
Fine-grained Information Flow Analysis for a
�

-calculus with Sum Types
(Full version)

Vincent Simonet

INRIA Rocquencourt
E-mail: Vincent.Simonet@inria.fr

Abstract

This paper presents a new type system tracing infor-
mation flow for a � -calculus equipped with polymorphic
“let” and with sums (a.k.a. union types or polymorphic
variants). The type system allows establishing (weak) non-
interference properties. Thanks to original forms of secu-
rity annotations and constraints, it is more accurate than
existing analyses. Through a straightforward encoding into
sums, this work also provides a new type-based information
flow analysis for programming languages featuring excep-
tions. From these systems, one may derive constraint-based
formulations, in the style of HM(X), which have decidable
type inference.

1 Introduction

Information flow analysis is concerned with statically
determining the dependencies between the inputs and the
outputs of a program. It allows establishing instances of a
non-interference property that may address secrecy and in-
tegrity issues.

Although the first pieces of work in this area appear in
the late 70’s [2], such an analysis has been formulated as a
type system only in the past few years [8, 18, 3, 12]. Types
seem to be most suitable for static analysis of information
flow. Practically speaking, they may serve as a specifica-
tion langage, offer automated verification of code — pro-
vided type inference is available — and have no run-time
cost. From a theoretical point of view, they can express
non-interference results in simple and precise ways.

In these systems, types are usually annotated with secu-
rity levels chosen in a suitable lattice. Each annotation gives
an approximation of the information which the expression
that it describes may convey. Thus type constructors for
(expressions producing) base values — e.g. integers or enu-
merated constants — carry one security level representing
all of the information attached to the value. Such an ap-
proximation may be too restrictive in some cases. Indeed,

consider the program fragment

� �����	��
 �������������
 ����������������� � �"!$#
��� � �%��
 �'&(�������)�*��� � �,+-#

(Here, the language is equipped with three constants
�

,
!

,+
belonging to the same datatype.)

�
’s value directly de-

pends on the booleans

,
�

and
&
. Previous type systems

will record this potential information flow by constraining
the security level attached to

�
to exceed those of

,
�

and
&
.

As a result, they will similarly constrain the level attached
to the integer . produced by

� �/� . �0�'132�� ��4 ��56!879;:=<>+?79A@>B

Yet, . does not depend on
�

because testing whether
�
’s

value is
+

rather than
�

or
!

cannot leak any information
about

�
.

Our work is a proposal for a more sophisticated analysis
(concerning information flow) of sum types. In the previous
example, we will attach a (triangular) matrix of three secu-
rity levels C �D�FE�!$#

, C �D!GE�+-#
and C �H�FEH+I#

to the identifier
�
:

one for each (unordered) pair of constructors. Thus C �D�IEJ!$#
describes how much information one may leak by testing
whether

�
’s value is

�
rather than

!
. It must therefore be

at least the union of

and
�

’s levels. Similarly, C �H�KE�+-#
must be the union of

and

&
’s levels and C �D!LE�+-#

must be
’s level or greater. In the previous example, because the

test allows to determine whether
�
’s value is

+
rather than�

or
!

, our system will approximate the possible informa-
tion leak by C �H�*EM+-#ON C �D!PEM+-#

, i.e. the union of

and
&
’s

levels. Therefore, it will be able to establish the absence of
dependency between

�
and . .

Recent studies in the area of information flow analy-
sis concern realistic programming languages providing an
exception mechanism — such as Java [5] or ML [13].
The treatment of exceptions in these systems seems rela-
tively ad hoc and is not perfectly well understood: although
there exists a simple monadic encoding of exceptions into
sums [4, 19], these systems address exceptions in a direct
manner. Indeed, both [5] and [13] try to achieve a better

1

precision in the analysis of information flow due to excep-
tions than existing systems [3] dealing with sums provide.

Because we describe a very accurate type system for
sums, we are able to obtain a suitable analysis for excep-
tions by a simple translation. There are two reasons why
this approach is interesting. First, it describes a new anal-
ysis of information flow due to exceptions that is more ac-
curate than existing ones. Second, because it may encode
existing systems, it allows a better understanding of their
design.

2 Overview

In the current paper, we follow a similar approach to that
developed in [13] for Core ML. Section 3 introduces the
language ��� and a technical extension, called � �� , that al-
lows us to reason about the simultaneous reduction of two
expressions. We present in section 4 the type system and
state the non-interference theorem. Then we address the
question of type inference in section 5 and present a small
set of examples in section 6. Section 7 explains how it is
possible to obtain from the type system for sums another
one for exceptions by a simple translation of the latter in
the former. Lastly, section 8 proposes some restrictions of
these systems and relates them to existing work.

By lack of space, some proofs are omitted; they can be
found in the full version of this paper [16].

3
�

-calculus with sums

Throughout this paper, every occurence of � stands for a
distinct anonymous meta-variable of appropriate kind.

3.1 The ��� -calculus

Let � range over integers; let

, � range over two dis-
joint, denumerable sets of program variables and construc-
tor names, respectively. We denote by � the set of all con-
structor names and let � range over subsets of � . (In the
examples, we will assume 	 ��5 ! 56+�
� � .) Then, expres-
sions and handlers are defined as follows:� ��� � expression< � (integer constant)<

(program variable)< � �� � (abstraction)< ��� (application)< � ���'I� �
 � � (local definition)< � � 5 � # (pair construction)< ��� � (pair projection, ���	 :�5���
)< � � (sum construction)< �� � (sum destruction)< � 1�2��6� 4 � <���� �O<!� B
(sum case)� ��� � � � 79 � handler

Our language includes the � -calculus with pairs and a “let”
binding in the style of ML. It is extended with sum expres-
sions built by the construction � � . For each constructor
name � , ��� provides a destructor

�� such that
�� � � � # eval-

uates to � . A handler is a triple of a subset of � , a program
variable and an expression. The

1�2��6�
construction allows

to match an expression’s head constructor against a list of
handlers: � � 1�2�� �F4 �#" � " 79 � " <���� � < �%$ � $ 79 � $ B
reduces to � � 4 &��' � � B if ���(� �

. (In the following, we
will assume that

1�2�� �
expressions are deterministic, i.e. that

the � �
are pairwise disjoint.) The conjunction of projec-

tions and
132�� �

clauses gives us the expressiveness of à la
ML pattern matching on data constructors. We still pro-
vide specific integer constants, although they may be con-
sidered as a special case of sums, because they help state
non-interference theorems in a concise manner. Lastly, we
do not provide any construction allowing recursion; but this
can be achieved straightforwardly, for instance by introduc-
ing an extra parameter) in the � construct as in [13].

3.2 The � �� calculus

Because establishing a non-interference result requires
reasoning about two expressions and exhibiting a bisimu-
lation between their executions, we introduce a technical
extension of � � . It allows to deal simultaneously with two
expressions that share some sub-terms throughout a reduc-
tion.

This extension, called � �� , is similar to Core ML
�

in [13].
It is as follows:

� ��� � ��� �O<�* � < �,+

We do not allow nesting
* E < E + constructs. A � �� term rep-

resents a pair of � � terms. For instance, the � �� expression* � " < � � + encodes the pair
� � " 5 � � # . Because brackets can

appear at an arbitrary depth within a � �� term, the encod-
ing allows to keep track of sharing: assuming � , � " and � �
are � � expressions, both

* � " < � � +&� and
* � " � < � � �,+ en-

code the pair
� � " � 5 � � � # , but the former explicitly records

the fact that the argument � is shared.

In order to relate a � �� term to the pair of ��� expressions
which it encodes, we define two projections, - E . " and - E . � .
They are homomorphisms except at

* E < E + nodes: - * � " <
� � + .0/�� � / . We extend them to handlers by -1� � 79 � .,/��
� � 79 - � .0/ and pointwise to lists of handlers 2� .

The capture-free substitution of 3 for

in � , written� 4 4' 3 B , is defined in the usual way, except at
* E <$E +

nodes, where we must use an appropriate projection of 3 in
each branch:

* � " < � � + 4 5' 3 B is
* � " 4 6' -73 . " B)< � � 4 5'

-83 . � B + .

2

Basic reductions
� � �� � " # � � 9 � " 4 ' � � B (

�
)� �/� I� � "
 � � � 9 � � 4 ' � " B (let)��� � � " 5 � � # 9 � � (proj)�� � � � # 9 � (destr)� 132�� � 4 � " � " 79 � " <&� � � < �%$ � $ 79 � $ B 9 � ��4 �� ' � B if ��� � �

(case)� 4 � B;9 � 4 ��� B if � 9 ��� (context)

Lifting rules
* � " < � � +�� 9 * � " - � . " < � � - � . � + (lift-

�
)�&� * � " < � � + 9 * �&� � " <0�&� � � + (lift-proj)�� * � " < � � + 9 * �� � " <��� � � + (lift-destr)* � " < � � + 1�2��6� 2� 9 * � " 132�� � - 2��. " < � � 132�� � - 2�&. � + if

* � " < � � +�� 2� (lift-case)

Figure 1. Semantics of � ��

3.3 Semantics

The small step operational semantics of � �� is given in
figure 1. The semantics of � � is obtained as a fragment of
that of � �� . To clarify the presentation, we divide the set of
reduction rules into two groups. Basic reductions are those
of � � . They perform computation. When read as � �� re-
duction rules, they may be applied outside brackets (in this
case, the two projections perfom the same reduction step)
or within a bracket context (then one of the two projections
remains unchanged). Lifting rules are specific to � �� and
deal with sharing. They have no computational: they leave
both projections unchanged. Their purpose is only to pre-
vent

* E < E + constructs from blocking reduction by lifting
them up (and thus duplicating some sub-terms).

