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Abstract

We present a type theory for higher-order modules that ac-
counts for most current issues in modular programming lan-
guages, including translucency, applicativity, generativity,
and modules as first-class values. Our theory harmonizes
design elements from various previous work, resulting in a
simple, economical, and elegant language. This language is
useful as a framework for comparing alternative designs, and
is the first language to provide all of these features simul-
taneously and still support a practical type checking algo-
rithm.

1 Introduction

The design of languages for modular programming is surpris-
ingly delicate and complex. There is a fundamental tension
between the desire to separate program components into
relatively independent parts and the need to integrate these
parts to form a coherent whole. To some extent the design
of modularity mechanisms is independent of the underlying
language [16], but to a large extent the two are insepara-
ble. For example, languages with polymorphism, generics,
or type abstraction require far more complex module mech-
anisms than those that do not.

Much work has been devoted to the design of modular
programming languages. Early work on CLU [18] and the
Modula family of languages [32, 2] has been particularly in-
fluential. Much effort has gone into the design of modular
programming mechanisms for the ML family of languages,
notably Standard ML [21] and Objective Caml [25]. Nu-
merous extensions and variations of these designs have been
considered in the literature [19, 17, 27, 29, 5].

Despite (or perhaps because of) these substantial efforts,
the field has remained somewhat fragmented, with no clear
unifying theory of modularity having yet emerged. Several
competing designs have been proposed, often seemingly at
odds with one another. These decisions are as often mo-
tivated by pragmatic considerations, such as engineering a
useful implementation, as by more fundamental considera-
tions, such as the semantics of type abstraction. The re-
lationship between these design decisions is not completely
clear, nor is there a clear account of the trade-offs between
them, or whether they can be coherently combined into a
single design.

The goal of this paper is to provide a simple, unified
formalism for modular programming that consolidates and
elucidates much of the work mentioned above. Building on
a substantial and growing body of work on type-theoretic
accounts of language structure, we propose a type theory for
higher-order program modules that harmonizes and enriches
these designs and that would be suitable as a foundation for
the next generation of modular languages.

1.1 Design Issues

Before describing the main technical features of our lan-
guage, it is useful to review some of the central issues in the
design of module systems for ML. These issues extend to
any language of similar expressive power, though some of
the trade-offs may be different for different languages.

Controlled Abstraction Modularity is achieved by using
signatures (interfaces) to mediate access between program
components. The role of a signature is to allow the program-
mer selectively to “hide” type information. The mechanism
for controlling type propagation is translucency [10, 13], with
transparency and opacity as limiting cases.

Phase Separation ML-like module systems enjoy a phase
separation property [11] stating that every module is sepa-
rable into a static part, consisting of type information, and a
dynamic part, consisting of executable code. To obtain fully
expressive higher-order modules and to support abstraction,
it is essential to build this phase separation principle into the
definition of type equivalence.

Generativity MacQueen coined the term generativity for
the creation of “new” types corresponding to run-time in-
stances of an abstraction. For example, we may wish to
define a functor SymbolTable that, given some parameters,
creates a new symbol table. It is natural for the symbol ta-
ble module to export an abstract type of symbols that are
dynamically created by insertion and used for subsequent
retrieval. To preclude using the symbols from one symbol
table to index another, generativity is essential—each in-
stance of the hash table must yield a “new” type, distinct
from all others, even when applied twice to the same param-
eters.

Separate Compilation One goal of module system design
is to support separate compilation [13]. This is achieved by
ensuring that all interactions among modules are mediated
by interfaces that capture all of the information known to
the clients of separately-compiled modules.

Principal Signatures The principal, or most expressive, sig-
nature for a module captures all that is known about that
module during type checking. It may be used as a proxy
for that module for purposes of separate compilation. Many
type checking algorithms, including the one given in this
paper, compute principal signatures for modules.

Hidden Types Introducing a local, or “hidden”, abstract
type within a scope requires that the types of the externally
visible components avoid mention of the abstract type. This
avoidance problem is often a stumbling block for module



system design, since in most expressive languages there is
no “best” way to avoid a type variable [7, 17].

1.2 A Type System for Modules

The type system proposed here takes into account all of
these design issues. It consolidates and harmonizes design
elements that were previously seen as disparate into a sin-
gle framework. For example, rather than regard genera-
tivity of abstract types as an alternative to non-generative
types, we make both mechanisms available in the language.
We support both generative and applicative functors, ad-
mit translucent signatures, support separate compilation,
and are able to accommodate modules as first-class val-
ues [22, 28].

Generality is achieved not by a simple accumulation
of features, but rather by isolating a few key mechanisms
that, when combined, yield a flexible, expressive, and im-
plementable type system for modules. Specifically, the fol-
lowing mechanisms are crucial.

Singletons Propagation of type sharing is handled by sin-
gleton signatures, a variant of Aspinall’s and Stone and
Harper’s singleton kinds [31, 30, 1]. Singletons provide a
simple, orthogonal treatment of sharing that captures the
full equational theory of types in a higher-order module sys-
tem with subtyping. No previous module system has pro-
vided both abstraction and the full equational theory sup-
ported by singletons,’ and consequently none has provided
optimal propagation of type information.

Static Module Equivalence The semantics of singleton sig-
natures is dependent on a (compile-time) notion of equiva-
lence of modules. To ensure that the phase distinction is
respected, we define module equivalence to mean “equiva-
lence of static components,” ignoring all run-time aspects.

Subtyping Subtyping is used at the signature level to
model “forgetting” type sharing information, which is es-
sential for signature matching. The coercive aspects of sig-
nature matching (e.g., dropping of fields and specialization
of polymorphic values) are omitted here, since the coercions
required are definable in the language.

Determinacy To ensure the proper implementation of ab-
straction, our type system forbids some modules from being
tested for equivalence to any other modules. Modules that
are licensed for equality testing are termed determinate. De-
terminacy also provides the license for a module to appear in
a signature (via the construction of a singleton signature) or
in a type (via projection of one of the module’s type com-
ponents), as each such appearance implicitly requires the
ability to test for equality.

Static and Dynamic Effects The “sealing” [10] of a mod-
ule with a signature, which is used to model abstract and/or
generative types, is deemed by our type system to induce a
pro forma computational effect. This is backed up by the
intuition that generativity involves the generation of new

! Typically the omitted equations are not missed because restric-
tions to named form or valuability prevent programmers from writing
code whose typeability would depend on those equations in the first
place [3].

types at run time. (Of course, no such run-time generation
actually occurs, but the pro forma effect nevertheless pro-
vides the intended behavior.) This notion of effects allows
us to provide generativity without resorting to the use of
“generative stamps” [21, 19].

We isolate two distinct sorts of computational effects,
which we call static and dynamic.?. We then break modules
into four categories, depending on what sort of effects they
may induce: pure modules involve no effects, dynamically
pure modules involve only static effects (but no dynamic
ones), statically pure modules involve only dynamic effects,
and general modules may involve any effect.

For our type system, we set the class of determinate mod-
ules to be precisely the pure modules. Consequently, since
modules involving sealing are impure, they are also inde-
terminate, and therefore may not appear within a type or
signature. However, dynamic or static purity alone does
provide some privileges not enjoyed by arbitrary modules.
For example, dynamically pure modules (which may con-
tain opaque but non-generative types) may appear within
the body of an applicative functor.

