whole� This paper presents models of pro�
gram units� MzScheme�s module language for assembly�line
programming� Units support separate compilation� indepen�
dent module reuse� cyclic dependencies� hierarchical struc�
turing� and dynamic linking� The models explain how to
integrate units with untyped and typed languages such as
Scheme and ML�

� Introduction

Henry Ford had a better idea� His assembly line revolu�
tionized manufacturing with two innovations� standardized
parts and a controlled assembly process� Standardized parts
can be independently manufactured� tested� and replaced�
A controlled assembly process ensures that parts are assem�
bled reliably� Module systems ought to enable assembly�
line programming� A module system should provide sepa�
rate compilation to support the independent development
of parts� and it should provide a linking language to give
the programmer control over assembling parts�

Existing module systems for HOT �higher�order� typed�
languages do not enable assembly�line programming� Some
HOT module languages do not provide separate compila�
tion� making it impossible to test and distribute individ�
ual modules �	
� In other module languages� e�g�� the pack�
age languages of Ada� Modula�	� and Java� connections are
hard�wired within modules instead of speci�ed in a separate
assembly process� Some HOT module systems fail to scale
essential features of the core language to modules� which re�
stricts the ways that modules can be de�ned� e�g�� ML� does

�This research was partially supported by a NSF Graduate Re�
search Fellowship� NSF grants CCR��������� CDA�����	�
� and
CCR���	����� and a Texas ATP grant�

�ML stands for SML or CAML�

To appear� PLDI � June 
��
� 
���� Montreal� Canada

not support mutually recursive procedure and type de�ni�
tions at the module level� Finally� few HOT module lan�
guages handle dynamic program construction and dynamic
linking� which are needed for programs with �some assembly
required�� e�g�� web�based applets�

For MzScheme ��
� we designed and implemented a lan�
guage of modules� called program units� to support assembly�
line programming� In particular� the following properties of
our unit language enable the independent development of
parts�

� Encapsulation� A unit encapsulates a program part�
clearly delineating the interface between the unit and
all other parts of the program�

� Separate compilation� A unit�s interface provides
enough information for the separate compilation of the
unit�

To support the assembly process� the unit language provides
the following mechanisms�

� Individual reuse and replacement� Individual
units are reusable and replaceable� This implies that
the connections between units are speci�ed outside the
units themselves rather than hard�wired within each
unit� In addition� the language supports multiple in�
stances of a unit in di�erent contexts within a program�

� Hierarchical structuring� The unit language al�
lows units to be linked together to create a single�
larger unit� possibly hiding selected details of the com�
ponent units in the process�

� Dynamic linking� Units support dynamic linking�
connecting new and executing code through a well�
de�ned and localized interface�

This paper presents untyped and typed models of units that
are suitable for Scheme�like and ML�like languages� For
these core languages� scaling essential core features to the
module level implies two �nal properties�

� Types� If the core programming language supports
static type de�nitions� units import and export types
as well as values�

� Mutual dependencies� In whatever manner the
core language supports mutually recursive de�nitions
�usually procedure and type de�nitions�� the unit lan�
guage allows de�nitions with mutual references across
module boundaries�






Although our unit language speci�es how units are de�
�ned and linked� there is no speci�c mechanism for describ�
ing which units are linked together to form a program� In
general� the process of selecting units for a program can be
quite complex� as evidenced by elaborate make�les used to
build programs in traditional languages� In our unit lan�
guage� the programmer writes program�linking programs in
the core language itself� units are integrated as �rst�class val�
ues in the core language� and the unit de�nition and linking
forms are core expression forms� The only primitive oper�
ations on units are linking and invocation� which preserves
separate compilation for individual units� but programmers
can exploit the full �exibility of the core language to apply
these operations�

Section � explains how our unit model relates to exist�
ing module languages� Section 	 provides an overview of
programming with units� and Section � de�nes the precise
syntax� type checking� and semantics of units� Section �
brie�y considers extensions to the typed unit model� The
last two sections relate our work to other current research
in module languages� and put our work into perspective�

� Existing Module Languages and Units

The unit model synthesizes ideas from three popular exist�
ing module systems� �o �les� packages� and ML modules�
The �rst represents the traditional view of modules as com�
pilation units� The second extends this view by moving
the module language into the programming language� The
last gives programmers greater control over how modules are
combined into a program�

Traditional languages like C have relied on the �lesys�
tem as the language of modules� Programs �make�les� ma�
nipulate �o �les to select the modules that are linked into
a program� and module �les are partially linked to create
new �o or library �les� Modern linking systems such as
ELF ���
 support dynamic linking� However� even the most
advanced linking systems rely on a global namespace of func�
tion names and module �i�e�� �le� names� As a result� mod�
ules can be linked and invoked only once in a program�

Many modern languages �e�g�� Ada �� �

� Modula�� �	�
�
Modula�	 �


� Haskell �
�
� and Java �
�
� use packages� A
package system delineates the boundaries of each module
and forces the speci�cation of static dependencies between
modules� Since module linking and invocation are clearly
separated� packages allow mutually recursive function and
type de�nitions across package boundaries�

The main weakness of a package system is its reliance on
a global namespace of packages with hardwired connections
among packages� Package systems do not permit the reuse
of a single package for multiple invocations in a program
or the external selection of connections between packages�
�Ada and Modula�	�s generics allow the former but not the
latter�� Packages cannot be merged into a new package that
hides parts of the constituent packages� In addition� among
the languages with packages� only Java provides a mecha�
nism for dynamic linking� This mechanism is expressed indi�
rectly via the language of class loaders� and is not fully gen�
eral due to the constraints of a global package namespace��

ML�s functor system ���� ��
 is the most notable example
of a language that lets a programmer describe abstractions
over modules and gives a programmer direct control over

�Java
s class system can also be viewed as a kind of module system
or as a complement to the package system� Classes su�er the same
drawbacks as packages� links� such as a superclass name� are hard�
wired to a speci�c class ����

assembling modules� Unlike package languages� the basic
ML module� a structure� is not a fragment of unevaluated
code� Instead� a structure is a record with �elds contain�
ing the module�s exported values and types� A module with
dependencies is de�ned as a functor � a �rst�order function
that consumes a structure and produces a new structure�
Functors separate the speci�cation of module dependencies
from module linking� Unfortunately� linking by functor ap�
plication prevents the de�nition of mutually recursive types
or procedures across module boundaries� Worse still� ML
provides no mechanism for dynamic linking�

� Programming with Units

Like a package in Java or Modula�	� a program unit is an
unevaluated fragment of code� but there is no global names�
pace of units� Instead� like an ML functor� a unit describes
its import requirements without specifying a particular unit
that supplies those imports� The actual linking of the unit
is speci�ed externally at a later stage� Unlike in ML� unit
linking is speci�ed for groups of units with a graph of connec�
tions� which allows mutual recursion across unit boundaries�
Furthermore� the result of linking a collection of units is a
new �compound� unit that is available for further linking�

This section illustrates the basic design elements of our
unit language using an informal� semi�graphical program�
ming language� �The graphical language is currently be�
ing implemented for our Scheme programming environment�
Programmers will de�ne modules and linking by actually
drawing boxes and arrows�� The examples assume a core
language with lexical blocks and a sub�language of types�
The syntax used for the core language mimics that of ML�

��� De�ning Units

Figure 
 de�nes a unit called Database� In the graphical
notation� a unit is drawn as a box with three sections�

� The top section lists the unit�s imported types and val�
ues� The Database unit imports the type info �of kind�

�� for data stored in the database� and the function
error �of type str�void� for error�handling�

� The middle section contains the unit�s de�nitions and
an initialization expression� The latter performs start�
up actions for the unit at run�time� The Database unit
de�nes the type db and the functions new� insert� and
delete �plus some other de�nitions that are not shown��
Database entries are keyed by strings� so Database ini�
tializes a hash table for strings with the expression
strTable �� makeStringHashTable���

� The bottom section enumerates the unit�s exported
types and values� The Database unit exports the type
db and the functions new� insert� and delete�

In a statically�typed language� all imported and exported
variables have a type� and all imported and exported types
have a kind�� Imported and de�ned types can be used in
the type expressions for imported and exported values� All
exported variables must be de�ned within the unit� and the
type expression for an exported value must use only im�
ported and exported types� In Database� both the imported

�A kind is a type for a type� Most languages have only one kind�
�� and do not ask programmers to specify the kind of a type� Some
languages �such as ML� Haskell� and Miranda� also provide type con�
structors or functions on types� which have the kind ��

���

�



Database

info��� error�str�void

type db � � � �
fun new���db � � � �
fun insert�d�db� key�str� v �info� � � � �
fun delete�d�db� key�str� � � � �
� � �
strTable �� makeStringHashTable��

db ��� new�void�db insert�db�str�info�void
delete �db�str�void

g imports
����
���

de�nitions
and expressions

�
exports

Figure 
� An atomic database unit

PhoneBook

error�str�void

NumberInfo

type info � � � �
fun numInfo�n�int��info � � � �

info��� numInfo�int�info

Database

info��� error�str�void

� � �

db��� new�void�db insert�db�str�info�void
delete �db�str�void

db��� new�void�db insert�db�str�info�void
info��� numInfo�int�info

�

� �

� �� �

�

Figure �� Linking units to form a compound unit

IPB

PhoneBook

error�str�void

db��� new�void�db insert�db�str�info�void
info��� numInfo�int�info

Main

db��� new�void�db openBook �db�bool

openBook�new���

Gui

db��� insert�db�str�info�void
info��� numInfo�int�info

fun openBook�pb�db� � � � �
fun error�s�str� � � � �

openBook �db�bool error�str�void

� �

� �

� �

�

�

Figure 	� Linking units to de�ne a complete program

type info and the exported type db are used in the type
expression for insert� db�str�info�void�

A unit is speci�cally not a record of values� It encap�
sulates unevaluated code� much like the �o �le created by
compiling a C�� module� Before a unit�s de�nitions and
initialization expression can be evaluated� it must �rst be
linked with other units to resolve all of its imports�

��� Linking Units

In the graphical notation� a programmer links units together
by drawing arrows to connect the exports of one box with
the imports of another� Linking units together creates a
compound unit� as illustrated in Figure � with the Phone�
Book unit� This unit links Databasewith NumberInfo� a unit
that implements the info type for phone numbers�

Figure � also shows how to link units in stages� The error
function is not de�ned by either Database or NumberInfo� so
PhoneBook imports error and passes the imported value on
to Database� At the same time� PhoneBook hides the delete
function� but re�exports all of the other values and types

from Database and NumberInfo�
A complete program is a unit without imports� Fig�

ure 	 de�nes a complete interactive phone book program�
IPB �Interactive Phone Book�� which links PhoneBook with
a graphical interface implementation Gui� The Main� unit
contains an initialization expression that creates a database
and an associated graphical user interface�

A program unit is analogous to an executable �le� in�
voking the unit evaluates the de�nitions in all of the pro�
gram�s units and then executes their initialization expres�
sions� Thus� invoking IPB executes Main�s initialization
expression� which creates a new phone book database and
opens a phone book window� The variables exported by a
program are ignored� The result of invoking a program is
the value of its last initialization expression�a bool value
in IPB �assuming Main�s expression is evaluated last���

A compound unit�s links must satisfy the type require�

�The name Main is not special�
�Our informal graphical notation does not specify the order of

units in a compound unit� but the textual notation in Section � covers
this aspect of the language�

	



Bad

PhoneBook

type db � � � �

db���

OtherDatabase

type db � � � �

db���

Gui

db ���

fun openBook�pb�db� � � � �

openBook �db�bool

Main

db��� new�void�db openBook �db�bool

openBook�new���

�

� �

�
�

�
�Mismatch

Figure �� Illegal linking due to a type mismatch

ments of the constituent units� For example� in IPB �see
Figure 	�� Main imports the type db from PhoneBook unit
and also the function openBook�db�bool from Gui� The
two occurrences of db must refer to the same type� A type
checker can verify this constraint by proving that the two
occurrences have the same source in the link graph� which
is the db exported by PhoneBook� In contrast� Figure �
de�nes a �program� Bad in which inconsistent imports are
provided to Main� Speci�cally� db and openBook�db�bool
refer to types named db that originate from di�erent units�
The type checker correctly rejects Bad due to this mismatch�

Linking can connect units in a mutually recursive man�
ner� This is illustrated in IPB �see Figure 	�� links �ow
both from PhoneBook to Gui and from Gui to PhoneBook�
Thus� the insert function in PhoneBook may call error in
Gui� which could in turn call PhoneBook�s insert again to
handle the error�

��� Programs that Link and Invoke Other Programs

The IPB program relies on a �xed set of constituent units�
including a speci�c unit Gui to implement the graphical in�
terface� In general� there may be multiple GUIs that work
with the phone book� e�g�� separate GUIs for novice and
advanced users� Every GUI unit will have the same set of
imports and exports� so the linking information required to
produce the complete interactive phone book is independent
of the speci�c GUI unit� In short� the IPB compound unit
could be abstracted with respect to its GUI unit�

If a form for linking units is integrated into the core eval�
uation language� then the abstraction of IPB can be achieved
with a core function� Figure � de�nes MakeIPB� a function
that accepts a GUI unit and returns an interactive phone
book unit� The programmer draws a dashed box for aGui
and MakeIPB to indicate that the actual GUI and interac�
tive phone book units are not yet determined� MakeIPB

can be applied to di�erent GUI implementations to produce
di�erent interactive phone book programs�

The type associated with MakeIPB�s argument is a unit
type� a signature� that contains all of the information needed

fun MakeIPB�aGui� �

PhoneBook

� � �

� � �

Main

� � �

� � �

aGui

db ��� insert�db�str�info�void
info��� numInfo�int�info

�void

openBook �db�bool error�str�void

Figure �� Abstracting over constituent units

Starter

fun MakeIPB�aGui� �

val ExpertGui � db��� insert�db�str�info�void
info��� numInfo�int�info

� � ��void

openBook �db�bool

val NoviceGui � � � �
invoke MakeIPB�if expertMode�� ExpertGui else NoviceGui�

Figure �� Linking and invoking other programs

to verify its linkage in MakeIPB� In the graphical notation�
a signature corresponds to a box with imports� exports� and
an initialization expression type� but no de�nitions or ex�
pressions� The signature for aGui is de�ned by its dotted
box� with �void indicating the type of the initialization ex�
pression� Using only this signature� the type system can
completely verify the linking in MakeIPB and determine the
signature of the resulting compound unit�

Figure � shows MakeIPB as part of a larger program�
Starter� that selects a GUI unit and links together a com�
plete interactive phone book program� Once MakeIPB re�
turns a program unit� Starter launches the constructed pro�
gram with the special invoke form� which takes a program
unit and executes it�

��� Dynamic Linking

The invoke form also works on units that are not complete
programs� In this case� the unit�s imports are explicitly sat�
is�ed by types and values from the invoking program� This
generalized form of invocation implements dynamic linking�
For example� the phone book program can exploit dynamic
linking to support third�party �plug�in� extensions that load
phone numbers from a foreign source� Each such loader
extension is implemented as a unit that is dynamically re�
trieved from an archive and then linked with the phone book

�



Gui

db��� insert�db�str�info�void info��� numInfo�int�info

� � �
fun error�s�str� � � � �
fun registerLoader�format�str� loader�db��le�void� � � � �
fun addLoader�format�str� aLoader� �

registerLoader�format� invoke

aLoader

db��� insert�db�str�info�void
info��� numInfo�int�info error�str�void

�db��le�void
�

� � �

openBook �db�bool error�str�void

� �

� � �

Figure �� Dynamic linking with invoke

PhoneBook

error�str�void

NumberInfo

type info � � � �
fun numInfo�n�int��info � � � �

info��� numInfo�int�info

Database

info��� error�str�void

type db � � � �
fun new���db � � � �
� � �
strTable �� makeStringHashTable��

db��� new�void�db

db��� new�void�db
info��� numInfo�int�info

�

� �

� �

� ��

PhoneBook

error�str�void

type info � � � �
type db � � � �
fun numInfo�n�int��info � � � �
fun new���db � � � �
� � �
strTable �� makeStringHashTable��

db��� new�void�db
info��� numInfo�int�info

Figure �� Graphical reduction rule for a compound unit

program�� Now� the user of the phone book can install a
loader extension at run�time via interactive dialogues�

Figure � de�nes a Gui unit that supports loader exten�
sions� The function addLoader consumes a loader extension
as a unit and dynamically links it into the program using
invoke� The extension unit imports types and functions
that enable it to modify the phone book database� These
imports are satis�ed in the invoke expression with types
and variables that were originally imported into Gui� plus
the error function de�ned within Gui� The result of invok�
ing the extension unit is the value of the unit�s initialization
expression� which is required �via signatures� to be a func�
tion of type db��le�void� This function is then installed
into the GUI�s table of loader functions�

�The core language must provide a syntactic form that retrieves
a unit value from an archive� such as the Internet� and checks that
the unit satis�es a particular signature� This type�checking must be
performed in the correct context to ensure that dynamic linking is
type�safe� Java
s dynamic class loading is broken because it checks
types in a type environment that may di�er from the environment
where the class is used �
���

� The Structure and Interpretation of Units

In this section we develop a semantic and type�theoretic ac�
count of the unit language design in three stages� We start
in Section ��
 with units as an extension of a dynamically
typed language �like Scheme� to introduce the basic syntax
and semantics of units� In Section ���� we enrich this lan�
guage with de�nitions for constructed types �like classes in
Java or datatypes in ML�� Finally� in Section ��	 we consider
arbitrary type de�nitions �like type equations in ML�� For
all three sections� we only consider those parts of the core
language that are immediately relevant to units�

The rigorous description of the unit language� including
its type structures and semantics� relies on well�known type
checking and rewriting techniques for Scheme and ML ���

	� 	

� In the rewriting model of evaluation� the set of
program expressions is partitioned into a set of values and
a set of non�values� Evaluation is the process of rewrit�
ing a non�value expression within a program to an equiva�
lent expression� repeating this process until the whole pro�
gram is rewritten to a value� For example� an atomic unit
expression�represented in the graphical language by a box

�



e � unit imports exports de�nitions e
j compound imports exports

link e link and e link
j invoke e with invoke�link
j e � e j letrec�expr
j � � � other core forms � � �

letrec�expr � letrec value�defn� in e
imports � import value�var�decl�
exports � export value�var�decl�

de�nitions � value�defn�
value�defn � val value�var�decl � e

link � with value�var�decl�
provides value�var�decl�

invoke�link � value�invoke�link�
value�invoke�link � value�var�decl � e

value�var�decl � x
x � variable

Figure �� Syntax for Unitd �dynamically typed�

containing text code�is a value� while a compound unit
expression�a box containing linked boxes�is not a value�

A compound unit expression with known constituents
can be re�written to an equivalent unit expression by merg�
ing the text of its constituent units� as demonstrated in Fig�
ure �� Invocation for a unit is similar� an invoke expres�
sion is rewritten by extracting the invoked unit�s de�nitions
and initialization expression� and then replacing references
to imported variables with values� Otherwise� the standard
rules for functions� assignments� and exceptions apply�

��� Dynamically Typed Units

Figure � de�nes the syntax of Unitd� an extension of a dy�
namically typed core language� The core language must pro�
vide two forms that are used in the process of linking and
invoking� an expression sequence form ����� and a letrec
form for lexical blocks containing mutually recursive de�ni�
tions� The core language is extended with three unit�speci�c
forms�

� a unit form for creating units�

� a compound form for linking units� and

� an invoke form for invoking units�

����� The unit Form

The unit form consists of a set of import and export decla�
rations followed by internal de�nitions and an initialization
expression�

unit import xi � � � export xe � � �
val x � ev � � �
e

The imported variables xi are bound in the de�nition and
initialization expressions� The exported variables xe must
be de�ned within the unit� The scope of a de�ned variable
includes all of the de�nition expressions ev in the unit as
well as the initialization expression e�

In each de�nition val x � ev� the expression ev must
be valuable in the sense of Harper and Stone �
�
� with the
restriction that imported and de�ned variable names are
not considered valuable� The intent of this restriction is

that evaluating the expression terminates� does not incur
any computational e�ects �divergence� printing� etc��� and
does not refer to variables whose values may still be un�
determined �due to an ordering of the mutually recursive
de�nitions���

A unit expression is a �rst�class value� just like a num�
ber or an object in Java� There are only two operations on
units� linking and invoking� No operation can �look inside�
a unit value to extract any information about its de�nitions
or initialization expression� In particular� since a unit does
not contain any values �only unevaluated expressions�� there
is no �dot notation� for externally accessing values from a
unit �as in ML� and there are no �instantiated units� �ap�
proximating an ML structure� that contain the values of
unit expressions�

To simplify the presentation� Unitd does not allow ��
renaming for a unit�s imported and exported variables� In
MzScheme�s units� imported and exported variables have
separate internal �binding� and external �linking� names�
and the internal names within a unit can be ��renamed�

����� The compound Form

The compound form links two constituent units together
into a new unit�

compound import xi � � � export xe � � �
link e� with xi� provides xe�
and e� with xi� provides xe�

The constituent units are determined by two subexpressions�
e� and e�� Along with each expression� the variables that the
unit is expected to import are listed following the with key�
word� and the variables that the unit is expected to export
are listed following the provides keyword�

Variables are linked within compound by name� Thus�
the set of variables xi� linked into the �rst unit must be a
subset of xi�xe�� Similarly� xi� must be a subset of xi�xe��
Finally� the set variables xe exported by the compound unit
must be a subset of xe� � xe��

A compound unit expression is not a value� It evaluates
to a unit value that is indistinguishable from an atomic unit�
This unit�s initialization expression is the sequence of the
�rst constituent unit�s initialization expression followed by
the the second constituent unit�s�

Once again� MzScheme�s syntax is less restrictive than
Unitd�s� In MzScheme� the compound form links any
number of units together at once �a simple generalization
of Unitd�s two�unit form�� and links imports and exports
via source and destination name pairs� rather than requir�
ing the same name at both ends of a linkage�

����� The invoke Form

The invoke form evaluates its �rst subexpression to a unit
and invokes it�

invoke e with xi � ei � � �

If the unit requires any imported values� they must be pro�
vided through xi � ei declarations� which associate values ei
with names xi for the unit�s imports� An invoke expression
evaluates to the invoked unit�s initialization expression�

�This last restriction simpli�es the presentation of the formal se�
mantics� but it can be lifted for an implementation� as in MzScheme�
where accessing an unde�ned variable returns a default value or sig�
nals a run�time error�

�



p
x distinct � �eu � �

p
e

� �invoke eu with
p

x � e

p
x i�
p
x distinct

p
x e �
p
x

��
p
x �
p

x i �
p
e ��

p
x �
p

x i �eb

� �unit import
p

x i export
p

x ep
val x � e in eb

p
x i�

p
x p��

p
x p� distinct

p
x e distinctp

xw� �
p

x i�
p

x p�
p

xw� �
p

x i�
p

xp�
p

x e �
p

xp��
p

xp� � �e� � �e�

� �compound import
p

x i export
p

x e

link e� with
p

xw� provides
p

x p�

and e� with
p

xw� provides
p

x p�

The notation
p
x indicates either a set or a sequence of variables x� depending on the context� The notation

p
val x � e indicates the

sequence val x � e where each x is taken from the sequence
p
x with a corresponding e from the sequence

p
e�

Figure 
�� Checking the form of Unitd expressions

invoke �unit import
p

x i export
p

xep
val x � e in eb �

with
p

xw � vw

�� 	
p

vw�xw 
�letrec
p

val x � e in eb� if
p

x i �
p

xw

compound import
p

x i export
p

xe

link �unit import
p

x i� export
p

xe�p
val x � � e� in eb� � with

p
xw� provides

p
x p�

and �unit import
p

x i� export
p

xe�p
val x � � e� in eb� � with

p
xw� provides

p
x p�

�� unit import
p

x i

export
p

xe p
val x � � e�p
val x � � e�

in eb� � eb�
if
p

x ��
p

x��
p

x i distinct�
p

x i� �
p

xw��
p

x p� �
p

x e��
p

x i� �
p

xw� � and
p

xp� �
p

xe�

Figure 

� Reducing Unitd expressions

����� Unitd Context�sensitive Checking

The rules in Figure 
� specify the context�sensitive proper�
ties that were informally described in the previous section�
The checks ensure that a variable is not multiply de�ned�
imported� or exported� that all exported variables are de�
�ned� and that the link clause of a compound expression
is locally consistent�

����� Unitd Evaluation

The unit�speci�c reduction rules for Unitd� de�ned in Fig�
ure 

� generalize the graphical example in Figure �� The
rules extend those for Scheme ��
 and resemble equations in
the higher�order module calculus of Harper� Mitchell� and
Moggi �
	
� The �rst rule speci�es that an invoke expres�
sion reduces to a letrec expression containing the invoked
unit�s de�nitions and initialization expression� In this le�
trec expression� imported variables are replaced by values�
The set of variables supplied by invoke�s with clause must
cover the set of the imports required by the unit� otherwise�
a run�time error is signalled�

The second rule de�nes how a compound expression
combines two units� their de�nitions are merged and their
initialization expressions are sequenced� The compound
rule requires that the constituent units provide at least the
expected exports �according to the provides clauses� and
need no more than the expected imports �according to the
with clauses�� Also� all bindings introduced by de�nitions
in the two units must be appropriately ��renamed to avoid
collisions�

unit import even
export odd

val odd � fn � � false
j n � even �n���

odd ��

��

fn �evencell� oddcell� �
�oddcell �� �fn � � false

j n � ��evencell� �n�����
fn �� � ��oddcell� ���

Figure 
�� An example of Unitd compilation

����	 Unitd Implementation

In MzScheme�s implementation ofUnitd� units are compiled
by transforming them into functions� The unit�s imported
and exported variables are implemented as �rst�class ref�
erence cells that are externally created and passed to the
function when the unit is invoked� The function is respon�
sible for �lling the export cells with exported values and for
remembering the import cells for accessing imports later�
The return value of the function is a closure that evaluates
the unit�s initialization expression� Figure 
� illustrates this
transformation on an atomic unit�

A compound unit is also compiled to a function� The
function encapsulates a list of constituent units and a clo�
sure that propagates import and export cells to the con�
stituent units� creating new cells to implement variables in

�



letrec�expr � letrec type�defn� value�defn� in e
imports � import type�var�decl� value�var�decl�
exports � export type�var�decl� value�var�decl�

de�nitions � datatype�defn� value�defn�
datatype�defn � type t � x �x � j x �x � � x

link � with type�var�decl� value�var�decl�
provides type�var�decl� value�var�decl�

invoke�link � type�invoke�link� value�invoke�link�
type�invoke�link � type�var�decl � �

type�var�decl � t �� �
value�var�decl � x � �

� � � � t j � � � j signature
signature � sig imports exports �

t � type variable
� � type kind

Figure 
	� Syntax for Unitc �constructed types�

the constituents that are hidden by the compound unit�
The transformed units have the same code�sharing prop�

erties as traditional shared libraries� The de�nition and ini�
tialization expressions of a unit are compiled in the body of
the function produced by its transformation� and this one
function is used for all instances of the unit� Thus� there
exists a single copy of the de�nition and initialization code
regardless of how many times the unit is linked or invoked��

��� Units with Constructed Types

Figure 
	 extends the language in Figure � for a statically
typed language with programmer�de�ned constructed types�
such as ML datatypes� In the new language� Unitc� the im�
ports and exports of a unit expression include type variables
as well as value variables� All type variables have a kind	

and all value variables have a type� The compound and in�
voke expressions are extended in the natural way to handle
imported and exported types�

The de�nition section of a unit expression contains both
type and value de�nitions� Type de�nitions are similar to
ML datatype de�nitions� but for simplicity� every type de�
�ned in Unitc has exactly two variants� Type de�nitions
have the form type t � xcl�xdl � l j xcr�xdr �r � xt� Instances
of the �rst variant are constructed with the xcl function�
which takes a value of type � l and constructs a value of type
t � They are deconstructed with xdl� Instances of the sec�
ond variant are constructed with xcr given a value of type
�r and deconstructed with xdr� Applying a deconstructor to
the wrong variant signals a run�time error� To distinguish
variants� the xt function returns true for an instance of the
�rst variant and false for an instance of the second�

The � l and �r type expressions can refer to t or other
type variables to form recursive or mutually recursive type
de�nitions� We assume that the core language for Unitc

provides a letrec form for mutually recursive procedure and
datatype de�nitions�

The type of a unit expression is a signature of the form
sig imports exports � where imports speci�es the kinds and

�Our native code compiler transforms a unit expression to a
shared library that is managed by the operating system�

	Although the only kind in this language is �� we declare kinds ex�
plicitly in anticipation of future work that handles type constructors
and polymorphism�

�b� 	 �b�
p

ti����i� �
p

ti����i�
p

te����e� 

p

te����e�
�xi��� i� �

p
x i��� i�� 
x i���i� �

p
x i���i� 
 � i� 	 � i�

�xe���e� �
p

xe���e��
xe���e� �
p

xe���e� 
 �e� 	 �e�

sig	i� � e� � b� 
 	 sig	i� � e� � b� 


� �e 
 � � � � 	 �

� �se 
 �

Figure 
�� Subtyping and subsumption in Unitc signatures

types of a unit�s imports and exports describes the kinds
and types of its exports� In a sig form� as in a unit form�
types in either imports or exports can be used in the type
expressions within the signature� The type expression � is
the type of the unit�s initialization expression� which cannot
depend on type variables listed in exports�

����� Unitc Type Checking

For economy� we introduce the following unusual abbrevia�
tion� which summarizes the content of a signature with the
indices used on names�

sig�i� e� b
 � sig import
p

ti���i
p

x i�� i

export
p

te���e
p

xe��e

�b

Signatures have a subtype relation to allow the use of
specialized units in place of more general units� As de�ned
in Figure 
�� a speci�c signature ts is a subtype of a more
general signature tg �ts � tg� if�


� the type of the initialization expression in ts is a sub�
type of the one in tg�

�� ts has fewer imports and more exports than tg�

	� for each imported variable in ts� its type in tg is a
subtype of its type in ts� and

�� for each exported variable in tg� its type in ts is a sub�
type of its type in tg�

The typing rules forUnitc are shown in Figure 
�� These
rules are typed extensions of the rules from Section ��
���
The special judgement �s is used when subsumption is al�
lowed on an expression�s type� Subsumption is used care�
fully so that type checking is deterministic� For example�
subsumption is not allowed for the eu expression in the in�
voke rule because the initialization expression type �b in
eu�s signature supplies the type of the entire invoke expres�
sion�

The �rst typing rule checks the well�formedness of a sig�
nature� Each of the type expressions in a signature must
be well�formed in an environment containing the signature�s
imported and exported type variables� and the type expres�
sion for the initialization expression must not refer to any
of the exported type variables�

The second rule checks invoke expressions� �rst ensuring
that the with clause is well�formed� The �rst expression in
an invoke form must have a signature type whose imports
match the with clause� The exports in the signature are ig�
nored� The initialization expression�s type in this signature
is the type of the complete invoke expression�

�



�� � ��
p

ti���i�
p

te���e FTV ��b��
p

te � �

�� �� i 

 �i �� ��e 

 �e �� ��b 

 �
� �sig	i� e� b
 

 �

p
t�
p
x distinct � ��b 

 � � �

p
� 


p

�
� �s
p
e 

p

� � �eu 
 sig	i� e� b


sig	i� e� b
 	 sig import
p

t���
p

x �� export � �b

� �invoke eu with
p

t��� � �
p

x �� � e 
 �b

p
ti�
p
t�
p

x i�
p

x cl�
p

x dl�
p

x cr�
p

x dr�
p

x t�
p
x distinct

p
te���e�

p
xe��e �

p
t����

p
x ���

p
x cl�� l � t�

p
xdl�t � � l�

p
x cr�� r � t�

p
x dr�t � � r�

p
x t�t � bool

� �sig	i� e� b
 

 � �� � ��
p

ti���i�
p

t��� �� �
p

� l 

 � �� �
p

� r 

 � �� �
p

� 

 �

��� ����
p

x i�� i�
p

x cl�� l � t�
p

xdl�t � � l�
p

x cr�� r � t�
p

xdr�t � � r�
p

x t�t � bool

��� �s
p
e 

p

� ��� �eb 
 �b

� �unit import
p

ti���i
p

x i�� i export
p

te���e
p

xe��ep
type t � x cl�x dl � l j x cr�x dr � r � x tp
val x �� � e in eb


 sig	i� e� b


p
ti�
p

tp��
p

tp��
p

x i�
p

x p��
p

xp� distinct
p

te�
p

xe distinctp
tw����w��

p
xw���w� �

p
ti���i�

p
tp����p��

p
x i��i�

p
xp���p�p

tw����w��
p

xw���w� �
p

ti���i�
p

tp����p��
p

x i��i�
p

xp���p�p
te���e�

p
xe��e �

p
tp����p��

p
tp����p��

p
x p���p��

p
xp���p�

� �e� 
 sig	i� � e� � b� 
 � �e� 
 sig	i� � e� � b� 

� �sig	w� �p� � b� 
 

 � � �sig	w� �p� � b� 
 

 �

sig	i� � e� � b� 
 	 sig	w� � p� � b� 
 sig	i� � e� � b� 
 	 sig	w� � p� � b� 

� �sig	i� e� b� 
 

 �

� �compound import
p

ti���i
p

x i��i export
p

te���e
p

xe��e

link e� with
p

tw����w�
p

xw���w� provides
p

tp����p�
p

x p���p�

and e� with
p

tw����w�
p

xw���w� provides
p

tp����p�
p

x p���p�

 sig	i � e� b� 


Figure 
�� Type checking for Unitc

The third rule determines the signature of a unit expres�
sion� The �rst line of antecedents contains simple context�
sensitive syntax checks as in Unitd� In the second line� all
of the type expressions in the unit are checked in an en�
vironment that is extended with the unit�s imported and
de�ned types� Once the type expressions are validated� the
environment is extended again� this time with the types for
imported and de�ned variables� Finally� the types of all
de�nition expressions are veri�ed� Subsumption is allowed
for all expressions except the initialization expression� which
helps determine the overall signature for the unit�

The fourth and �nal rule veri�es the linking in a com�
pound expression and determines its signature� The �rst
four lines of antecedents are simple context�sensitive syntax
checks� Then� the constituent unit expressions are checked�
obtaining signatures for the constituent units� Each of these
signatures must approximate a signature derived from the
with and provides clauses in the corresponding linking
line� Finally� the signature of the compound unit is de�
�ned by the import and export clauses and the type of
the initialization expression in the second constituent unit�

����� Unitc Evaluation

The reduction rules for Unitc are nearly the same as the
rules for Unitd in Figure 

� The only di�erence for Unitc

is that the invoke and compound reductions propagate
type de�nitions as well as val de�nitions�

����� Type Soundness

If we were to combine Unitc with the monomorphic subset of
ML� we could prove a Milner�style type soundness theorem
using a subject reduction argument along the lines of Wright
and Felleisen �	

�

����� Unitc Implementation

Closed units in Unitc can be compiled separately in the
same way as closed functors in ML� When compiling a unit�
imported types are obviously not yet determined and thus
have unknown representations� Hence� expressions involving
imported types must be compiled like polymorphic func�
tions in ML �
�� ��
� Otherwise� the restrictions implied
by a unit�s interface allow inter�procedural optimizations
within the unit �such as inlining� specialization� and dead�
code elimination�� Furthermore� since a compound unit is
equivalent to a simple unit that merges its constituent units�
intra�unit optimization techniques naturally extend to in�

ter �unit optimizations when a compound expression has
known constituent units�

��� Units with Type Dependencies and Equations

Unitc supports a core language where each type is associ�
ated with a distinct and independent constructor� but this
view of types is too strict for many languages� For example�
in Java� the constructor that instantiates a class depends on
the constructor for the superclass� Other languages� such as

�



de�nitions � type�defn� datatype�defn� value�defn�
type�defn � type t �� � � �

signature � sig imports exports
depends dependency� �

dependency � t � t

Figure 
�� Syntax for Unite �type equations�

ML� support type equations that introduce new types with�
out explicit constructors� a type equation of the form type
t � � de�nes the type variable t as an abbreviation for the
type expression � �

Naively mixing units with type dependencies and equa�
tions leads to problems� Since two units can contain mutu�
ally recursive de�nitions� linking units with type dependen�
cies may result in cyclic de�nitions� which core languages like
ML and Java do not support� To prevent these cycles� signa�
tures must include information about dependencies between
imported and exported types� The dependency information
can be used to verify that cyclic de�nitions are not created
in linking expressions�

Unite extends Unitc with type dependencies and equa�
tions� Figure 
� de�nes syntax extensions for Unite� includ�
ing a new signature form that contains a depends clause�
The dependency declaration te � ti means that an exported
type te depends on an imported type ti� When two units
are linked with a compound expression� tracing the set of
dependencies can ensure that linking does not create a cyclic
type de�nition� Also� the signature for a compound expres�
sion propagates dependency information for types imported
into and exported from the compound unit�

����� Unite Type Checking

The following abbreviation expresses a Unite signature�

sig�i� e�di � de� b
 � sig import
p

ti���i
p

x i�� i

export
p

te���e
p

xe��e

depends
p

tde � tdi

�b

The subtyping rule in Figure 
� accounts for the new depen�
dency declarations� Speci�cally� a signature is more speci�c
than another if it declares more dependencies�

The type checking rules for Unite are de�ned in Fig�
ure 
�� To calculate type dependencies� the type checking
rules employ the �depends on� relation� 	D� It associates a
type expression with each of the type variables it references
from the set of type equations D�

� 	D t i� t 
 FTV ���

or ��ht � � � �i 
D � t� 
 FTV ��� and � � 	D t�

FTV ��� denotes the set of type variables in � that are not
bound by the import or export clause of a sig type� Type
abbreviations are eliminated from a type or expression with
the j � jD operator� as sketched in Figure 
�� The subscript
is omitted from j � jD when D is clear from context�

����� Unite Evaluation

Given a type equation of the form type t � � � the vari�
able t can be replaced everywhere with � once the complete

�b� 	 �b�
p

ti����i� �
p

ti����i�
p

te����e� 

p

te����e�p
tde� � tdi� �

p
tde� � tdi�

�xi��� i� �
p

x i��� i��
x i���i� �
p

x i���i� 
 � i� 	 �i�
�xe���e� �

p
xe���e��
xe���e� �

p
xe���e� 
 �e� 	 �e�

sig	i� � e� � di� �de� � b� 
 	 sig	i� � e� �di� � de� � b� 


Figure 
�� Subtyping in Unite signatures

program is known� Since the type system disallows cyclic
type de�nitions� this expansion of types as abbreviations
is guaranteed to terminate� Meanwhile� until the complete
program is known� type equations are preserved as neces�
sary� In the rewriting semantics for units� type equations
are preserved by linking� and then expanded away by in�
vocation� This semantics formalizes the intuition that type
equations constrain how programs are linked� but they have
no run�time e�ect when programs are executed�

The reduction rules for Unite are nearly the same as
the rules for Unitd �see Figure 

� or Unitc� Like in Unitc�
Unite�s invoke and compound reductions propagate type
de�nitions as well as val de�nitions� In addition� the com�
pound reduction propagates type abbreviations� but the
invoke reduction immediately expands all type abbrevia�
tions in the invoked unit�

� Other Extensions

Experience with other modules systems� particularly those
of ML� suggests further extensions to Unite� such as facil�
ities for exposing the implementation of a type� hiding the
type �or parts of the type� of a value� or type sharing� The
�rst two of these extensions are straightforward additions
to Unite� but the unit analogue of the last one is less clear�
In the following subsections� we brie�y discuss each of these
concepts�

��� Exposing Type Information

The ML module system allows signatures that reveal some
information about an exported type �
�� ��
� The partially
exposed types �or translucent types� are used for propagating
type dependencies in a way that allows type sharing� but
they are also useful for assigning a name to a complex type
that is exposed to clients�

Consider exporting values of type env from an Environ�
ment unit such that env is revealed as a procedure type�
As shown in Figure ��� the translucent type env in this
case may be viewed as a type abbreviation that is preserved
within the signature� The unit Environment does not ex�
port the type env� Instead� the unit and its signature are
extended with an extra section that de�nes the abbreviation
env� The resulting unit and signature are equivalent to the
unit and signature that expands env in all type expressions�

��� Hiding Type Information

Large projects often have multiple levels of clients� Some of
the clients are more trusted than others and are thus privy
to more information about the implementation of certain
abstractions� To support this situation� Unite could pro�
vide mechanisms for hiding a value�s type information from
untrusted clients after linking with trusted clients�


�



j�jD �

�������
������

t if ��t and t ��D

j� �jD if ��t and ht � � �i �D

j� �jD�j� ��jD if ��� ��� ��

sig import
p

ti���i
p

x i�j� ijD� export
p

te���e
p

x e�j�ejD�

depends
p

tde � tdi

j�bjD�

if ��sig	i� e� di� de� b


and D� � fht � �ijht � �i � D and t ��
p

ti�
p

teg

jejD �

�������
������

x if e�x

unit import
p

ti���i
p

x i��i export
p

te���e
p

xe��ep
type ta���a � j�ajD� p
type t � x cl�x dl j� ljD� j x cr�xdr j� r jD� � x tp
val x �j�jD� � jejD� in jebjD�

if e�unit import
p

ti���i
p

x i�� i export
p

te���e
p

xe��ep
type ta���a � �a p
type t � x cl�xdl � l j x cr�xdr � r � x tp
val x �� � e in eb

and D� � fht � �ijht � �i � D and t ��
p

ti�
p

te�
p

ta�
p
tg

� � �

Figure 
�� Expanding a type or expression with respect to a set of type abbreviations

p
tde �

p
te

p
tdi �

p
ti �� � ��

p
ti���i�

p
te���e FTV ��b��

p
te � �

�� �� i 

 �i �� ��e 

 �e �� ��b 

 �
� �sig	i� e�di �de� b
 

 �

p
ti�
p
t�
p

x i�
p

x cl�
p

x dl�
p

x cr�
p

xdr�
p

x t�
p
x distinctp

te���e�
p

x e��e �
p

ta���a�
p

t����
p

x ���
p

x cl�� l � t�
p

xdl�t � � l�
p

x cr�� r � t�
p

x dr�t � � r�
p

x t�t � bool

D �
p

hta � �ai �a �D t �a � � �

a ��D ta for hta � �ai� ht �a � � �

ai � Dp
tde � tdi � fta � ti j hta � �ai � D and ti �

p
ti and ta �

p
te and �a �D tig

� �sig	i� e� di� de � b
 

 � �� � ��
p

ti���i�
p

t��� ��

a � ���
p

ta���a ��

a ��a 

 �a
�� �j
p

� lj 

 � �� �j
p

� rj 

 � �� �j
p

�j 

 �

��� ����
p

x i�j�ij�
p

x cl�j� lj � jtj�
p

xdl�jtj � j� lj�
p

x cr�j� rj � jtj�
p

xdr�jtj � j� rj�
p

x t�jtj � bool ��� �s j
p
ej 
 j
p

�j ��� �jebj 
 �b

� �unit import
p

ti���i
p

x i��i export
p

te���e
p

xe��ep
type ta���a � �a p
type t � x cl�x dl � l j x cr�x dr � r � x tp
val x �� � e in eb


 sig	i� e� di � de � b


p
ti�
p

tp��
p

tp��
p

x i�
p

xp��
p

xp� distinct
p

te�
p

xe distinctp
tw����w��

p
xw���w� �

p
ti���i�

p
tp����p��

p
x i��i�

p
xp���p�p

tw����w��
p

xw���w� �
p

ti���i�
p

tp����p��
p

x i��i�
p

xp���p�p
te���e�

p
xe��e �

p
tp����p��

p
tp����p��

p
x p���p��

p
xp���p�

� �e� 
 sig	i� � e� �di� � de� � b� 
 � �e� 
 sig	i� � e� �di� � de� � b� 

� �sig	w� � p� � di� �de� � b� 
 

 � � �sig	w� �p� � di� � de� � b� 
 

 �

sig	i� � e� �di� � de� � b� 
 	 sig	w� � p� �di� � de� � b� 
 sig	i� � e� � di� � de� � b� 
 	 sig	w� � p� � di� � de� � b� 


� �sig	i� e� di� de� b� 
 

 �
p

htdi�� tde�i �
p

htde�� tdi�i � �p
tde � tdi � fte � ti j ti �

p
ti and te �

p
te and te � ti �

p
tde� � tdi��

p
tde� � tdi�g

� �compound import
p

ti���i
p

x i��i export
p

te���e
p

x e��e

link e� with
p

tw����w�

p
xw���w� provides

p
tp����p�

p
x p���p�

and e� with
p

tw����w�

p
xw���w� provides

p
tp����p�

p
x p���p�


 sig	i� e�di �de � b� 


Figure 
�� Type checking for Unite

Consider the example in Figure �
� The Environment

unit is linked with the Letrec unit� allowing the latter to
exploit the implementation of environments as procedures�
In contrast� other clients should not be allowed to exploit
the implementation of environments� Hence� the type of
environments should be opaque outside the compound unit

RecEnv� which combines Environment and Letrec�
As shown in Figure �
� information about RecEnv�s ex�

ports can be restricted via explicit signatures and an ex�
tended subtype relation� The extended relation allows a
subtype signature to contain an extra exported type vari�
able �e�g�� env� in place of an abbreviation in the supertype







Environment

� � �

fun extend env n v � � � �

extend�env�name�value�env

env � name�value
�

exposed
abbreviations

�
Environment

� � �

fun extend env n v � � � �

extend��name�value��name�value��name�value�

Figure ��� Exposing information for a type

RecEnv

� � �

Environment

� � �

fun extend env n v � � � �

extend��name�value��name�value��name�value�

Letrec

extend��name�value��name�value��name�value�

fun recExtend env ns vs � � � �

recExtend ��name�value��names�values��name�value�

extend�env�name�value�env
recExtend �env�names�values�env

env � name�value

� � � �

� � �

env���
extend�env�name�value�env

recExtend �env�names�values�env

�

�

�

Figure �
� Hiding type information for an exported value

signature� As a result� the information formerly exposed
by the abbreviation becomes hidden� replaced by an opaque
type�

��� Sharing

Type sharing speci�cations are used to solve the �diamond
import� problem for ML ���
� Suppose a particular symbol
structure is provided to both a lexer functor and a parser

functor� If both lexer and parser export the type sym as
originating from symbol �via translucent types�� the struc�
tures returned by parser and lexer can be joined by a functor
that accepts structure arguments agreeing on the sym type�
This �agreement� prerequisite is declared via a type sharing
speci�cation�

In Unite� the �diamond import� problem is solved by
linking lexer� parser� and symbol together at once� However�
the unit model provides nothing like after�the�fact sharing
speci�cations� thus� if lexer and parser are compound units
that contain internal instances of symbol� then symbol is in�
stantiated twice and there is no way to unify the two sym
types�

Type sharing is more �exible than unit linking in one im�
portant case� Suppose that lexer links to many structures
and has many clients� In addition� suppose that most of
the clients share types with only a few of the structures�
In ML� each client can conveniently declare a few after�the�
fact sharing declarations� In Unite� if lexer requires many
imports� each of lexer�s clients must provide all of those im�
ports� regardless of how few imports need to be shared� This
example illustrates a problem of specifying which units need
to be linked� rather than how to link them� As explained
in the introduction� integrating units with the core language
provides power for selecting which units to link� Future work
must explore how core language features can be used to ex�
press complex linking patterns for units� and whether our
model needs adjustment to accommodate common re�use
patterns�

	 Related Work

As already mentioned in Section �� our unit model incorpo�
rates ideas from distinct language communities� particularly
those using packages and ML�style modules� The Scheme
and ML communities have produced a large body of work
exploring variations on the standard module system� espe�
cially variations for higher�order modules ��� �� 
�� 
�� 
��
��� �
� �	� ��
� Duggan and Sourelis ��
 have investigated
�mixin modules� for specifying recursive and extensible de��
nitions across modules� their work and ours have no overlap�

Cardelli �	
 anticipated the unit language�s emphasis on
module linking as well as module de�nition� Our unit model
is more concrete than his proposal and addresses many of
his suggestions for future work� Kelsey�s proposed module
system for Scheme �
�
 captures most of the organizational
properties of units� but does not address static typing or
dynamic linking�


 Conclusion

Program units deliver both the traditional bene�ts of mod�
ules for separate compilation and the more recent advances
of higher�order modules and programmer�controlled linking�
Our unit model also addresses the often overlooked� but in�
creasingly important� problem of dynamic linking�

The unit language was originally implemented for the
development of DrScheme ��� ��
� Rice�s Scheme program�
ming environment� which is implemented using MzScheme�
DrScheme is a large and dynamic program with many in�
tegrated components� including a multimedia editor� an in�
teractive evaluator� a syntax checker� and a static debugger�
Additional components can be dynamically linked into the
environment� DrScheme also acts as an operating system for
client programs that are being developed� launching client
programs by dynamically linking them into the system while
maintaining the boundaries between clients�

Future work must focus on making units syntactically
practical for typed languages� Our text�based model is far
too verbose� and we do not address the design of a linking
language� Instead� we provide a simple construct for linking
units and rely on integration with the core language to build
up linking expressions� This integration simpli�es our pre�
sentation� and we believe it is an essential feature of units�
Nevertheless� future work must explore more carefully the
implications of integrating the core and module languages�

Acknowledgements The authors would like to thank Robby
Findler for early contributions to this work� and Cormac


�



Flanagan� Bob Harper� Richard Kelsey� Shriram Krishna�
murthi� Peter Lee� Didier R�emy� Scott Smith� Paul Steckler�
and J�er ome Vouillon for stimulating discussion and com�
ments on the paper� Thanks also to the anonymous re�
viewers for their comments� Special thanks to Shriram for
suggesting the title�

References

�

 Barnes� J� G� P� Programming in Ada ��� Addison�
Wesley� 
����

��
 Biswas� S� K� Higher�order functors with transparent
signatures� In Proc� ACM Symposium on Principles of

Programming Languages �
����� pp� 
���
�	�

�	
 Cardelli� L� Program fragments� linking� and modu�
larization� In Proc� ACM Symposium on Principles of

Programming Languages �
����� pp� ��������

��
 Curtis� P�� and Rauen� J� A module system for
Scheme� In Proc� ACM Conference on Lisp and Func�
tional Programming �
����� pp� 
	����

��
 Duggan� D�� and Sourelis� C� Mixin modules�
In Proc� ACM International Conference on Functional

Programming �
����� pp� ������	�

��
 Felleisen� M�� and Hieb� R� The revised report on
the syntactic theories of sequential control and state�
Tech� Rep� 
��� Rice University� June 
���� Theoretical
Computer Science� volume 
��� 
���� pp� �	����
�

��
 Findler� R� B�� Flanagan� C�� Flatt� M�� Krish�
namurthi� S�� and Felleisen� M� DrScheme� A
pedagogic programming environment for Scheme� In
Proc� International Symposium on Programming Lan�

guages� Implementations� Logics� and Programs �
�����
pp� 	���	���

��
 Flatt� M� PLT MzScheme� Language manual� Tech�
Rep� TR������� Rice University� 
����

��
 Flatt� M�� Krishnamurthi� S�� and Felleisen� M�
Classes and mixins� In Proc� ACM Symposium on Prin�
ciples of Programming Languages �
����� pp� 
�
�
�	�

�
�
 Gosling� J�� Joy� B�� and Steele� G� The Java
Language Speci�cation� The Java Series� Addison�Wes�
ley� Reading� MA� USA� June 
����

�


 Harbison� S� P� Modula��� Prentice Hall� 
��
�

�
�
 Harper� R�� and Lillibridge� M� A type�theoretic
approach to higher�order modules with sharing� In
Proc� ACM Symposium on Principles of Programming

Languages �
����� pp� 
�	�
	��

�
	
 Harper� R�� Mitchell� J�� and Moggi� E� Higher�
order modules and the phase distinction� In Proc� ACM
Symposium on Principles of Programming Languages

�
����� pp� 	�
�	���

�
�
 Harper� R�� and Stone� C� A type�theoretic seman�
tics for Standard ML 
���� Submitted for publication�

����

�
�
 Hudak� P�� and Wadler� P� �Eds��� Report
on the programming language Haskell� Tech� Rep�
YALE!DCS!RR���� Yale University� Department of
Computer Science� Aug� 
��
�

�
�
 Jagannathan� S� Metalevel building blocks for modu�
lar systems� ACM Transactions on Programming Lan�

guages and Systems 	
� 	 �May 
����� ��������

�
�
 Kelsey� R� A� Fully�parameterized modules or the
missing link� Tech� Rep� ���	� NEC Research Institute�

����

�
�
 Lee� Shinn�Der and Daniel P� Friedman� Quasi�
static scoping� Sharing variable bindings across multi�
ple lexical scopes� In Proc� ACM Symposium on Prin�
ciples of Programming Languages �
��	�� pp� ��������

�
�
 Leroy� X� Unboxed objects and polymorphic typing�
In Proc� ACM Symposium on Principles of Program�
ming Languages �
����� pp� 
���
���

���
 Leroy� X� Manifest types� modules� and separate com�
pilation� In Proc� ACM Symposium on Principles of

Programming Languages �
����� pp� 
���
���

��

 Leroy� X� Applicative functions and fully transparent
higher�order modules� In Proc� ACM Symposium on
Principles of Programming Languages �
����� pp� 
���

�	�

���
 MacQueen� D� Modules for Standard ML� In Proc�

ACM Conference on Lisp and Functional Programming
�
����� pp� 
�������

��	
 MacQueen� D� B�� and Tofte� M� A semantics
for higher�order functors� In European Symposium on

Programming �Apr� 
����� Springer�Verlag� LNCS ����
pp� ������	�

���
 Milner� R�� Tofte� M�� and Harper� R� The Def�
inition of Standard ML� The MIT Press� Cambridge�
Massachusetts and London� England� 
����

���
 Rice University PLT� DrScheme� URL�
www�cs�rice�edu�CS�PLT�packages�drscheme��

���
 Saraswat� V� Java is not type�safe� Aug� 
���� URL�
www�research�att�com��vj�bug�html�

���
 SunSoft� SunOS ��� Linker and Libraries Manual�

����

���
 Tarditi� D�� Morrisett� G�� Cheng� P�� Stone� C��
Harper� R�� and Lee� P� TIL� A type�directed op�
timizing compiler for ML� In Proc� ACM Conference
on Programming Language Design and Implementation

�
����� pp� 
�
�
���

���
 Tofte� M� Principal signatures for higher�order pro�
gram modules� In Proc� ACM Symposium on Principles
of Programming Languages �
����� pp� 
���
���

�	�
 Wirth� N� Programming in Modula��� Springer�Verlag�

��	�

�	

 Wright� A�� and Felleisen� M� A syntactic ap�
proach to type soundness� Tech� Rep� 
��� Rice Uni�
versity� 
��
� Information and Computation� volume


��
�� 
���� pp� 	�����


	