We choose a call-by-name semantics (we will deal with
call-by-value in section 4.6). Thus, evaluation contexts are
defined as follows:

� � � � 4 B � <,� � 4 B'<��� 4 B'< 4 BO1�2��6��4 � <�� ���O< � B
< *64 B'< �0+ <�* � < 4 B +

(The two last forms of context are specific to � �� , allowing
to apply basic reduction rules within a bracket construct.)

The rule (case) defines the semantics of
132�� �

clauses. We
write �	� � (read: � matches �) if and only if � � � �
� for
some � � � or � � * � " ��� " < � � ���� + for some � " � � and
� � �5� . For instance, by application of the (case) rule, the
expression � ��� 1�2��6� 4 �#" � " 79 � " < ��� ��< � $ � $ 79 � $ B
reduces to � � 4 �� ' � � � B if � � � �

. Our semantics of
132�� �

keeps good track of sharing since values like
* � " ��� " < � � ���� +

may be matched without any lifting if the two head con-
structors fall within the same � �

. If they do not, (lift-case)
must be applied before reducing the two resulting

132�� �
sub-

expressions separately:
* � " < � � +� 4 � " � � 79 � <%� ���(<

� $ � � 79 � B holds if and only if there exist distinct indices
�0" and � � such that � " � � ���

and � � � � ���
.

3.4 Relating � �� to ���
An expression � is a normal form if it is irreducible.

We denote by the meta-variable � any expression which is
a normal form. The following lemma relates � �� normal
forms to those of � � .

Lemma 3.1 (Normal forms) If � is a normal form then
- � . " or - � . � is a normal form.

Proof. By induction on the structure of � .� Cases � � � , � �P
, � � � �� ��� , � � � � . - � . " and - � . �

are both normal forms.
� Case � � � " � � . Because (context) is not applicable, � "

is a normal form. By induction hypothesis, - � " . / is a normal
form for some � � 	 :�5���
 . Because neither (

�
) nor (lift-

�
)

is applicable, � " cannot be of the form
* � < � + or � � � � . It

follows that - � " .0/ is not a � -abstraction. We conclude that
- � . / is a normal form.� Cases � � �&� ��� , � � �� ��� . Similar to the previous case.� Case � �K� ���'I� � "
 � � � . � is not a normal form.
� Case � � ��� 132�� � 2� . Because neither (case) nor

(lift-case) is applicable, � ��� � � �
, for all � , and � ���� 2� .

If ��� � * � < � + it follows that - ��� . / is not of the form
��� with � � �#"�� ��� � ���%$ for some � � 	 :�5���
 . Because
(context) is not applicable, both - �
� . " and - ��� . � are normal
forms. We conclude that - � . / is a normal form.

Otherwise, - ��� .0/ is not of the form ��� with � ��� " � � ��� �
� $ for all � � 	 : 5 ��
 . Because (context) is not applicable,� � is a normal form. Then, by induction hypothesis, - � � .0/ is
a normal form for some � �5	 : 5 ��
 . It follows that - � . / is a
normal form.� Case � � * � " < � � + . Because (context) is not applicable
with

� � * 4 B < � + or
* � < 4 B + , - � . " and - � . � are both normal

forms. �

3

We now show that every � �� reduction correctly sim-
ulates the simultaneous reduction of two � � expressions.
This is expressed by two lemmas of soundness and cor-
rectness. The former states that the projections of a � ��
reduction are valid � � reductions. The latter ensures that
if both projections of an expression can produce a normal
form then so can the expression. The proof techniques are
almost identical to those used in [13].

Lemma 3.2 (Soundness) Let � � 	 :�5���
 . If � 9 ��� , then
- � . / 9�� - ��� . / .
Proof. By inspection of the reduction rules. �

Lemma 3.3 (Completeness) Assume - � . / 9�� � / for all
� �6	 :�5���
 . Then, there exists � such that � 9�� � .

Proof. Because each of the “lift” reduction rules moves
some

* E=< E + constructor strictly closer to the term’s root,
no infinite reduction sequence can consist exclusively of in-
stances of these rules. As a consequence, if � admits an
infinite reduction sequence, then lemma 3.2 yields an infi-
nite one out of - � .,/ for some � � 	 :�5 �&
 . However, this is
impossible, because both - � . " and - � . � can be reduced to
normal forms, and the semantics of the � � fragment is de-
terministic. We conclude that there exists a normal form �
such that � 9�� � . �

4 Typing

Given two distinct constructors �0" and � � , we denote by
��" E � � the (unordered) pair 	 � " 5 � �
 . For any � � � , let � �
denotes the set of such pairs of elements of � .

Is this section, we present a type system tracing infor-
mation flow in � � . This is a ground type system, in so far
as it has no type variables. It handles polymorphism in an
extensional way: a type scheme is represented by the set of
its ground instances. This presentation is very amenable to
proofs. Nevertheless, it does not describe a type inference
algorithm: we will address this issue in section 5.

4.1 The type algebra

Let
��� 5��(#

be a lattice whose elements, denoted by � ,
represent security levels. Types, alternatives, rows and ma-
trices are respectively defined as follows:

� ��� �
 �3�
	 <>� 9 �)<����I�)<���
� ��� � �����(<���� ���
 ��� � 	 � 79 �
������
C ��� � 	 � " E � � 79 �
 � ��� � � ��� �

A row (resp. a matrix) is an infinite, almost constant fam-
ily of alternatives (resp. levels) indexed by a subset of �
(resp. � �), its domain. (A family is almost constant if all
but a finite number of its entries are equal.) It is worth not-
ing that because pairs of � � are unordered, matrices are in
fact triangular. We write

� � � �"! �# for the row whose el-
ement at index � is � and whose other elements are given
by the sub-row

, which is indexed by ��# 	0�
 . We denote

by $ � � the row indexed by � that maps all its entries to �
(the domain � may be omitted when it can be deduced from
the context).

&% �
represents the row of the same domain as

which is equal to

on � and
�����

elsewhere. Similarly,
we write $ �� � for the matrix indexed by � �

that maps all
its entries to � and C % � denotes the row of the same domain
as C which is equal to C on � �

and ' elsewhere. Lastly,�����# % � is a shorthand for
 " �

�
where

 " �(&% �
and C " � C % � .

Given a matrix C and a set of constructors � , we define
C � � # � N 	�C � � E � � #)< � � � 5 � �*)� �

.
Our types are those of ML’s type system (with rows for

sum types [14]) decorated with security annotations that are
simple levels � and matrices C .

The type

 �3� 	

describes integer expressions whose value
may reflect information of security level � .

In many type systems tracing information flow [8, 3, 12,
21, 13], arrows carry a security level representing informa-
tion about the function’s identity. Nevertheless, because the
only way to observe a function consists in applying it and
examining its results, there is really no difference between
a function whose identity is secret and a function that pro-
duces secret results. As a consequence, following [1], we do
not equip the

9
type constructor with an external security

level: all the security annotations related to a function may
be carried by its result type. Similarly, all of the information
carried by a tuple is in fact carried by its components. Thus
products have no security annotations.

The main novelty resides in sum types, such as
&�

, which
consist of a row and a matrix. First, following [14], the row

indicates for every constructor � ��� if the given expres-
sion may (

��� � �
) or may not (

�����
) produce a value whose

head constructor is � . The constructor
��� �

carries, in ad-
dition, the type of the constructor’s argument. Second, for
every pair of constructors � " E � � � � � , C � � " E � � # gives an ap-
proximation of the level of information leaked by revealing
that the expression produces a value whose head construc-
tor is � " rather than � � , or symmetrically � � rather than � " .
Note that if

 � � # �+�����
, none of the levels C � � E � # carries

in practice any relevant information. Thus, the type system
would have the same expressiveness if we considered only
sum types

��
such that

 � � #$�,�����
implies C � � E � #=� ' .

Nevertheless, we prefer not to introduce such a constraint
which may needlessly complicate the presentation.

As usual in type systems tracing information flow, we
equip the algebra with a subtyping relation

�
that ex-

4

 ����� � 9�� � ��� � � � � ���
����� � ��� � � 	,� 79��
 	,� E � 79��

Figure 2. Subtyping

tends the ordering over information levels. This allows
giving a directed view of the program’s information flow
graph. It is defined by the axioms in figure 2.

�
and�

stand respectively for covariant and contravariant argu-
ments. For instance, the axiom

� �
is an abbreviation of " �

� � � � ��� " � �
	 C " � C � . Similarly, the last two
axioms extend

�
pointwise on rows and matrices, respec-

tively.

4.2 Guards

We introduce a two-place predicate
4 � " 5�� � ��5 � $ B��4 � " 5 � ���/5 � $ B whose first argument is a (finite) list of secu-

rity levels and whose second argument is a list of types of
the same length. We also write

4 � " 5 � ����56� $ B*�K�
as a short-

hand for
� " � � 	 � ��� 	 � $ � �

and � � 4 � " 5�� ����5 � $ B for4 � 5�� � ��5 � B�K4 � " 5 � ����56� $ B .
In practice, we will use constraints of the form4 � " 5�� ����5 � $ B�� 4 � " 5�� � �35 � $ B � �

to record potential infor-
mation flow at a point of the program where the execution
path may take one of � possible branches, depending on the
result of a series of tests. The security level � � is intended to
describe the information revealed by the test which guards
the � th branch, and

� �
is the type of that branch’s result. Last,�

is the type of the whole expression. It must be at least the
union of all

� �
(i.e.