Applicative and Generative Functors An applicative func-
tor [14] is one that respects static equivalence of its argu-
ments. This models the behavior of functors in Objective
Caml. A generative, or non-applicative, functor does not re-
spect equivalence—the abstract types in the result differ on
each application.

Existential Signatures In a manner similar to Shao [29],
our type system is carefully crafted to circumvent the avoid-
ance problem, so that every module enjoys a principal sig-
nature. However, this requires imposing restrictions on the
programmer. To lift these restrictions, we follow Russo [27]
(generalizing Harper and Stone [12]) and employ existen-
tial signatures to provide principal signatures where none
would otherwise exist. We show that these existential sig-
natures are type-theoretically ill-behaved in general, so, like
Russo and like Harper and Stone, we restrict their use to
a well-behaved setting. In particular, we define an elabo-
ration algorithm from an external language that may incur
the avoidance problem, into our type system for higher-order
modules, which does not.

First-Class Polymorphism Both ML-style polymorphic
typing and the ability to treat modules as first-class val-
ues arise from a single polymorphic type constructor that
abstracts user-level code over a module.

While these features combine naturally to form a very
general language for modular programming, they would be
of little use in the absence of a practical implementation
strategy. Some previous attempts have encountered diffi-
culties with undecidability [10] or incompleteness of type
checking [25]. In contrast, our formalism leads to a practical,
implementable programming language. First, we provide a
sound, complete, and effective type checking algorithm. The
algorithm consists of two parts: computation of principal
signatures for modules, which we show exist, and checking
of subsignature relationships. The latter aspect of the algo-
rithm reduces to checking module equivalence, for which we

2Note that even dynamic effects are still static, in the sense they
are a fiction of the type system, and would not be reflected in the
operational semantics.
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Figure 1: Syntax

rely on an extension of Stone and Harper’s algorithm [31].
Second, we provide an effective elaboration algorithm from
a general external language (with hidden types and the re-
sulting avoidance problem) into our type system.

2 Technical Development

We begin our technical development by presenting the syn-
tax of our language in Figure 1. Our language consists of
four syntactic classes: terms, types, modules, and signa-
tures (which serve as the types of modules). The language
does not explicitly include higher-order type constructors or
kinds (which ordinarily serve as constructors’ types); in our
language the roles of constructors and kinds are subsumed
by modules and signatures. Contexts bind module variables
(s) to signatures.

As usual, we consider alpha-equivalent expressions to be
identical. We write the capture-avoiding substitution of M
for s in an expression E as E[M/s].

Types and Terms There are three basic types in our lan-
guage. The product type (71 X 72) is standard. The function
type, Ils:0.7, is the type of functions that accept a module
argument s of signature o and return a value of type 7 (pos-
sibly containing s). As usual, if s does not appear free in 7,
we write IIs:o.7 as 0 — 7. (This convention is used for the
dependent products in the signature class as well.) Finally,
when M is a module containing exactly one type (which is
to say that M has the signature [T7]), that type is extracted
by Typ M. A full-featured language would support a variety
of additional types as well.

The term language contains the natural introduction and
elimination constructs for recursive functions and products.
In addition, when M is a module containing exactly one
value (which is to say that M has the signature [r], for
some type 7), that value is extracted by Val M. When f
does not appear free in e, we write fix f(s:0):7.e as As:o.e.

The conventional forms of functions and polymorphic
function are built from module functions. Ordinary func-
tions are built using modules containing a single value:

def

T — To = [n]—m
Moire(z) © As:[r].e(Vals)
€e1€2 déf €1 [62]

and polymorphic functions are built using modules contain-

ing a single type:

Va.r(a) = s [T].7(Typs)
Aace(a) ' As:[T].e(Typs)
er L efr]

Signatures and Modules There are seven basic signatures
in our language. The atomic signature [T7] is the type of
an atomic module containing a single type, and the atomic
signature [7] is the type of an atomic module containing a
single term. The atomic modules are written [r] and [e : 7],
respectively. (We omit the type label “: 77 from atomic term
modules when it is clear from context.) The trivial atomic
signature 1 is the type of the trivial atomic module ().

The functor signatures IIs:01.02 and I15°"s:01.02 express
the type of functors that accept an argument of signature o
and return a result of signature o2 (possibly containing s).
We discuss the difference between 11 and II*°* in detail be-
low.

The structure signature Xs:o1.02 is the type of a pair
of modules where the left-hand component has signature o1
and the right-hand component has signature o2, in which s
refers to the left-hand component. They are introduced by
the pairing construct (s = My, M2) in which s stands for
M; and may appear free in M2. As usual, when s does not
appear free in o2, we write ¥s:01.02 as 01 X 0.

The singleton signature §(M) is used to express type
sharing information. It classifies modules that have signa-
ture [T] and are statically equivalent to M. Two modules
are considered statically equivalent if they are equal mod-
ulo term components; that is, type fields must agree but
term fields may differ. Singletons at signatures other than
[T] are not provided primitively because they can be de-
fined using the basic singleton, as described by Stone and
Harper [31]. The definition of §,(M) (the signature con-
taining only modules equal to M at signature o) is given in
Figure 5.

The module syntax contains module variables (s), the
atomic modules, and the usual introduction and elimination
constructs for IT and ¥ signatures, except that ¥ modules
are introduced by (s = M1, M), in which s stands for M;
in M>. (When s does not appear free in Ma, the “s =" is
omitted.) No introduction or elimination constructs are pro-
vided for singleton signatures. Singletons are introduced and
eliminated by rules in the static semantics; if M is judged
equivalent to M’ in o, then M belongs to $,(M"), and vice
versa.

The remaining module constructs are strong sealing,
written M :>o, and weak sealing, written M :: 0. When
a module M is strongly sealed with a signature o, the result
is opaque and generative. By opaque we mean that no client
of the module may depend on any details of the implementa-
tion of M other than what is exposed by the signature o. By
generative we mean that dynamic instance of M :>o pro-
duces types that are judged unequal to those of any other.
A weakly sealed module is opaque but not generative; we
discuss the utility of weak sealing in Section 3.

Although higher-order type constructors do not appear
explicitly in our language, they are faithfully represented
in our language by unsealed modules containing only type
components. For example, the kind (T'— T') — T is repre-
sented by the signature ([T]— [7]) —[7]; and the construc-
tor Aa:(T — T').(int * aint) is represented by the module
As:([T] — [T1)-[int * Typ(s [int])].



signature SIG =
sig
type s
type t = s * int

structure S : sig
type u
val £ : u -> s
end

val g : t -> S.u
end

. is compiled as ...
Ys:[T].
Yt:5([Typ s * int]).
ES:(Xw:[T].2f:[Typu — Typs].1).
Yg:[Typt — Typ(m15)].1

Figure 2: ML Signature Example

structure S1 =

struct
type s = bool
type t = bool * int

structure S = struct
type u = string
val £ = (fn y:u => true)
end

val g = (fn y:t => "hello world")
end

. is compiled as ...

([boo1],
([bool x int],

({[string], {{\y:string.true], ())),
{[M\y:bool * int."hello world"], ()))))

Figure 3: ML Structure Example

Examples of how ML-style signatures and structures may
be expressed in our language appear in Figures 2 and 3.

2.1 Module Equivalence and Implications

The key issue in the design of our module calculus lies in
two related questions: When can modules be compared for
equivalence, and, given two comparable modules, when are
they deemed equivalent? We say that a module is determi-
nate if it is eligible to be compared for equivalence.

With regard to comparability, we seek to provide the
largest class of determinate modules possible while still pro-
viding for programmer-specified abstraction and generativ-
ity. With regard to equivalence of comparable modules, we
will rule that two determinate modules with the same sig-
nature are equivalent if and only if their static (i.e., type-
related) components are equal. This provides the most per-
missive equality while still complying with the phase dis-
tinction [11].

We will look first at the topic of determinacy, dealing

with equivalence at a strictly informal level. Then we will
look at the specifics of equivalence and formalize our equiv-
alence judgement.

2.1.1 Determinacy

In the literature different accounts of higher-order modules
provide different classes of determinate modules. For ex-
ample, in Harper and Lillibridge’s first-class module sys-
tem [10], only values are considered determinate. This is
necessary in their setting for type soundness because, in the
presence of side-effects, non-values could compute different
modules containing different types each time they are evalu-
ated. Thus, the type components of a non-value are not well
determined (hence the phrase “indeterminate”) and cannot
meaningfully be compared for equivalence.

In Leroy’s second-class module calculi [13, 14], determi-
nacy is limited to the syntactic category of paths. In Leroy’s
case this was not necessary for type soundness, since mod-
ules were never produced by run-time computations, but
it served to provide a certain degree of abstraction. In
Harper, et al’s “phase-distinction” calculus [11], an early
higher-order, second-class module system, all modules were
deemed to be determinate, but no means of abstraction was
provided.

In our language we wish to admit as large a class of
determinate modules as possible. First, we specify determi-
nacy using a semantic condition (formalized by a judgement
in the type theory), rather than as a syntactic condition.
In addition to being more elegant, this semantic treatment
of determinacy turns out to be necessary for a correct ac-
count of generativity. Second, we deem all modules to be de-
terminate unless indeterminacy is imposed by programmer-
specified abstraction and/or generativity through the lan-
guage’s sealing mechanisms.

Projection of Type Components Often the literature on
module systems has focused on which modules can appear in
type projections, rather than on which modules are equiva-
lent to one another. For example, Harper and Lillibridge [10]
and Leroy [13, 14] emphasize projection, but on the other
hand Harper, et al. [11] stress module equivalence. Here we
stress equivalence as the primary notion, since the choice
of which modules may be compared for equality determines
those from which types may be projected.

To see this, suppose that M is an indeterminate module
with signature [T]. By definition, M cannot be compared
for equivalence with any other module. Suppose, however,
we are permitted to form the type Typ M. All types are com-
parable for equality, so Typ M can be compared for equality
with any other type, including Typ M’ (for some other M’
with signature [T7]). Since Typ M returns the entire con-
tent of M, and likewise for M’, this gives us a means by
which we may compare M for equivalence with M’, which
cannot be permitted. Thus, the type system must permit
the projection of type components only from determinate
structures.

Strong Sealing and Generativity In our type system, de-
terminacy is limited by the imposition of abstraction by the
programmer. The principal means for doing so is strong
sealing written M :> o, which generatively seals the module
M with the signature o. By “generatively,” we mean that
multiple dynamic instances of the expression M :> o create



modules with unequal type components. Each dynamic in-
stance of a sealed module is thereby said to “generate” an
abstract type distinct to that occurrence.

When considered from the point of view of module equiv-
alence, generativity means that a strongly sealed module
should not even be equivalent to itself! Since module equiv-
alence must surely be symmetric and transitive, any module
expression that can be compared for equivalence will surely
be equivalent to itself, for if M is equivalent to N, then, by
symmetry and transitivity, M is equivalent to itself. Thus to
ensure generativity, strongly sealed modules cannot be com-
parable to other modules, which is to say that they should
be ruled indeterminate.

Strong sealing is not the only form of generativity in
our language. We also support generative functors, which
yield distinct abstract types for each application. Thus, if
F is a generative functor, then the application F'(M) should
behave generatively, and hence be considered indeterminate,
even if F' is a functor variable and M is determinate. In our
system, generative functors are given signatures using the
I1%°" construct; functors whose signatures use an ordinary II
are applicative [14]. Since functors can be simple variables,
no syntactic condition alone can determine if a functor is
generative.

2.1.2 Effects and Purity

The irreflexivity of generative module expressions is strongly
reminiscent of the irreflexivity of expressions in languages
with effects. Indeed, a guiding intuition in the development
is to regard generativity as a pro forma computational ef-
fect. In a first-class module system such as Harper and Lil-
libridge’s [10], an effectful module expression must be ruled
generative, since it could yield a distinct type each time it is
evaluated. In a second-class module system no such behavior
is, in fact, possible, but it is useful to regard a strong-sealed
module as “hiding” an arbitrary computational effect. Thus,
a strongly sealed module behaves as if its opaque types were
generated at run-time, even though they are not.

This brings about the familiar notions of pure (effect-
free) and impure (effectful) expressions, namely by consid-
ering sealing to induce an effect.®> With this in mind, we may
define the set of determinate modules provided by our type
system: a module is determinate if and only if it is pure.
This follows our intuition, as the meaning of an effectful
expression is not “well-determined,” and it is necessary to
provide the desired opacity and generativity properties.

Weak Sealing and Static Effects The purpose of strong
sealing is to induce opacity and generativity. However, it is
also useful to be able to induce opacity without generativity.
That is, a programmer may wish to seal a module so that no
client can depend on implementation details not reflected in
the signature, but not to generate unequal type components
at each dynamic instance.

We provide such a facility through weak sealing (written
M :: o). To ensure opacity, weakly sealed modules must not
be determinate; otherwise selfification (Section 2.2) could be
used to propagate information not given by o. Therefore,
we adopt the view that weak sealing (like strong sealing)
creates new type components, and consequently is impure

3Since we are working with a second-class module system, this is
the only source of impurity in the language. Effectful expressions in
the core language do not introduce an impurity in our sense.

and cannot meaningfully be compared for equivalence. How-
ever, since weak sealing is not intended to be generative, we
wish for the new type components to be the same at each
dynamic instance.

In short, while M :> ¢ is viewed as generating new type
components at run time, M :: o is viewed as generating new
type components at compile time. As a result, it is reason-
able to distinguish between the sort of effects induced by
weak and strong sealing. We say that weak sealing induces
a static effect, while strong sealing induces a static and a
dynamic effect.

We discuss the importance of supporting both weak and
strong sealing in Section 3. One could also contemplate a
third form of sealing (“co-weak” sealing), that provides gen-
erativity but not opacity, and which consequently induces a
dynamic but not a static effect, but it is unclear what the
utility of such a mechanism would be.