4 � " 5�� ����5 � $ B � �
) but it must also keep

track of the information which the series of tests may leak.
(Although the set of types is not a lattice, we define the
union of a finite list of types

� " 5�� ����5 � $ as the smallest type�
such that

� " ��� 	 ��� � 	 � $ ���
if there exists one.)

We now comment the rules of figure 3 defining the pred-
icate

4 � " 5�� � �35 � $ B�� 4 � " 5 � ����56� $ B . Because we intend to
compute the union

�
of

� " 5 � ���/5 � $,
�

first constrains them
to have the same structure. If

� " 5 ��� �/56� $ are integer types
 �3� 	�� � 5 ��� �/5�
 �3� 	���
, GUARDS-INT requires each integer type

� �
to have security level � � or greater. Consequently, that of�

will be constrained to be �0" N � � � N � $ or greater and
will record all potential information flows. Because

9
and�

types carry no security annotation, rules GUARDS-FUN

and GUARDS-PAIR propagate down the constraint on the
result’s type for

9
and the components types for

�
. This

reflects the fact, as explained in section 4.1, that all infor-
mation about the identity of a function is given by its re-
sults and all information carried by a tuple is carried by
its components. Lastly, GUARDS-SUM handles sum types.

Its first premise propagates the constraint down. The sec-
ond one constrains the matrix. If two different branches � "
and � � may produce results with different head constructors,
namely � " and � � , then any further test that distinguishes
these head constructors is liable to leak information of level� � �,N � � � . As a result, we constrain the field � " E � � in C � �
(resp. C � �) to be � � � (resp. � � �) or greater. Thus, the same
field in

�
must be greater than or equal to � ��� N � ��� .

Our guards allow keeping more precise information
about flows than the simple guards of [13]. To illustrate
this point, let us consider the following example:

� �/��� �P 132�� ��4 	 �
 � � 79
 � �� ���������,� " ��� � �"� �
	 !
 � � 79
 � �!G� �������,! " ��� � �"! �
	 +
 � � 79
 � �+ � �������)+ " ��� � �"+ � B

Because the guard constraint can consider the type of each
branch of the

1�2�� �
construct in isolation rather than only

their union, the type system will be able to take into account
the fact that, in this example, only the first (resp. second,
third) branch can produce

� " or
� � (resp.

! " or
! � , + " or+ �). As a result, the levels associated with the pairs

� " E � � ,! " E�! � and
+ " E�+ � are not constrained to be greater than

the security levels attached to the identifier

(i.e. C �H� E
!$#

, C �H�8E +-#
and C �D! E +-#

if

has type � � .) Using the
intermediate result

�
, we now compute an integer . :

� �/� . �P��1�2��6� 4 	 � "
 � 79A@
� #�	 � "
 � 79 :/B

Therefore the security level of the integer . will in particular
not be constrained to be greater than C �H!GEH+-#

, reflecting the
fact that . ’s value carries no information about whether

�
’s

head constructor is
!

rather than
+

.

Lemma 4.1 (Subset) If
4 �0" 5 ��� �35 � $ B�� 4 � " 5 ��� �35 � $ B then

for all 	�� " 5 ��� �35 ���
 � 	 : 5 ��� ��5 �
 ,
4 � / ��5�� ����5 � /�� B��4 � / ��5�� ����5 � /�� B

holds.

Lemma 4.2 (Transitivity) If � � " � � " 5 ��� �/5 � �$ � � $ and4 � " 5 ��� �/5 � $ B�� 4 � " 5 � ���/5 � $ B then
4 � � " 5�� � �35 � �$ B�� 4 � " 5 ��� �/56� $ B

holds.

Proof. By induction on the derivation of
4 �," 5�� ���/5 � $ B��4 � " 5 ��� ��56� $ B . �

4.3 Additional notations

A polytype � is a nonempty set of types. A polytype en-
vironment � is a partial mapping from program variables
to polytypes. � 4 ?79 � B denotes the environment which
maps

to � and agrees with � otherwise. A type judgement

��� � � �
is a triple of a polytype environment, an expres-

sion and a type. (We also write ��� � � � when � � � � �
holds for all

� �!� .)

5

Types

GUARDS-INT� " � � � " E�E3E � $ � � �$4 � " 5�� ����5 � $ B � 4
 �3� 	�� � 5 ��� �35M
 ��� 	 �� B
GUARDS-FUN4 � " 5 ��� ��5 � $ B � 4 � " 5 � ���/5 � $ B4 � " 5 ��� ��5 � $ B ��4 � � " 9 � " 5 ��� �/56� �$ 9 � $ B

GUARDS-PAIR4 � " 5 ��� ��5 � $ B � 4 � " 5�� ����5 � $ B4 � " 5 ��� ��5 � $ B � 4 � � " 5�� ����5 � �$ B4 � " 5�� � �35 � $ B �K4 � " �I� � " 5 ��� �/56� $ � � �$ B

GUARDS-SUM 4 � " 5 ��� �/5 � $ B �K4 " 5 ��� �35 $ B� � " �� � � 5 � " �� � � 5 � �>� � " # �� ����� 	 � � � � � # �� ������� � � � � C � �>� � " E � � # 	 � � � � C � � � � " E � � #4 � " 5�� ���/5 � $ B �K4 " �
� 5 ��� � $ � � B

Rows

GUARDS-ALT 4 � / �>5 ��� �/5 � / � B ��4 � / ��5�� ����5 � /�� B
4 � " 5 ��� �/5 � $ B ��4 ����� � 5���� ��� / ��5������ � 5�� ����5 ����� � 5���� ��� / � 5������ � B

GUARDS-ROW� � � � 5 4 � " 5 ��� ��5 � $ B � 4 " � � #�5 ��� �35 $ � � # B4 � " 5 ��� �/5 � $ B �K4 " 5 ��� �35 $ B

Figure 3. Guards

Given a row

and a set of constructors � , we say that
cuts � (

�� �) if and only if there exists �5� � and a
type

�
such that

 � � #�� ��� ���
. Similarly,

is included in �

(
�� �) if and only if every � such that

 � � # � ��� � � is in
� .

4.4 Typing rules

Because the security lattice
� �(5 �(#

is arbitrary, our proof
technique requires to temporarily split security levels be-
tween low and high ones. That’s the reason why, in the
present section and the next one, we assume fixed � , an
upward-closed subset of

�
whose elements will be consid-

ered as high security levels. Full generality will be recov-
ered in section 4.6.

� � ’s typing rules are given in figure 4. INT assigns a
base type to integer constants, with an unconstrained secu-
rity level. Because security annotations appear only on sum
nodes and leaves in types, rules VAR, ABS, APP, LET, PAIR

and PROJ involve no particular constraint and are identical
to those of [11]. Polymorphism is allowed by rule LET:� " can be given a polytype � . Therefore, by VAR, each
occurrence of

within � � can be typed with a different� � � . Rule E-APP of [13] differs from APP (regardless

of the annotations concerning side-effects) by an extra con-
straint �
	 �

, where � is the security annotation of the
9

type constructor. Because the function’s result may reveal
information about the identity of the function itself, its type�

must be guarded by � . In this paper, potential information
about the function’s identity is directly propagated to its re-
sult type by

�
. As a result, no extra constraint is needed in

the premises of rule APP.
INJ associates to the expression � � a row which maps

� to
� � ���

(where
�

is � ’s type) and leaves other entries
unconstrained, allowing them to be

�����
. The matrix is

alike unconstrained (and may be $ ') since knowing the
head constructor of the value cannot reveal any informa-
tion at this point. DESTR requires

�� ’s argument to have
type

� � � ��� � � ! $ �����6#�� . This statically ensures that its head-
constructor is � , allowing the matrix to be ignored. It would
in particular be the case for a value matched by 	 �
 in a

1�2��6�
expression.

Let us now consider rule CASE. Its first premise simply
specifies the type of the matched expression, which is ex-
pected to be a sum type. The condition

� � " � ��� � ��� $
ensures that the matching is exhaustive: a handler must be
provided for each head constructor that � may exhibit. The
third premise concerns handlers. The handler � � is consid-
ered only if it is liable to be invoked (i.e.

�� � �
). It is

typechecked in an environment where the type assigned to
the program variable

 �
is nothing but the “restriction” to

� �
of the matched expression’s type. The type given to&�
is therefore more precise than that of � , reflecting the

success of the test guarding the handler. A security level
C � � ��# � N 	�C � � E � � #)< � ��� � 5 � �)��� �!

is associated to each
handler. It is an approximation of the information leaked
by revealing whether the � ’s head constructor belongs to � �
(i.e. whether � � will be executed). Then, the last premise
computes the union

�
of all

� �
guarded by these levels as

described in section 4.2.

Rule BRACKET is specific to � �� . It allows typing
* E�< E +

constructs by computing the union
�

of the types of the two
sub-expressions. Moreover, because brackets enclose secret
parts of a computation, they must receive high type, i.e.

�
must be guarded by arbitrary levels chosen in � .