Dynamic vs. Static Effects In our type system, as usual,
dynamic effects are suspended when they appear within a
lambda. Thus, a lambda is always dynamically pure (free
of dynamic effects). When such a lambda is applied, what-
ever dynamic effects were suspended within it are released,
and so a functor application may or may not have dynamic
effects. In order that our type system can track dynamic ef-
fects, we use signatures to distinguish between functors that
may or may not induce dynamic effects when applied. An
applicative functor always has a dynamically pure body, and
thus its application (to a dynamically pure argument) is dy-
namically pure. However, a generative functor may have a
dynamically impure body, and thus may generate dynamic
effects when applied. One consequence is that the applica-
tion of a generative functor is never determinate (even when
the functor and its argument both are).

In contrast, static effects, being generated at compile
time, may be resolved under a lambda. More generally, no
construct can suspend a static effect. Therefore, any mod-
ule containing any strong or weak sealing is statically im-
pure, and therefore is indeterminate. This ensures opacity:
a sealed module cannot be given any signature mentioning
that module, so that module can always be replaced with
another module having the same signature.

Although a dynamically pure, statically impure module
is not determinate, it still enjoys privileges not enjoyed by
modules in general. In particular, it can appear within the
body of an applicative functor. Thus opaque sub-structures
(such as ML-style datatypes [12]) can appear within applica-
tive functors. Conversely, a statically pure, dynamically im-
pure module may only appear in the body of a generative
functor, but that functor then captures the dynamic effects,
resulting in a determinate functor.

Formalization The rules of our type system follow from
these definitions. We write our typing judgement
I' /. M : o, where k indicates M’s purity. The classifier
k is drawn from the lattice:

W
/\
D S
\ /
P

where P indicates that M is pure (and hence determinate),
D indicates dynamic purity, S indicates static purity, and
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Figure 4: Key Typing Rules

W indicates well-formedness only (no purity information).
Hence, I' p M : o is our determinacy judgement. It will
prove to be convenient in our typing rules to exploit the or-
dering (written C), meets (M), and joins (L)) of this lattice,
where P is taken as the bottom and W is taken as the top. We
also sometimes find it convenient to write functor signatures
as H53:01.02, where 0 € {¢,gen} and take ¢ C gen.

Some key rules are summarized in Figure 4: Pure mod-
ules are dynamically pure and statically pure, and each of
those are at least well-formed (rule 1). Strongly sealed mod-
ules are neither statically nor dynamically pure (2); weakly
sealed modules are not statically pure, but are dynamically
pure if their body is (3). Applicative functors must have
dynamically pure bodies (5); generative functors have no
restriction (6). Applicative functors may be used as gener-
ative ones (7). Variables are pure (4), and lambdas are dy-
namically pure (5 and 6). The application of an applicative
functor is as pure as the functor itself (8), but the appli-
cation of a generative functor is at best statically pure (9).
Finally, the purity of a module is preserved by signature
subsumption (12). The complete set of typing rules is given
in Appendix A.

The rules for functor application (rules 8 and 9) re-
quire that the functor argument be determinate. This is
because the functor argument is substituted into the func-
tor’s codomain to produce the result signature, and the sub-
stitution of indeterminate modules for variables (which are
always determinate) can turn well-formed signatures into ill-
formed ones (for example, [Typ s] is ill-formed when an in-
determinate module is substituted for s). (The alternative
rule proposed by Harper and Lillibridge [10] resolves this
issue, but induces the avoidance problem, as we discuss in
Section 4.) Therefore, when a functor is to be applied to an
indeterminate argument, that argument must first be bound
to a variable, thereby making it determinate. Similarly, pro-
jection of the second component of a pair is restricted to
determinate pairs (rule 11), but no such restriction need be
made for projection of the first component (rule 10).

2.1.3 Static Equivalence

The second key design issue is, when are determinate mod-
ules deemed equivalent? If a determinate module has signa-
ture [T, it is possible to extract types from it. Type check-

ing depends essentially on the matter of which types are
equal, so we must consider when Typ M is equal to Typ M.

The simplest answer to this question would be that
Typ M = Typ M’ exactly when the modules M and M’ are
equal. This simple answer is naive because we cannot in
general determine when two modules are equal. Suppose
F :[int] — o and e, €’ : int. Then F [e] = F [¢'] if and only
if e = €/, but the latter equality is undecidable in general.
To preserve the phase distinction [11] between compile-time
and run-time computation, we must ensure that type check-
ing never requires the evaluation of program terms.

To resolve this problem, observe that our language pro-
vides no means by which a type component of a module can
depend on a term component. (This is not happenstance,
but the result of careful design. We will see in Section 5.1
that the matter is more subtle than it appears.) Conse-
quently, we may ignore general equality and restrict our at-
tention to the static equivalence of modules. Two modules
are deemed to be equivalent if they agree on all type com-
ponents.* In the sequel, we will sometimes refer to “static
equivalence” to emphasize the static nature of our equiva-
lence.

We write our module equivalence judgement as I' = M =2
M’ : 0. The rules for static equivalence of atomic modules
are the expected ones. Atomic type components must be
equal, but atomic term components need not be:

Tke M:r] The M :[7]
TFM=M:[7]

T'Fr=1
TE[r] =[] :[T]

Since the generative production of new types in a generative
functor is notionally a dynamic operation, generative func-
tors have no static components to compare. Thus, deter-
minate generative functors are always statically equivalent,
just as atomic term modules are:

Lk M :TI8"s:01.00 T'Fp M’ : TI5*"s:01.02
THMM :1I5"s:01.09

4The phase distinction calculus of Harper, et al. [11] includes “non-
standard” equality rules for phase-splitting modules M into structures
(Miat, JVIdyn> consisting of a static component Mg, and a dynamic
component Mg,,. Our static equivalence M = M’ amounts to saying
Mot = M:mt in their system. However, we do not identify functors
with structures, as they do.



The complete set of equivalence rules is given in Ap-
pendix A.

As an aside, the notion of static equivalence refutes the
misconception that first-class modules are more general than
second-class modules. In fact, first- and second-class mod-
ules are incomparable. First-class modules have the obvious
advantage that they are first class (although this advan-
tage can be mitigated somewhat by the existential packaging
mechanism [22] we discuss in Section 5.1). However, since
the type components of a first-class module can depend on
run-time computations, it is impossible to get by with static
module equivalence and must use dynamic equivalence in-
stead (in other words, one cannot phase-split modules as in
Harper, et al. [11]). Consequently, first-class modules can
never propagate as much type information as second-class
modules can.

2.2 Singleton Signatures

Type sharing information is expressed in our language us-
ing singleton signatures [31], a derivative of translucent
sums [10, 13, 17]. (An illustration of the use of single-
ton signatures to express type sharing appears in Figure 2.)
The type system allows the deduction of equivalences from
membership in singleton signatures, and vice versa, and also
allows the forgetting of singleton information using the sub-
signature relation:

FFPMIEU(M/) F"pM’ZO’
I'F-M2>2M 0o

TFM>2M :0o
Tk M:6,(M')

TrFM>=M:o
M'F$5,(M)<85,(M)

I'te M :0o
'ks,(M)<o

When o = [T, these deductions follow using primitive rules
of the type system (since $prj(M) = §(M) is primitive). At
other signatures, they follow from the definitions given in
Figure 5.

Beyond expressing sharing, singletons are useful for “self-
ification” [10]. For instance, if s is a variable bound with the
signature [T, s can be given the fully transparent signature
5(s). This fact is essential to the existence of principal sig-
natures in our type checking algorithm. Note that since
singleton signatures express static equivalence information,
the formation of singleton signatures is restricted to deter-
minate modules. Thus, only determinate modules can be
selfified (as in Harper and Lillibridge [10] and Leroy [13]).

Singleton signatures complicate equivalence checking,
since equivalence can depend on context. For example,
As:[T].[int] and As:[T].s are obviously inequivalent at sig-
nature [T] — [T]. However, using subsignatures, they can
also be given the signature §([int]) — [1] and at that signa-
ture they are equivalent, since they return the same result
when given the only permissible argument, [int].

As this example illustrates, the context sensitivity of
equivalence provides more type equalities than would hold
if equivalence were strictly context insensitive, thereby al-
lowing the propagation of additional type information. For
example, if F : (§([int]) — [T]) — [77], then the types
Typ(F(As:[T].[int])) and Typ(F(As:[T].s)) are equal, which
could not be the case under a context-insensitive regime.

A subtle technical point arises in the use of the higher-
order singletons defined in Figure 5. Suppose F : [T] — [T].

def
Sy (M) - 5(M)
S (M) = [7]
s1(M) = 1
Sisioy.00 (M) = 1ls:01.54,(Ms)
5chr‘s:01.0'2(M) d:e: l_Igens;0_1-0'2
szs:ol.ag(M) dé 501(7T1M)X
L, Soatmya (2 M)
Sy (M) = S(M)

Figure 5: Singletons at Higher Signatures

Then Sprj—r)(F) = s:[T].6(F s), which intuitively con-
tains the modules equivalent to F: those that take mem-
bers of F’s domain and return the same thing that F' does.
Formally speaking, however, the canonical member of this
signature is not F' but its eta-expansion As:[T].F's. In fact,
it is not obvious that F' belongs to $prj—r7(F).

To ensure that F' belongs to its singleton signature, our
type system (following Stone and Harper [31]) includes the
extensional typing rule:

I'bp M :Ils:o1.05 T,s:01Fp Ms: oo
I'bp M : Ils:01.02

Using this rule, F' belongs to IIs:[T].5(F s) because it is
a function and because F's belongs to §(F's). A similar
extensional typing rule is provided for products.

It is possible that the need for these rules could be
avoided by making higher-order singletons primitive, but we
have not explored the metatheoretic implications of such a
change.

2.3 Type Checking

Our type system enjoys a sound, complete, and effective
type checking algorithm. Our algorithm comes in three main
parts: first, an algorithm for synthesizing the principal (i.e.,
minimal) signature of a module; second, an algorithm for
checking subsignature relationships; and third, an algorithm
for deciding equivalence of modules and of types.

Type checking modules then proceeds in the usual man-
ner, by synthesizing the principal signature of a module and
then checking that it is a subsignature of the intended sig-
nature. The signature synthesis algorithm is given in Ap-
pendix B, and its correctness theorems are stated below.
The main judgement of signature synthesis is I' -, M = o,
which states that M’s principal signature is ¢ and M’s pu-
rity is inferred to be k.

Subsignature checking is syntax-directed and easy to do,
given an algorithm for checking module equivalence; module
equivalence arises when two singleton signatures are com-
pared for the subsignature relation. The equivalence algo-
rithm is closely based on Stone and Harper’s algorithm [31]
for type constructor equivalence in the presence of singleton
kinds. Space considerations preclude further discussion of
this algorithm here. Full details of all these algorithms and
proofs appear in the companion technical report [6].

Theorem 2.1 (Soundness) If ' -, M = o then T’
M:o.



Theorem 2.2 (Completeness) IfTI'F. M : o then T ./
M= andTF o' <o and k' C k.

Note that since the synthesis algorithm is deterministic, it
follows from Theorem 2.2 that principal signatures exist.
Finally, since our synthesis algorithm, for convenience, is
presented in terms of inference rules, we require one more
result stating that it really is an algorithm:

Theorem 2.3 (Effectiveness) For anyD and M, it is de-
cidable whether there exist o and k such that ' -, M = o.

3 Strong versus Weak Sealing

Generativity is essential for providing the necessary degree
of abstraction in the presence of effects. When a module
has side-effects, such as the allocation of storage, abstraction
may demand that types be generated in correspondence to
storage allocation, in order to ensure that elements of those
types relate to the local store and not the store of another
instance.

Consider, for example, the symbol table example given
in Figure 6. A symbol table contains a hidden type symbol,
operations for interconverting symbols and strings, and an
equality test (presumably faster than that available for
strings). The implementation creates an internal hash table
and defines symbols to be indices into that internal table.

The intention of this implementation is that the
Fail exception never be raised. However, this de-
pends on the generativity of the symbol type. If an-
other instance, SymbolTable2, is created, and the types
SymbolTable.symbol and SymbolTable2.symbol are con-
sidered equal, then SymbolTable could be asked to inter-
pret indices into SymbolTable2’s table, thereby causing fail-
ure. Thus, it is essential that SymbolTable.symbol and
SymbolTable2.symbol be considered unequal.

In our system, strong sealing (M :>o) induces both
opacity and generativity, thereby providing the necessary
level of abstraction for stateful modules. However, in some
cases opacity is desired but not generativity. For these pur-
poses, weak sealing (M :: o) is provided.

The best examples of the need for weak sealing are pro-
vided by the interpretation of ML datatypes as abstract
types [12]. In both Standard ML and Caml datatypes are
opaque in the sense that their representation is not ex-
posed.® Standard ML and Caml differ, however, on whether
datatypes are generative. In the presence of applicative func-
tors (which are absent from Standard ML) there is excel-
lent reason for datatypes not to be generative, for other-
wise datatypes could not be used within them. This would
severely diminish the utility of applicative functors, particu-
larly since in ML recursive types are provided only through
the datatype mechanism.

For these reasons, strong (i.e., generative) sealing is no
substitute for weak (i.e., applicative) sealing. Neither is
weak sealing a substitute for strong. As Leroy [14] observed,
in functor-free code, generativity can be simulated by what
we call weak sealing. (This can be seen in our framework
by observing that dynamic purity provides no extra privi-
leges in the absence of functors.) Using functors, however,
this “pseudo-generativity” provided by weak sealing can be
defeated. Since a weakly sealed module is pure, it may be

5Indeed, the transparent interpretation of datatypes, which ex-
poses their representations, presents severe typing difficulties [4].

signature SYMBOL_TABLE =
sig
type symbol
val string to_symbol : string -> symbol
val symbol_to_string : symbol -> string
val eq : symbol * symbol -> bool
end

functor SymbolTableFun () :> SYMBOL_TABLE =
struct
type symbol = int

val table : string array =
(* allocate internal hash table *)
Array.array (initial size, NONE)

fun string to_symbol x =
(* lookup (or insert) x *)

fun symbol_to_string n =
(case Array.sub (table, n) of
SOME x => x
| NONE => raise (Fail "bad symbol"))

fun eq (n1, n2) = (nl = n2)
end

structure SymbolTable = SymbolTableFun ()

Figure 6: Symbol Table Example

placed within an applicative functor and this may be bound
to a variable. This functor can then be applied multiple
times with no generative consequences:

module F': (1 —» o) =A.:1.(M ::0)
module st1 = F'()
module sto = F()

If M is the SymbolTable implementation, then st; and st
provide equal symbol types but contain distinct hash tables,
thereby breaking the implementation’s abstraction require-
ments.