6

INT

� ��� �
 ��� �
VAR� � � � #
� � � �

ABS� 4 79 � � B � � � �
� �%� �� � � � � 9 �

APP� � � " � � � 9A� ��� � � � � �
� � � " � � � �

LET� � � " � � � 4 I79 � B � � � � �
� � � �/� I� � "
 � � � � �

PAIR� � � " � � " � � � � � � �
� � � � " 5 � � # � � " �I� �

PROJ� � � � � " �I� �
� � ��� � � � �

INJ � � � � �
� ��� � � � � � ��� ��� ! � # �

DESTR� � � � � � � ��� ��� ! $ ����� # �
� � �� � � �

CASE � � � � � � � " � ��� � � � $� � 5 � � � � � 4 � 79;�� � # % �
�
B � � � � � � 4 C � � " #�5 ��� �35 C � � $ # B �K4 � " 5 � ����56� $ B ���

��� � 1�2�� ��4 �#" � " 79 � " <�� ���O< �%$ � $ 79 � $ B � �
BRACKET� � � " � � " � � � � � � � � " 5 � � ��� 4 � " 5 � � B ��4 � " 56� � B � �

� � * � " < � � + � �
SUB� � � � � � � � �*�

� � � � �

Figure 4. The type system for � ��

4.5 Type soundness

We first state a few auxiliary lemmas whose proofs are
straightforward, then establish the subject reduction theo-
rem.

Lemma 4.3 (Projection) Let � � 	 :�5 �&
 . If � � �� � then
� � - � . / � � .
Proof. By induction on the input derivation. The only case
of interest is that of BRACKET, where the expression at hand
is

* � " < � � + . Then, among the premises we find � � � / � � /
and

� / ���
. Conclude by SUB. �

Lemma 4.4 (Guard) If � � * � " < � � + � �
then there exist

� " 5 � � � � and two types
� " 56� � such that � � � " � � " ,

� � � � � � � and
4 � " 5 � � B � 4 � " 56� � B ���

.

Proof. The derivation of � � * � " < � � + � �
ends with by

an instance of BRACKET possibly followed by a series of
SUB. It follows that there exists

� � � �
such that ��� * � " <

� � +6� � � holds, with a derivation ending with an instance
of BRACKET, among whose premises we find

4 � " 5 � � B �4 � " 5 � � B � � � and � " 5 � � � � . It follows
4 � " 5 � � B � 4 � " 5 � � B ��

. �

Lemma 4.5 (Sum) Assume � � �(� �� . If � � � then
� � � � ����3# % � and

 � � .

Proof. By induction on the structure of � . We assume,
w.l.o.g., that the derivation of � � � � � does not end with

an instance of SUB. Because � � � , one of the following
cases must arise.� Case � � � ��� . In INJ’s premises, we have � � ��� � �
with

 � � #=� � � ���
. � � � yields � � � . Then

 � � and % � � � # � ��� ���
. Re-building an instance of INJ, we obtain

� � � � ����3# % � .
� Case � � * � " < � � + . In BRACKET’s premises, we have

� � � " � " �
�
, � � � � � � � � and

4 � " 5 � � B �K4 " �
� 5 � � � B ����

(for some � " 5 � � � �). By induction hypothesis, the former
two yield � � � " � �� " �

� # % � ,
 " � � , � � � � � �� � � � # % � and � � � .

 " � � and
 " � yield

 � � . Moreover
4 �0" 5 � � B �4 " �

� 5 � � � B � ��
implies

4 � " 5 � � B�� 4 � " �
� # % � 53� � � � # % � B ������# % � . Conclude by BRACKET. �

Lemma 4.6 (Substitution) Assume � ��� � � . Then � 4 79
� B � � � � implies � � � 4 ' ��� B � � .
Proof. By induction on the input derivation.� Case VAR. If � is

, then the premise is

� ��� . Thus,
the hypothesis � ��� � � implies � ��� � �

, and, a fortiori,
��� � � � . Considering � 4 ' ��� B � ��� , this was the goal.
If, on the other hand, � isn’t

, then the result stems from

� 4 I79 � B � � # � � � � # and � 4 ' 3 B � � .� Case ABS. Then, the premise must be of the form
� 4 �79 � B 4 � 79 � � B � ��� �#� � � � . Because typing judgements
are stable under � -conversion, we will assume, w.l.o.g., that

and
�

are distinct. Then, � 4 79 � B 4 � 79A� � B coincides with
� 4 � 79 � � B 4 %79 � B . We conclude by applying the induction
hypothesis, followed by an instance of ABS.� Case BRACKET. The first premise is of the form
� 4 79 � B � � " � �

. By lemma 4.3, the hypothesis

7

� ����� � implies � - ��� . " � � . Thus, by induction hy-
pothesis, � � � " 4 ' - ��� . " B � �

holds. The second
premise is dealt with similarly. By BRACKET, we obtain
� � * � " 4 ' - ��� . " B-< � � 4 ' - ��� . � B +�� �

, which, con-
sidering our definition of substitution (section 3.2), was our
goal.

Other cases are immediate. �

Theorem 4.1 (Subject reduction) Let � 9 ��� . If � � � �
then � ��� � � .
Proof. By induction on the derivation of � 9 ��� . We as-
sume, w.l.o.g., that the derivation of � �6� �

does not end
with an instance of SUB. As a result, it must end with an
instance of the single syntax-directed rule that matches � ’s
structure.� Case (

�
). � is

� � �� � " # � � and ��� is � " 4 ' � � B . In
APP’s premises, we have �P� �� � " � � � 9 �

and � � � � � � .
The former must end with an instance of ABS, followed by
a number of instances of SUB. Because

9
is contravariant

(resp. covariant) in its first (resp. second) parameter, apply-
ing SUB to ABS’s premise yields

�D�79 � � � # � � � � �
for

some
� � � such that

� � � � � � . By SUB, � � � � � � � holds. Then
lemma 4.6 yields � � " 4 ' � � B � � .

� Case (let). By LET and lemma 4.6.
� Case (proj). � is

��� � � " 5 � � # and � � is � � . In PROJ’s
premises, we have � � � " 5 � � # � � " � � � with

� � � �
. This

derivation must end by an instance of PAIR followed by a
number of instances of SUB. It follows that � � � � � �

, i.e.
� ��� � � .

� Case (destr). � is
�� � � � � # . In DESTR’s premises, we

have � � ��� � � � � ��� ��� ! � # � . By SUB and INJ, this yields
� ��� � � .

� Case (case). � is ��� 1�2��6�I4 �#" � " 79 � " < ��� � < � $ � $ 79 � $ B and ��� is � � 4 &�6' ��� B , with ��� � � �
. Within

CASE’s premises, we have � ��� � � and
� �� 79 � � # % �

�
�� � � � � with

� � � �
. By lemma 4.5, the former yields � ��� ������# % �

� . Applying lemma 4.6 and SUB, we obtain � �
� � � .
� Case (lift-

�
). � is

* � " < � � +&��� and ��� is
* � " - ��� . " <

� � - ��� . � + . In APP’s premises, we have � * � " < � � + � � � 9 �
and � ��� � � � . Lemma 4.3 yields � - ��� . " � � � and � - ��� . � �� � . By lemma 4.4 and GUARDS-FUN, � � " � � � " 9 � "
and � � � � � �� 9 � � hold for some

� " , � � , � � " , � �� such that4 � " 5 � � B �K4 � " 5 � � B����
(with � " 5 � � � �),

� � " � � � and
� �� � � � .

By SUB and APP, it follows � � " - � � . " � � " and � � � - � � . � �� � . By BRACKET, we conclude that � �
� � � .� Case (lift-proj). � is
� � * � " < � � + and ��� is

*7� � � " <
� � � � + . In PROJ’s premises, we find � * � " < � � +#� � " �	� � with� � �P�

. By lemma 4.4 and GUARDS-PAIR, � � " � � " " �I� " �
and � � � � � � " � � � � hold for some

� " " , � " � , � � " , � � � with
in particular

4 �0" 5 � � B � 4 � " ��5 � � �/B � � �
for some �0" 5 � � � � .

By PROJ, it follows that � � � � " � � " � and � �&� � � � � � � .
Conclude by BRACKET.� Case (lift-destr). � is

�� * � " < � � + and ��� is
* �� � " <

�� � � + . In DESTR’s premises, we have � * � " < � � + �� � � ��� ��� ! $ �����M# � . By lemma 4.4, we have � � " �� � � ��� ��� " ! $ �����6# � and � � � � � � � � � ��� � ! $ ����� # � for some� " , � � such that
4 � " 5 � � B�� 4 � " 5 � � B��K�

with � " 5 � � � � . By
DESTR, it follows that � �� � " � � " and � �� � � � � � . Conclude
by BRACKET.� Case (lift-case). � is

* ��� " < ���� + 1�2��6� 4 � � � &� 79 � �/B��
and ��� is

* ��� " 1�2�� ��4 � � � � 79 - � � . " B � < ���� 1�2��6�=4 � � � � 79
- � � . � B � + . Because

* ��� " < ���� + � 4 � " <&��� �O< � $ B , ��� " � � � � and� �� � � � �
hold for some � " �� � � .