4 The Avoidance Problem

The rules of our type system (particularly rules 8, 9, and 11
from Figure 4) are careful to ensure that substituted mod-
ules are always determinate, at the expense of requiring that
functor and second-projection arguments are determinate.
This is necessary because the result of substituting an in-
determinate module into a well-formed signature can be ill-
formed. Thus, to apply a functor to an indeterminate argu-
ment, one must let-bind the argument and apply the functor
to the resulting (determinate) variable.

A similar restriction is imposed by Shao [29], but Harper
and Lillibridge [10] propose an alternative that softens the
restriction. Harper and Lillibridge’s proposal (expressed in
our terms) is to include a non-dependent typing rule without
a determinacy restriction:

't Mi:01 —09 T'hF. Ms:or
FI‘NMlMQIUz




When M is determinate, this rule carries the same force as
our dependent rule, by exploiting singleton signatures and
the contravariance of functor signatures:

IIs:01.02 IIs:55, (M2).02
IIs:S4, (M2).02[M2/s]

S0, (Mz2) — 02[M2/s]

[ IIA

When M is indeterminate, this rule is more expressive than
our typing rule, because the application can still occur.
However, to exploit this rule, the type checker must find
a non-dependent supersignature that is suitable for applica-
tion to Mo.

The avoidance problem [7, 17] is that there is no “best”
way to do so. For example, consider the signature:

o = ([T] — 5(s)) x 5(s)

To obtain a supersignature of o avoiding the variable s, we
must forget that the first component is a constant function,
and therefore we can only say that the second component
is equal to the first component’s result on some particular
argument. Thus, for any type 7, we may promote o to the
supersignature:

SF:([T] — [T]). §(F[7))

This gives us an infinite array of choices. Any of these
choices is superior to the obvious ([T] — [T]) x [T, but
none of them is comparable to any other, since F' is abstract.
Thus, there is no minimal supersignature of o avoiding s.
The absence of minimal signatures is a problem, because it
means that there is no obvious way to perform type check-
ing.

In our type system, we circumvent the avoidance problem
by requiring that the arguments of functor application and
second-projection be determinate (thereby eliminating any
need to find non-dependent supersignatures), and provide a
let construct so that such operations can still be applied to
indeterminate modules. We have shown that, as a result,
our type theory does enjoy principal signatures. However,
our let construct must be labelled with its result type (not
mentioning the variable being bound), otherwise the avoid-
ance problem re-arises.

This is awkward, as it essentially requires that every
functor application or projection involving an indetermi-
nate argument be labelled with its result signature. This
seems likely to be unacceptable syntactic overhead in prac-
tice. Fortunately, programs can be systematically rewritten
to avoid this problem, as we describe next.

4.1 The Elaborator

The avoidance problem arises when a variable is required to
leave scope and there is no minimal way to do so. In our
type system, we have ensured that there is always a minimal
way to do so, using two means: First, in functor application
and second-projection we require the argument to be de-
terminate; then there is a minimal way for the variable to
leave scope, because we may substitute the variable’s actual
value in its place. Second, in let binding we require that
the programmer supply the resulting signature; that sup-
plied signature then is trivially the minimal signature for
the expression.

In practice, however, we wish to circumvent the avoid-
ance problem without a determinacy restriction, and with-
out requiring programmer-supplied signature annotations,
as each of these lead to unacceptable awkwardness. Since
we cannot provide a best signature not mentioning variables
leaving scope, we instead follow Harper and Stone [12] and
arrange that variables never do leave scope.

For example, consider the unannotated let expression
let s = My in Mz, where M; : o1 and M2 : o2(s). If we
assume that M, is indeterminate (otherwise the let expres-
sion can be given the minimal signature o2(Mi)), then we
are left with the variable s leaving scope, but no minimal
supersignature of o2(s) not mentioning s. However, if we
rewrite the let expression as the pair (s = M, M), then
we may give it the signature Ys:01.02(s) and no avoidance
problem arises.

Similarly, the functor application F(M) with F
IIs:01.02 and indeterminate M : o1 can be rewritten as
(s = M, F(s)) and given signature ¥s:01.02.

Of course, no programmer is likely to enjoy writing code
in this style any more than he or she would enjoy the re-
striction we are trying to avoid. Instead, we propose the
use of an elaborator. This elaborator takes code written in
an external language that supports unannotated lets and in-
determinate functor application and second-projection, and
produces code written in our type system. (For the pur-
poses of this discussion, we refer to our type system as the
“internal language.”) The elaborator performs the above
rewritings systematically, leaving the programmer all the
convenience of the external language.

Existential Signatures Since the elaborator systematically
rewrites modules in a manner that changes their signatures,
it also must take responsibility for converting those modules
back to their expected signature wherever required. This
means that the elaborator must track which pairs are “real”
and which have been invented by the elaborator to circum-
vent the avoidance problem.

The elaborator does so using the types. When the elab-
orator invents a pair to circumvent the avoidance problem,
it gives its signature using 3 rather than 3. In the internal
language, ds:01.02 means the same thing as ¥s:01.02, but
the elaborator treats the two signatures differently: When
the elaborator expects (say) a functor and encounters a
Y.s:01.02, it generates a type error. However, when it en-
counters an 3s:01.02, it extracts the o2 component (the elab-
orator’s invariants ensure that it always can do so), looking
for the expected functor. Roughly speaking, the elaborator
treats 3s:01.02(s) as a subsignature of o whenever o2 (s) is
a subsignature of o.

Formalization The elaborator is defined in terms of the five
judgements given in Figure 7. The metavariables M, &, etc.,
range over expressions in the external language (these are
the same as the internal language’s expressions, except that
unannotated let is supported), and the metavariables ¢ and
A range over the elaborator’s signatures and contexts (the
same as the internal language’s, except that 3 is supported,
as given in Figure 7).

The main judgement is module elaboration, written
A . M~ M : ¢, which means that the external mod-
ule M elaborates to the internal module M, which has the
signature ¢ and purity x. The signature, type, and term
elaboration judgements are similar (except that signatures



A}—KM«»Mzg
AFM:¢c<o~ M
Mg " pp !
AFG~o0
AET~T
ArFé~e:T

module elaboration
signature coercion

existential unpacking
signature elaboration
type elaboration
term elaboration

¢ 5= 1|71 7] | 5(0) |
IIs:o.c | [I**"s:0.6 |
Ysi1.62 | 3s:61.62
An=ce| A s

elaborator signatures

elaborator contexts

Figure 7: Elaborator Judgements

and types have no classifiers to generate). Two judgements
are included for eliminating existentials: signature coercion
is used when the desired result signature is known, unpack-
ing is used to unpack outermost existentials when the result
is not known. The signature coercion judgement is written
A+ M :¢ <o~ M meaning that a (determinate) mod-
ule M with signature ¢ when coerced to signature o becomes
the (determinate) module M’. The unpacking judgement is

written M : ¢ 25" M ¢’, meaning that M : ¢ unpacks to
M <.