In CASE’s premises, we have � * ��� " < ���� + � �� and

�

� " � � ��� � $ and
 � � ��� � � F79 � ��# % �

� �
� � ��� � � ��� (for

all � �6	 :�5���
) and
4 C � �#" #/5 ��� ��5 C � �%$ # B � 4 � " 5�� ���/5 � $ B � �

.
By lemma 4.4, there exist

 " , C " , � and C � such that
� ��� " � " �

�
and � ���� � � � � with

4 � " 5 � � B �K4 " �
� 5 � � � B ����

for some � " 5 � � � � . By lemma 4.5, we obtain � �
�/ ��� / � � # % �
� � and

 / � � ���
(for all � �(:�5���
). The latter and � � �

imply
�� � � �

. Then
�D 79 �����# % �

� �
� � � � �

� ���
holds and, by lemma 4.3, this yields

� 79 �� ��# % �
� �
�

- � � � . / � � � �
. Applying an instance of CASE, we obtain �� �/ 1�2�� ��4 � � � &��79 - � � . / B�� � � � � . " � � � �
,
 � � � � �

and GUARDS-SUM imply � " � C " � � " E
� � # and � � � C � � � " E � � # . It follows � " � C � � " # and � � �
C � � � # . Then, because

4 C � � " #/5 � ���/5 C � � $ # B � 4 � " 5 ��� �35 � $ B ��
, we have by lemmas 4.1 and 4.2,

4 � " 5 � � B�� 4 � / ��5 � / �MB����
.

Conclude by BRACKET.� Case (context). By induction hypothesis. �

4.6 Non-interference

In the following, the set � is no longer fixed. Thus, it
appears as an extra parameter on � �� typing judgements (we
write ��� instead of �). It is still unnecessary to mention it
on those judgements which involve � � expressions because
� is used only in the BRACKET rule.

Theorem 4.2 (Non-interference) Choose � 5 � � �
such

that
� �� � . Let

� �K4 � " 56� � B �*�
. Assume

� 79 � # � � �
 ��� 	 ,
where � is a ��� expression. If � � / � � / and � 4 ' � /JB'9��
� / , for � � 	 :�5���
 , then � " � � � .

Proof. Let � be the upper cone 	 � � < � � � �
 . Define ��� �* � " < � � + . By BRACKET, � � � � � � . Lemma 4.6 yields � �� 4 ' ��� B �
 ��� 	 . Now, - � 4 ' ��� B�.0/ is � 4 ' � / B , which, by
hypothesis, reduces to � / . According to lemma 3.3, there
exists a normal form � such that � 4 ' ��� B 9�� � . By
theorem 4.1, ��� � 4 ' ��� B �
 ��� 	 implies ��� � �
 �3� 	 .

By lemma 3.1, - � .0/ is a normal form for some � �
	 : 5 ��
 . Because the semantics of the � � fragment is de-
terministic, - � . / � � / must hold. It follows that � is of the

8

form � or
* � < � + . If the latter, then by lemma 4.4, there

exists � � � � such that � � � � , which implies �5� � , a
contradiction. Thus, we must have � � � � � / .

By lemma 3.2, � " 9�� � and � � 9 � � hold. It follows
that ��" � � � � � . �

This theorem establishes a weak non-interference result
in so far as it requires both expressions to converge. Indeed,
in order to provide a fine-grained analysis, our type system
is able to ignore some test conditions. For instance, define �
as ��� 1�2�� � 4 � � 79A+ <>! � 79A+ B

, where ��� is an arbitrary
expression of type

�H��5 ! � ��� � � ! $ �����6# . The type system
statically detects that the result of � ’s evaluation does not
depend on ��� . Yet � ’s termination does depend on that of �
� :
reducing the

1�2��6�
clause requires ��� to produce either

�
or!

(even though it does not affect the final result). Obtaining
a strong non-interference statement would require dropping
the fine-grained treatment of sums. Anyway, it would be of
little sense since we do not deal with timing leaks in general.

Because the type system satisfies a progress property
(i.e. “no well-typed expression is stuck”), each hypothesis
“ � 4 ' � / B yields an integer” of the non-interference the-
orem can be safely weakened into “ � 4 6' � / B does not di-
verge”, i.e. � 4 ' � / B 9�� � / , because, by progress, any � �
normal form of type

 �3� �
must be an integer constant.

The non-interference result still applies for � CBV� , the � � -
calculus equipped with a call-by-value semantics

9�� ���
(we omit its definition because it is standard). Indeed, if� 4 ' � " B�9 �� ��� ��" and � 4 ' � " B�9 �� ��� � � then, by nor-
malization, � 4 6' � " B	9 � � " and � 4 ' � " B	9 � � � . Ap-
plying theorem 4.2 with the correct hypothesis about types,
we obtain � " � � � .
5 Type inference

We now explain how a type system with decidable type
inference can be obtained from that of section 4. This raises
several technical issues. By lack of space we prefer to
present it in an informal manner only.

The description of an inference algorithm for a constraint
based type system generally consists of two distinct parts:
a set of inference rules and a constraint solving algorithm.
Obtaining inference rules in the style of HM(X) [17] from
a set of rules such as that of figure 4 is a well-studied issue;
the reader is referred to [7, 11] for more details. It requires
introducing type variables, a constraint language and uni-
versally quantified, constrained type schemes. The correct-
ness of the system thus obtained may be proven by a simple
encoding of its judgements into � � judgements. This set of
rules may be viewed as an algorithm which, given an input
expression, returns a constraint which is satisfiable if and
only if the expression is well typed.

Constraint solving for (non-atomic) subtyping is known
to be decidable and reasonably efficient algorithms have
been proposed in this area [9, 10]. However, our system
involves non-standard forms of constraints. We claim that
constraint solving remains a decidable problem.

Constraints of the form
 � � can be encoded using

simple subtyping constraints requiring fields not in � to be�����
. In CASE’s premises, typing judgements concerning

the handlers are subject to a condition of the form
 � � .

Such a condition may be enforced in the type inference sys-
tem by prefixing with it every constraint produced by the
judgement. This introduces conditional constraints such as�� � � #��	�

where
�

is an arbitrary constraint. Such a con-
straint may be solved by keeping it unchanged as long as
none of

’s fields corresponding to constructors in � are

known to be
� � � � . When one of them is unified with

� � � �
then the condition is satisfied and the conditional

� � � #
���
must be replaced by

�
itself.

Guards
4 � " 5 � ���/5 � $ B � 4 � " 5 ��� ��56� $ B��K�

can be solved in
a “lazy” manner. As long as nothing is known about the
structure of

�
(or any of the

� /
), the constraint is preserved

intact. When
�

(or one of the
� /

) is instantiated with a term,
the constraint may be propagated throughout its structure
to the leaves, generating a number of subconstraints. This
propagation is straightforward on

9
and

�
nodes. At sum

nodes, it requires the introduction of a form of conditional
constraint:

4 �0" 5�� � �35 � $ B�� 4 " �
� 5 ��� �/5� $ � � B �+��

is indeed
equivalent to

4 �0" 5 ��� �/5 � $ B � 4 " 5 ��� �/5� $ B �
and

� ��" ��
� � 5 � ��� � � 5 � � � � #��K�� ���� ����#/� ��" E � � # � � ��� � C � �>� � " E � � #
for every �," �� � � (

 � ��� � �
denotes the matrix formed by

the cartesian product of the rows
 ���

and
 � �

).
If the number of constructor names that are present in

every sum type is finite and statically known (e.g. if sum
type are used to represent finite variant types such as ML’s
datatypes), such a constraint may be decomposed pointwise
by generating a different conditional constraint for each pair
of constructors � " E � � . Otherwise, it may be viewed as
a conditional constraint involving two-dimensional rows:� ��� � � 5���� � � # � �� ���	� ����#�� � � � � C ��� . Although two-
dimensional rows have never been — to the best of our
knowledge — really used, they form a natural generaliza-
tion of rows [15] and can be manipulated using the same
techniques [10].

Lastly, constraints of the form C � � # � � are equiva-
lent to

� ��" � � 5 � � � � ��# � 5 C � � " E � � # � � . Once
again, if the number of involved constructor names is fi-
nite, this constraint may be decomposed pointwise into a
number of inequalities between security levels. Otherwise,
it may be viewed as a subtyping constraint between two-
dimensional rows: C � � $ � � (we denote by $ � � the constant
two-dimensional row with the same domain as C �) where
C � is the restriction of C to the rectangle � � � ��# � #

. As-
suming � is finite or cofinite, this restriction may be com-

9

puted thanks to unification constraints using Rémy’s row
syntax [14].