Some illustrative rules of the elaborator appear in Fig-
ure 8; the complete definition is given in Appendix C. In
these rules, the auxiliary operation - takes elaborator sig-
natures and contexts to internal ones by replacing all occur-
rences of 3 with X.

Theorem 4.1 (Elaborator Invariants)
Suppose A F ok. Then:

1. IfA Ve M~ M :g then A M = S (and hence
ZI—RM:@.

2. IfAEM:¢<o~ M and Aty M : < and A+ o sig
then AFp M’ : 0.

3. IfM:g“"%giM':c' and T bp M =< then
Lk M =<,

4. If A6~ 0 then Ak o sig.
5. If A7~ 7 then A F T type.
6. fAFé~e:Tthen AFe= 7 (and hence Ae: 7).

Rules 13 and 14 illustrate how the elaborator constructs
existential signatures to account for hidden, indeterminate
modules: In each of these rules, indeterminate modules are
let-bound, providing variables that may be used to sat-
isfy the determinacy requirements on existential unpacking
and signature coercion (required by the invariants in The-
orem 4.1) and on functor application (required by the type
system). These variables must leave scope, requiring the
construction of a pair that the elaborator tags with an exis-
tential signature. (Each of these rules carries a side condi-
tion that certain modules involved are indeterminate; when
those conditions do not hold, less interesting rules are used
to produce more precise signatures.) Rule 15 illustrates the
coercion of functors, and rules 16, 17, and 18 handle elimi-
nation of existentials.
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Although our elaborator serves only to deal with the
avoidance problem, a realistic elaborator would also address
other issues such as coercive signature matching (where a
field is either dropped or made less polymorphic), open, type
inference, datatypes, and so forth [12]. We believe our elab-
orator extends to cover all these issues without difficulty.

4.2 Primitive Existential Signatures

In a sense, the elaborator solves the avoidance problem by
introducing existential signatures to serve in place of the
non-existent minimal supersignatures not mentioning a vari-
able. In light of this, a natural question is whether the need
for an elaborator could be eliminated by making existential
signatures primitive to the type system.

One natural way to govern primitive existentials is with
the introduction and elimination rules:

ke M:o1 ko <o02[M/s]
I'ko<3s:o1.02

I, s:01 F o2 sig

and . .
I'siorbFo2 <o T'kop sig T'ko sig

I'F3ds:io1.00 <o

With these rules, the avoidance problem could be solved:
The least supersignature of 2(s) not mentioning s:01 would
be Js:01.02(s).

Unfortunately, these rules (particularly the first) make
type checking undecidable. For example, each of the queries

?
Os:o.[r] < 3s:0.00s:5,(s").[7']

and

”
(As:o.[7]) = (As:0.[1']) : 3s":0.115:5,(s).[T]
holds if and only if there exists determinate M : ¢ such that
the types 7[M/s] and 7'[M/s] are equal. Thus, deciding
subsignature or equivalence queries in the presence of exis-
tentials would be as hard as higher-order unification, which
is known to be undecidable [9].

We have explored a variety of alternative formalizations
of primitive singletons as well, and none has led to a type
system we have been able to prove decidable.

5 Otbher Issues

5.1 Modules as First-Class Values

It is desirable for modules to be usable as first-class values.
This is useful to make it possible to choose at run time the
most efficient implementation of a signature for a particu-
lar data set (for example, sparse or dense representations
of arrays). Unfortunately, fully general first-class modules
present difficulties for static typing [17].

One practical approach to modules as first-class values
was suggested by Mitchell, et al. [22], who propose that
second-class modules automatically be wrapped as existen-
tial packages [23] to obtain first-class values. A similar ap-
proach to modules as first-class values is implemented in
Moscow ML [28].

This existential-packaging approach to modules as first-
class values is built into our language. We write the wrap-
ping of a module as a first-class value as (M| and write its
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Figure 8: Illustrative Elaboration Rules

type as (o). Elimination of wrapped modules (as for exis-
tentials) is performed using a closed-scope unpacking con-
struct. These may be defined as follows:

fo) u
1) =
opens:c =ein (¢’ : 7)

Va.(o —a) = a
Aadf:(oc —a).fM
L o7 (Asio.e))

(Compare the definition of (o)) with the standard encoding
of the existential type 35.7 as Va.(VB. 7 — o) — «.)

In fact, our language is more powerful than one em-
ploying only a wrapping approach to modules as first-class
values. The main limitation of existentially wrapped mod-
ules is the closed-scope elimination construct. That is, in
“opens:o = e in (¢’ : 7)”, the result type 7 may not men-
tion s. Among other consequences, this means functions
over wrapped modules may not be dependent; that is, the
result type may not mention the argument. That limitation
is not shared by our language, since functions over modules
can use unwrapped arguments and thereby be given the type
IIs:0.7(s) instead of (o) — 7.

Since the only form of subtyping our language provides
is on signatures (not types), the subsignature relationship
o1 < o2 does not induce a subtyping relationship on the
wrapped signatures (o1 and (oz2)). One could obtain this
by adding a subtyping judgment for types and the natural
rules:

I'kos <o1
'k Is:o1.11 < Ils:o2.72 type

I'-7 <7 type
T'k[r] <[]

I',sioa F 11 < 72 type

However, it is important not to add these rules, because this
change would make the subsignature problem undecidable.
This can be proven by reduction from Lillibridge’s “simple
type system” [17, section 10.6], the undecidability of which
is shown by reduction from Pierce’s rowing machines [26].

Intuitively, decidability fails with these rules because the
subtyping and subsignature problems become mutually re-
cursive. This forces the termination metric for subsignature
checking to account for the size of atomic signatures (which
can otherwise be neglected), which in turns means that sub-
stitution (or rebinding of variables to carry singleton signa-
tures, which amounts to the same thing) can increase the
metric.
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5.2 Compilation

A dynamic implementation of our language (as opposed to
a static type checker) requires few new ideas. We may com-
pile our internal language simply by, first, deleting all seal-
ing; second, phase-splitting modules into separate static and
dynamic components [11]; and, third, eliminating resulting
singleton kinds [3]. The end result of this process is a pro-
gram in F,, [8] (plus product kinds and recursion on terms),
which is certainly implementable. Space considerations pre-
clude further discussion of the details here.

5.3 Syntactic Principal Signatures

It has been argued for reasons related to separate com-
pilation that principal signatures should be expressible in
the syntax available to the programmer. This provides the
strongest support for separate compilation, because a pro-
grammer can break a program at any point and write an in-
terface that expresses all the information the compiler could
have determined at that point. Such strong support does
not appear to be vital in practice, since systems such as Ob-
jective Caml and Standard ML of New Jersey’s higher-order
modules have been used successfully for some time without
principal signatures at all, but it is nevertheless a desirable
property.