6 Examples

In this section, we illustrate the expressiveness of � � ’s
type system by describing the types obtained for a small set
of relevant examples. We use a Caml-like syntax, which
can be easily de-sugared into � � . In particular, we allow
constructors with no argument and booleans. Booleans can
be easily encoded within sums by choosing two different
constructors � and � (for the constants true and false, re-
spectively). The test

 � � " ������� � � ��� � � ��� can be trans-
lated into � " 132�� � 4 	��
 � � � < 	��
 � ��� B . Because it
involves only two constructors, the type of a boolean ex-
pression

� � � ��� � ! � � � � � ! $ ����� #��	�
�
�� 	� ���

carries only one
relevant security level, � . Thus, it may be abbreviated into� 	

.
Our first examples are those of the introduction.

let f x y z =
if x then (if y then A else B)

else (if z then A else D)

let g = function
A | B -> true

| D -> false

let h x y z = g (f x y z)

The function) admits all types of the form �����������������
�	��� � � ! � "�# $ ���&%('*) +-, ��./��0 '1) 23, ��.���0 +-) 23, ��0 465 (where � ,

�
and 7 are

security levels). The tails of the row and the matrix describ-
ing the function’s results are unconstrained, allowing them
to be $ ����� and $ ' , respectively. As explained in the intro-
duction, testing whether the result of) is

!
rather than

+
can leak information only about the first argument. There-
fore, the field

! E +
of the matrix is only constrained by the

level � . We obtain �8��� � � ! � "�# $ 9�: ��; �<%('*) 2>= +-) 2>, ��0 4�5?���@� for A .
Lastly our system detects the absence of information flow
from the second argument to the output of

�
, the composi-

tion of) and A , as reflected by its types: �������6�B������������.�� .
The function) � is identical to the function) but it returns

its result embedded in a � -abstraction:

let f’ x y z =
if x then (if y then (fun _ -> A)

else (fun _ -> B))
else (if z then (fun _ -> A)

else (fun _ -> D))

For) � , the system gives �@�C���������@��� � � � �	��� � � ! �"�# $ ���&%D'1) +-, ��.E��0 '*) 2>, ��.��60 +-) 2>, ��0 4�5 � . This example illustrates
the interest of the absence of security level on the

9
type

constructor: it allows the accuracy of the typing of sums
to pass through it. As a result, if we re-implement) by
let f x y z = (f’ x y z) 0, we obtain exactly the same
type scheme as that for the first version.

Basic reductions � � � � # 3 9 � 4 GF 3 B (
�

)�&� � 3 " 5 3 � # 9 3 � (proj)� �/� I� 3
 � � 9 � 4 GF 3 B (let)

Sequencing��
 ��H�I� 3
 � � 9 � 4 GF 3 B (bind)�J2�
 � � �JI 3 #"��2 �BH � �KI ML � 9 � 4 GF 3 B (handle)� 2�
 �6���JI 3 # �>2 ��H � �)ML � 9 � 4 GFNI 3 B (handle-all)

O escapes
�

� 4 O B 9 O (throw-context)
� 9 � �

� 4 � B 9 � 4 � � B (context)

Figure 5. Operational semantics of �-P

Our next example tests whether the head constructor of
its argument is

�
or not:

let test_A = function
A _ -> true

| _ -> false

It admits QSR����@R %	T6'VU 5 (for every C) as type: the resulting
boolean is marked with the union of all security levels at-
tached to the constructor

�
in the input.

The W�XBY6ZBY6[function performs a transposition of three
constructors:

let rotate = function
A -> B

| B -> D
| D -> A

The same transposition arises between the corresponding
fields of the types describing the input and the output of this
function: �	� � \ � �] ! � ^ 9E: ��; � %('*) +-, � � 0 '1) 23, � � 0 +-) 2>, � � 0 _�`a5D5 � �b�	� � ^ � �\ ! �] 9�: �6; �&%D'1) +-, � � 0 '*) 2>, � � 0 +-) 2>, � � 0 _�`a5 . Because our type system
guards the type of each branch of the

1�2��6�
clause before

computing the type of the whole expression, it is able to
exactly relate in this example the security levels associated
with each pair of constructors of the output with those of
the input.

7
�

-calculus with exceptions

7.1 The � P -calculus

In this section, we define a � -calculus with “let” binding
and exceptions, � P . Let c be a denumerable set whose el-
ements are called exception names and denoted by

I
. Then

values, outcomes, expressions and evaluation contexts of �>P

10

are defined as follows:

3 ��� � < � < � 3 5 3 #�< � �� � <�I 3O ��� � 3 <&�J2�
 � ���JI 3 #� ��� � 3 < 3 3 <,�&� 3 <�� 2�
 �6� 3 < � �/� � 3
 � � < � 4 � B� ��� � ��
 �BH �L4 B
 � �< 4 B��>2 ��H � � I'ML �< 4 B��>2 ��H � �, L �
In fact, �-P is the language studied in [13] (where it is re-
ferred to as “Core ML”) deprived of the constructions deal-
ing with references. Its small-step semantics is recalled in
figure 5. (O escapes

�
if and only if

� 4 O B cannot be reduced
by one of the rules (bind), (handle) and (handle-all)).

Because of the presence of effects, our presentation of �>P
differs from that of � � in two points. First, following [20],
it is restricted to a call-by-value setting to preserve conflu-
ence. Second, we introduce a segregation between values
and expressions. This syntactic restriction enables a lighter
formulation of the type system and allows it to remain in-
dependent of the evaluation order. It does not reduce the
expressiveness of the language because usual expressions
may be encoded into our restricted syntax in a straightfor-
ward manner (see [13], section 5.7).

7.2 Encoding � P into � CBV�
Let the constructors of � � be exactly the exception

names of �-P , with an additional one, denoted by � (i.e.
� � c � 	 �
). The basic idea of the encoding introduced
by figure 6 is to translate every expression � of � P into an
expression � ��� of ��� such that if � evaluates to a value 3
without raising an exception then � ��� evaluates to ��� 3�� in
� CBV� and if the execution of � raises an exception

I 3 then
� ��� reduces to

I � 3�� . Such an encoding may be defined in
a systematic way using monads [4, 19], but here we prefer,
for simplicity, a direct translation. It is stable w.r.t. substi-
tution in the sense that � � 4 F 3 B � � � ��� 4 ' � 3	� B . The
following lemmas establish the correctness of the encoding
with respect to the semantics.

Lemma 7.1 (Correctness) If � 9 ��� then � �
� 9 � � ��� � ����� .
Proof. By induction on the derivation of � 9 � � .� Case (

�
). � is

� � � � � # 3 and ��� is � � 4 F 3 B . Then
� ��� � � � �� � � �
� # � 3	� . By (

�
), we have � ��� 9 � ��� � � �
� 4 '

� 3	� B , i.e. � ��� 9 � ��� � ����� .� Case (proj). � is
� � � 3 " 5 3 � # , ��� is 3 � . Then � ��� �

� � � � � � 3 " � 5 � 3 � � #6# . By (proj), we have � �
� 9 � ��� ��� 3 � � ,
i.e. � ��� 9 � ��� � ����� .� Case (bind). � is

��
 �BH � 3
 � � � and ��� is� � 4 F 3 B . We have � ��� � 1�2��6� 	 	 �
 � � " 79 � ����0�
�� � "
 � � � � � ! c � � " 79 � "
 Then, by applying succes-
sively (case) and (bind), � ��� 9 � � ��� � ���
� 4 F � 3�� B , i.e.
� ��� 9 � � ��� � ����� .

� Cases (handle), (handle-all) and (throw-context) are
similar to (bind).� Case (context). � is

� 4 ��� B and � � is
� 4 � �� B with��� 9 ���� . By induction hypothesis, we have � � �� 9 � � ���

� ���� � . Then, by (context), � � � 4 � ���� B�9 � � ��� � � � 4 � ���� � B , i.e.
� ��� 9 � � ��� � ����� . �

Lemma 7.2 (Values) If � 3 " � � � 3 � � then 3 " � 3 � .

Proof. By induction on the definition of � E � and � E � . �

Lemma 7.3 If 3 is a �-P value then � 3 � is a normal form.
If � is a �-P expression and � diverges then � ��� diverges in
� CBV� .

Proof. By induction on the definition of � E � and by
lemma 7.1. �

7.3 Typing � P

We now define a type system for � P and prove its cor-
rectness by translating each � P judgement into a ��� one.
The type algebra for � P is a simple subset of that of � � .
Restricted types, alternatives, rows and matrices (denoted
by bold meta-variables) are defined as follows:

� � � �
 ��� 	 < � � � < � 9���� <������
� � � � �����(<�� � � �
� � � � 	 � 79 �

� � � � 	 � E � 79 �

The meta-variable
��

(resp.
��) stands for a row

�
(resp.

matrix �) carrying no information about � , i.e. such that� � � # � �����
(resp.

�-I � c 5 � � � E&I�# � '). Types for integers
and pairs remain unchanged. In this restriction, � � sum
types play two distinct roles. First they appear as effects on
the right-hand-side of function types. Here, they describe
the possible normal or exceptional results the function may
produce, with associated security levels. Second, they are
used to type expressions whose result is an exception:

�����
.

There, we use dotted versions of content and level rows to
signify that the fields relating to the � constructor may be
constrained to be

�����
and ' , respectively (the translation of

an exception value into � � is a sum whose head constructor
must belong to c). � P ’s polytypes (i.e. nonempty upward-
closed sets of types

�
) are denoted by the meta-variable � .