Our type system (i.e., the internal language) does pro-
vide syntactic principal signatures, since principal signatures
exist, and all the syntax is available to the programmer.
However, the elaborator’s external language does not pro-
vide syntax for the existential signatures that can appear
in elaborator signatures, which should be thought of as the
principal signatures of external modules. Thus, we can say
that our basic type system provides syntactic principal sig-
natures, but our external language does not.

In an external language where the programmer is per-
mitted to write existential signatures, elaborating code such
as:

(As":(3s:01.02) ... )M

requires the elaborator to decide whether M can be coerced
to belong to 3s:01.02, which in turn requires the elaborator
to produce a M’ : o1 such that M : o2[M’'/s]. Determining
whether any such M’ exists requires the elaborator to solve
an undecidable higher-order unification problem: if g2 =



S([7]) = 8([7']) and M = A\&:[T].t, then M : 02[M'/s] if and
only if 7[M’/s] and 7'[M’/s] are equal.

Thus, to allow programmer-specified existential signa-
tures in the greatest possible generality would make elabo-
ration undecidable. Partial measures may be possible, but
we will not discuss any here.

6 Related Work

Harper, Mitchell and Moggi [11] pioneered the theory of
phase separation, which is fundamental to achieving maxi-
mal type propagation in higher-order module systems. Their
non-standard equational rules, which identify higher-order
modules with primitive “phase-split” ones, are similar in
spirit to, though different in detail from, our notion of static
module equivalence. One may view their system as a sub-
system of ours in which there is no abstraction mechanism
(and consequently all modules are determinate).

MacQueen and Tofte [19] proposed a higher-order mod-
ule extension to the original Definition of Standard ML [20],
which was implemented in the Standard ML of New Jersey
compiler. Their semantics involves a two-phase elaboration
process, in which higher-order functors are re-elaborated at
each application to take advantage of additional information
about their arguments. This advantage is balanced by the
disadvantage of inhibiting type propagation in the presence
of separate compilation since functors that are compiled sep-
arately from their applications cannot be re-elaborated. A
more thorough comparison is difficult because MacQueen
and Tofte employ a stamp-based semantics, which is diffi-
cult to transfer to a type-theoretic setting.

Focusing on controlled abstraction, but largely neglect-
ing higher-order modules, Harper and Lillibridge [10] and
Leroy [13, 15] introduced the closely related concepts of
translucent sums and manifest types. These mechanisms
served as the basis of the module system in the revised Defi-
nition of Standard ML 1997 [21], and Harper and Stone [12]
have formalized the elaboration of Standard ML 1997 pro-
grams into a translucent sums calculus. To deal with the
avoidance problem, Harper and Stone rely on elaborator
mechanisms similar to ours. The Harper and Stone language
can be viewed as a subsystem of ours in which all functors
are generative and only strong sealing is supported.

Leroy introduced the notion of an applicative func-
tor [14], which enables one to give fully transparent sig-
natures for many higher-order functors. Leroy’s formalism
defined determinacy by a syntactic restriction that functor
applications appearing in type paths must be in named form.
On one hand, this restriction provides a weak form of struc-
ture sharing in the sense that the equivalence of F(X) .t and
F(Y) .t implies that X and Y are the same structure. On the
other hand, the restriction prevents the system from captur-
ing the full equational theory of higher-order functors, since
not all equations can be expressed in named form [3].

Together, manifest types and applicative functors form
the basis of the module system of the Objective Caml dialect
of ML [25]. The manifest type formalism, like the translu-
cent sum formalism, does not address the avoidance prob-
lem, and consequently it lacks principal signatures. Aside
from this fact (and disregarding Objective Caml’s signa-
ture fields in structures, which makes typechecking unde-
cidable [17]), the module language of Objective Caml can
be viewed as essentially a subsystem of Russo’s system (be-
low).
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More recently, Russo [27] has proposed a type system
for applicative functors that generalizes Leroy’s in much the
same way we do, by abandoning the named form restric-
tion. We adopt his use of existential signatures to address
hidden components, although Russo simultaneously uses ex-
istentials to model generativity, which we do not. Russo
has implemented his system as an experimental extension
to the Moscow ML compiler [24], which already supports
SML-style generative functors. One can view Moscow ML’s
module system as a subsystem of ours in which weak seal-
ing is the only available form of abstraction and in which all
modules are considered dynamically pure. As we observed
in Section 3, a system with only dynamically pure modules
can provide a faithful account of generativity only in the
absence of functors. Thus, the introduction of applicative
functors into Moscow ML has the effect of making its gener-
ative functors weaker, since one can defeat generativity by
eta-expanding a generative functor into an applicative one.

Shao [29] proposes another type system for modules sup-
porting both applicative and generative functors. Shao’s
system, in contrast to Russo’s, may be viewed as a sub-
system of ours based exclusively on strong sealing instead
of weak sealing. As we observed in Section 3, a conse-
quence of this is that the bodies of applicative functors
may not contain any opaque substructures, such as (opaque)
datatypes. Shao’s system, like ours (recall Section 4), cir-
cumvents the avoidance problem by restricting functor ap-
plication and projection to determinate arguments (which
must be in named form in his system), and by eliminating
implicit subsumption (in essence, this requires let expres-
sions to be annotated, as in our system). We conjecture
that our elaboration techniques could be applied to Shao’s
system to lift these restrictions in his system as well (at the
expense of syntactic principal signatures).

7 Conclusion

Type systems for first-order module systems are reason-
ably well understood. In contrast, previous work on type-
theoretic, higher-order modules has left that field in a frag-
mented state, with various competing designs and no clear
statement of the trade-offs (if any) between those designs.
This state of the field has made it difficult to choose one
design over another, and has left the erroneous impression
of trade-offs that do not actually exist. For example, no pre-
vious design supports both (undefeatable) generativity and
applicative functors with opaque subcomponents.

Our language seeks to unify the field by providing a prac-
tical type system for higher-order modules that simultane-
ously supports the key functionality of preceding module
systems. In the process we dispel some misconceptions, such
as a trade-off between fully expressive generative and ap-
plicative functors, thereby eliminating some dilemmas facing
language designers.

It is our hope that our type system will provide a
jumping-off point for future work on type-theoretic mod-
ule systems. For instance, it is important to note that some
trade-offs still remain: between full propagation of type in-
formation and weak structure sharing via named form (Sec-
tion 6); and between syntactic signatures, programming con-
venience, and decidable type checking (Section 5.3). It is too
early to say for certain whether these trade-offs are essential,
or whether they too can be avoided by additional research.
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Notes on Appendices

Appendix A gives the type system for our module calculus.

Appendix B gives the module typechecking and principal

signature synthesis judgements that form the core of our
typechecking algorithm. We omit the term typechecking
(T + e < 7) and unique type synthesis judgements (I" +
e = 7) for space reasons; they are fully detailed in the
companion technical report [6].

Appendix C gives the signature coercion and module

elaboration judgements that form the core of our elaboration
algorithm. We omit the signature elaboration, type elabo-
ration, and term elaboration judgements (see Figure 7) for
space reasons; they also are fully detailed in the companion
technical report.
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