The typing rules for � P are given in figure 7. We distin-
guish two forms of judgements: � �53 � � and ��� � � ��� .
The former deals with values and involves a simple type
(because values cannot raise any exception). The latter as-
sociates to an expression an effect

���
, describing what kind

11

Values � � �
� � � � �� � 3 " 5 3 � # � � � � 3 "� 5 � 3 � � #� � �� � � � � �� � ���� I 3	� � I � 3	�

Expressions �13 � � ��� 3��
� 3 " 3 � � � � 3 " � � 3 � �
� ��� 3 � � � �7��� � 3�� #

� � 2�
 �6� 3 � � � 3��
� � �/� I� 3
 � �
� � � ���� � � 3	�
 � � ���

� � 4 � B � � � � � 4 � ��� B

Evaluation contexts � ��
 ��H�I� 4 B
 � ��� � 4 BO1�2��6��4 � � � 79 � �/� I� �� �
 � � ��� < c � � 79 � B
� 4 B��>2 ��H � � I'ML ��� � 4 BO1�2��6��4 I � � 79 � ���� � �I��
 � � �
� < ��# 	 I�
 � � 79A� B
� 4 B��>2 �BH � �, L ��� � 4 BO1�2��6��4 � � � 79 � < c � I79 � ��� B

Figure 6. Encoding �-P into � �

Values

V-INT

� � � �
 ��� �
V-VAR� � � � #
� � � �

V-PAIR� ��3 " � � " � ��3 � � � �
� � � 3 " 5 3 � # � � " � � �

V-ABS� 4 I79 � B � � � � �
� � � �� � � � 9�� �

V-EXN � ��3 � �
� � I 3 � �JI � ��� � � ! � # �

V-SUB� � 3 � � � � � � �
� ��3 � �

Expressions

E-VALUE� � 3 � �
� � 3 � � � � ��� � � ! � # �

E-RAISE
� � 3 � �� ��

� � � 2�
 �6� 3 � �� ��
E-APP� ��3 " � � 9�� � � ��3 � � �

� � 3 " 3 � � � �
E-PROJ� � 3 � � " � � �
� � �&� 3 � � � � � � � � " ! � # �

E-BIND
� � � " � � " �

� � " � 	 �
 � � 4 I79 � � ��� " � � # B � � � � � � � � � " � 	 �
�# �K4 � � " �
� # % P 5 � � �

� B � � �
� � ��
 ��H � � "
 � � � � � �

E-HANDLE
� � � " � � " �

� � " � 	 I�
 � � 4 I79 ��� ��� " �JI�# B � � � � � � � � � " � 	 I�
�# �K4 � � " �
� # % �������	� 5 � � � � B�� � �

� � � " �>2 �BH � � I ML � � � � �

E-HANDLEALL� � � " � � " �
� � " � c � � 4 I79;� � " �

� # % P B � � � � � � � � � " � 	 �
>#���4 � � " �
� # % ��
�� 5 � � � � B � � �

� � � " ��2 �BH � �)ML � � � � �

E-LET� � 3 � � � 4 I79 � B � � � � �
� � � �/�� � 3
 � � � � �

E-SUB

� � � � � � � � � � � � � � � �
� � � � � �

Figure 7. The type system for � P

12

of result (value or exceptions) it may produce:
� � � # is

�����
if � never reduces to a value and is

��� � �
if � may produce

a value of type
�
. Analogously, for every expression nameI

,
� �JI�#

is
�����

if � never raises an exception named
I

and is� � � �
if it may raise such an exception with an argument of

type
�
. � � � " E � � # is as expected an approximation of the level

of the information one leaks by revealing that � produces a
result of name � " (value or exception) rather than � � . � P ’s
typing rules may be obtained by a simple combination of � �
rules (figure 4) and the translation of � P into � � (� E � for �
judgements on expressions and � E � for � judgements on val-
ues), with some straightforward constraint simplifications.
First, in the second premise of E-BIND, we may assume in
the right-hand-side of the

�
that

� " � � #)� ��� � �
for some

�
(we write

��� ��� " � � # for such a
�
). Second, because 	 �
 and

c are complementary, � " � 	 �
�#�� � " � c # holds. Therefore,
the constraint

4 � " � 	 �
�#�5 � " � c # B � 4 � � " �
� # % P 5 � � �

� B*� ���
is

simplified into � " � 	 �
># � 4 � � " �
� # % P 5 � � �

� B � ���
. Rules

E-HANDLE and E-HANDLEALL present analogous simpli-
fications.

The following lemma states the soundness of this type
system by considering each of its judgements as one of � � .

Lemma 7.4 (Soundness) ���(3 � � implies ��� � 3�� � � .
� � � � ��� implies � � � ��� � ��� .

Proof. By induction on the input derivation. Cases E-BIND

and E-HANDLEALL are detailed on figure 8. �

From this correspondence, we immediately obtain the
following non-interference result for �>P . For simplicity, the
statement only concerns integer results, but a more general
one can be obtained.

Theorem 7.1 (Non-interference) Choose � 5 � � �
such

that
� �� � . Let

� � 4 � " 56� � B � �
. Assume

�D 79 � # �� � � � � ��� �
 �3� 	 ! � # � , where � is a � P expression. If � 3 / � � /
and � 4 ' 3 / B 9�� 3 / , for � �6	 :�5 �&
 , then 3 " � 3 � .
Proof. By lemmas 7.1, 7.2, 7.4 and theorem 4.2. �

8 One-dimensional systems

We now present two type systems, � � " �� and � � " �P , derived
from ��� and � P . Although they provide a less accurate
analysis, they remain of interest because they involve sim-
pler annotations and give us the opportunity to compare our
treatment of exceptions with previous works [5, 13].

CASE
� " �
� � � � ���� � 4 " 79 ������ # % � � � B � � " � ��
� 4 � 79;� ���� # % � � � � � B � � � � �� �C � � # 	 ��

� ��3 1�2�� ��4 	 �
 � " 79 � " < ��#�	 �
 � � 79 � � B � ��

Figure 9. The CASE
� " � rule of � � " ��

8.1 The system � � " ��
In this section, we present a more lightweight type sys-

tem for � � (which we will refer to as � � " ��) where infor-
mation carried by a sum is described by a one-dimensional
row of levels indexed by constructor names. We begin by
restricting the

132�� �
construction of � � to have only two han-

dlers: � 1�2��6�F4 	0�
 � 79 � " <	� ��#�	 �
># � �79 � � B . (Note
that such a restriction still allows multiple matching by nest-
ing

1�2��6�
clauses. Moreover, it still allows the encoding of

exceptions into sums, see section 8.2.)
The point of this restriction is that the use of matrices C

in the CASE rule of ��� is now limited to an access of the
form C � 	0�
�# for some � � � (or C � ��# 	0�
�# which is equal to
C � 	0�
�#). The basic idea of � � " �� consists in directly storing
these levels in sum types, rather than the whole matrix C .
Thus, types, alternatives, rows and vectors of � � " �� (which
are denoted

��
,
�� ,

�
and

�C , respectively) are obtained by the
same grammar as that of section 4.1, where the definition
of matrices is replaced by

�C ��� � 	 � 79 �
 . Sum types now
have the form

� ��
where both

�
and

�C are indexed by � . The
meaning of

�
remains unchanged. Simultaneously, the vec-

tor
�C indicates for each constructor � how much information

one may leak by testing whether the expression at hand pro-
duces a result whose head constructor is � . This corresponds
to the level given by C � 	 �
>#�� N 	�C � � E � � #=< � � �� �
 in the
previous system. In other words, a matrix C is approximated
in � � " �� by the vector

�C defined by
�C � � # � C � 	0�
�# .

This correspondence allows us to derive the typing rules
of � � " �� from those of � � . All the rules remain syntactically
unchanged, except CASE whose new version, CASE

� " � , is
given in figure 9. The main difference with the previous
rule lies in the fact that the union of the resulting types of
the two branches is computed before marking it by the level�C � � # : the type system is no longer able to take into account
the origin of each component of the resulting type while
guarding it. As a result, the predicate 	 in � � " �� , defined in
figure 10, takes only two arguments: a security level and
a type. � 	 � ��

constrains each field of
�C corresponding

to an entry of
�

which is
��� � � to be � or greater. There

is nevertheless a special case: if all but one fields of
�

are�����
, (that means when the possible head constructor the

13

Rule E-BIND��������� �
	���� ��� � ��� ��������� �
	����������� �"!$#�%�&('*),+ �

�.-0/21 �(3546�7� � � � ��8:9<;>=@?

DESTR

VAR ���A-.�B4>�C;D4FE �F�C;,'��(!G#�%�&�'"H
���A-�I;J�B4 ������E6�K�L;,' ���7� MN	� ���O��E6�K�L;,' � -0/P1��<354 �K� � �

����-RQ ��S�MN�TI;U�WV X
/P1F��3�46�K� � � LET

YYYYYY VAR �U�5-.�Z4$�P� � � � '\[] ^ �29<;>=F'�_`� �L�7� � � '�[]ba"�F� � � �dc � �
�e-f/21 ��3�gih�&j�k� ;N4K�W	�lQ ��S�MN�TI;��
V X
/21��<3Am<nR4K�
	�o� �p q(r s/*%6V X�tuMZ�v1 ��V XA1F��3

4 � � CASE

Rule E-HANDLEALL��������� �
	���P� � � � '�[w\xKy � ���A�v��� �u	���L�7� � � '�[] �

�e-0/P16��354 � � � � VAR �U��-.�N4>�P� � � � ' [w\xKy �7�z8Nn.?o���A-0/P1���3546�F� � � ^ �Cnb'�_{� �P�7� � � ' [w\x6y a"�K� � � �dc � �
�e-f/216��3Ugih�&��k� ;B4K�
	�o�Dm�n|46MZ	�}/21F�<3 �p q(r s/21 �5~ h6X�t,Q �5M��01 � 3

46� � CASE

Figure 8. Deriving � P judgements from ��� ones

Types

� � � �
� 	
 ��� 	�� � 	 ��

� 	 �� � 9 �� � 	 �� " � 	 �� �
� 	 �� " � �� �

� 	 �
� � 5 � � � # ��(������� � � �C � � #

� 	 � ��
� 	 �

� �8� � � ��� � � ! $ �����6#
� 	 � ��

Rows

� 	 ����� � 	 ��
� 	 � � � ��

� � � � 5 � 	 � � � #
� 	 �

Figure 10. One-dimensional guards

expression may produce is known by the type system) then
it is unnecessary to constrain the row

�C .
We now briefly prove the correctness of � � " �� thanks to an

encoding into � � . We introduce a mapping
* * E + + from � � " ��

types into those of � � . It is a homomorphism, except on
vectors which are translated into matrices using the follow-
ing approximation:

* *��C + + � � " E � � # � �C � ��" #�� �C � � � # . We extend* *6E + + pointwise on polytypes and environments.

Lemma 8.1 (Subtyping) If
�� " � �� � then

* * �� " + + � * * �� � + + .
Proof. We first prove that

�C " � �C � implies
* *��C " + + � * *��C � + + .

Assume
�C " � �C � . Let � and � � be two distinct constructor

names. We have
�C " � � # � �C � � � # and

�C " � � � # � �C � � � � # . This
yields

�C " � � #@� �C " � � � # � �C � � � #k� �C � � � � # , i.e.
* * �C " + + � � E � � # �* *��C � + + � � E � � # .

Conclude by induction on the structure of types, alterna-
tives and rows. �

Lemma 8.2 (Guard) � 	 ��
implies � ��4�* * �� + + 5 * * �� + + B .

Proof. By induction on the structure of
��
. The only case of

interest is
�� � � ��

. Let
 � � * *�� + +6� � ��<� � � * * � �� + + . By defini-

tion, �
	 � ��
implies �
	 �

. By induction hypothesis and
GUARDS-ROW, it follows that � � 4 >5 �B

. If only one en-
try of

�
is
��� �

then the same arises for

and � � 4 �>5 ��/B
.

Otherwise, if
 � � " #I� ��� � � and

 � � � #-� � � � � for some
��" �� � � , � 	 � ��

implies � � �C � � " # and � � �C � � � # . It follows� � �C � ��" #�� �C � � � #�� C � ��" E � � # . Once again, we conclude
that � ��4 ���5 ��MB

. �

14

Lemma 8.3 (Restriction)
* * ��� ���# % � + + � * *�� �� + + % � holds for

all � � � .

Proof. It is clear that
* * �&% � + + � * *�� + + % � . Let us consider � " ��

� � . If � " � � and � � � � (i.e. � " E � � � � �
) then

* * �C + + % � � � � " E
� � # � * *��C + + � � " E � � # �4�C � � " #�� �C � � � # �4�C % � � � " #�� �C % � � � � # �
* *��C % � + + � � " E � � # . Otherwise, either

�C % � � � " # or
�C % � � � � # is ' .

Then
* *��C % � + + � ��" E � � # �4�C % � � � " #>� �C % � � � � # � ' � * *��C + + % � � � ��" E

� � # . We conclude that
* *��C + + % � � � * *��C % � + + . �

Lemma 8.4 (Soundness) If � � � � �� then
* * � + + � � � * * �� + + .

Proof. By induction on the derivation of � � � � �� .� Case CASE
� " � . � is ��� 1�2�� � 4 	0�
 � " 79 � " <

� #�	 �
 � � 79 � � B . Among CASE
� " � ’s premises we find

� � ��� � � ��
, � 4 " 79 ��� ���# % � � � B � � " � ��

, � 4 � 79
��� ���# % ����� � � B � � � � ��

and
�C � � # 	 ��

. Let
�� � * *�� + + � � ���� � �

* *�� �� + + . By induction hypothesis and lemma 8.3, we obtain* * � + + � ��� � * *�� + + � � ��<� � , * * � + + 4 " 79 � * * � + + � � ��i� � # % � � � B � � " �
* * �� + + , � 4 � 79 � * * � + + � � ���� � # % � � � � � B � � � � * * �� + + . Moreover* *��C + + � 	0�
�# � * *��C + + � ��# 	0�
�#%� N 	 �C � � #N� �C � � � # < � � �� �
 .
Then

* *��C + + � 	 �
># � �C � � # and
* *��C + + � ��# 	 �
�# � �C � � # . By lem-

mas 8.2 and 4.2,
�C � � # 	 ��

yields
4 * *��C + + � 	 �
�#�5 * * �C + + � � #�	 �
># B�4�* * �� + + 5�* * �� + + B � * * �� + + . Conclude by an instance of CASE.� Case SUB

� " � . By lemma 8.1 and the induction hypoth-
esis.

Other cases are immediate. �

Theorem 8.1 (Non-interference) Choose � 5 � � �
such

that
� �� � . Let

� 	 �
. Assume

� G79;� # � � �
 ��� 	
, where� is a ��� expression. If � � / � � and � 4 ' � / B	9�� � / , for

� �6	 :�5���
 , then ��" � � � .
Proof. By lemmas 8.2, 8.4 and theorem 4.2. �

8.2 The system � � " �P
Using the same mechanism, it is possible to obtain the

corresponding type system � � " �P for �-P . Those of its rules
that are different from � P ’s are given in figure 11.

� � " �P provides a treatment of exceptions that is very simi-
lar to that of JFlow [6, 5], although the presentation is super-
ficially different. Indeed, JFlow introduces a notion of path
labels. Setting aside Java-specific features, paths in JFlow
are

�
(which represents normal termination) and names of

classes that inherit from � �&����� 2&� � �
, i.e. classes represent-

ing exceptions. This directly corresponds in our framework
to � and the exception names

I � c , respectively. A path
label � maps each path � to either the special constant � ,

E-BIND
� " �

� � � " ����
	� �" � 4 79 � � � �� " � � # B � � � �
��
	� ��� ��
	� �" # % P � �� 	� �� � � # 	 �� 	�
� � ��
 �BH I� � "
 � � � �
�� 	�

E-HANDLE
� " �

� � � " �
��
	� �" � 4 79 ��� � �� " �JI�# B � � � �
�� 	�
� ��
	� �" # % ��� ���	� � �� 	� �� �JI�# 	 �� 	�
� � � " �>2 ��H � � I' L � � ���� 	�

E-HANDLEALL
� " �

� � � " �
��
	� �" � 4 I79;� ��
	� �" # % P B � � � �
�� 	�
� ��
	� �" # % ��
 � � �� 	� �� � � # 	 �� 	�
� � � " �>2 ��H � �)ML � � �
�� 	�

Figure 11. The type system for � � " �P

if the expression cannot terminate through the path � , or a
security level approximating how much information will be
obtained by observing that this path is the effective termi-
nation path. This is comparable to our alternatives

�����
and� � � � . The accuracy provided by the 	 constraint when all

fields but one of a row are
�����

is obtained in JFlow by a
non-syntax-directed rule, called single-path rule, allowing
� 4 � B

to be reset to � if all other paths are already mapped to
� by � . (Because exception names are classes in Java and
are therefore equipped with subtyping, this rule cannot be
applied safely to non-

�
paths. But, as noticed by Myers, if

exceptions were not identified with classes, the single-path
rule could be applied to exceptions too.)

If we constrain the field � of every row

of � � " �P to be� � � � , we obtain a treatment of exceptions similar to that
proposed in [13]. Then, every lower-bound constraint on the� entry of a row

�C (generated by a 	 constraint) must also
constrain some other field of the same row. As a result, it is
possible to enforce the invariant that, for any row �� , �� � � # �
N 	 �� �bI�#)<BI � c
 . The main interest of this policy lies in the
fact that, because ��	 � � � ��� ��� !����# 	� becomes equivalent to� 	 � 	 � I 53� �� �JI�# �� ����� � � � �� �bI�#6#

, the system requires
only a very simple form of conditional constraints.

9 Conclusion

It is an interesting question in what context this analy-
sis would be useful. Because of the structure of security
annotations involving matrices of levels, a type inference
algorithm based on our framework is likely to produce very
verbose type schemes. That is the reason why it seems dif-
ficult to use it as the basis for a generic secure programming

15

language, as we aim at with MLIF [13]. Nevertheless such
an implementation might be of interest for automated anal-
ysis of very sensitive (relatively to information flow) part of
programs for which systems such as [5, 13] remain too ap-
proximative. Such a case may particularly arise in program-
ming languages for devices with limited ressources, such as
JavaCard, where integer constants are used as flags in order
to represent different data in an unstructured manner.

Moreover, it seems possible to design a reasonably ef-
ficient algorithm addressing type inference and constraint
solving for this system: we believe that this is mainly an
implementation and proof issue.

Another topic of interest lies in adding mutable cells
(a.k.a. references) to � � and �-P . Obtaining a treatment
of references similar to that of [13] (where reference types� � �/��	

have an invariant argument
�

describing the content of
the cell and carry an external security annotation � related
to the reference’s identity) is straightforward. This remains
an orthogonal problem to the accurate treatment of union
types. It mainly requires adding an extra security annota-
tion ��� on every typing judgement and on

9
types. Never-

theless, such a framework does not provide as fine-grained
a treatment of information flow generated by side-effects as
that for functional aspects of the language. For instance,
one may rewrite our first example in an imperative style

 ���������� �
 ��� �������,� � � �*��� � � � � �P! #
��� � � �
 �'&(�������)� � �0����� �6� � � �P+-# !� �/� . ���6��132�� ��4 ��56!879 :�<>+?79A@>B

Then, the system would no longer be able to detect the ab-
sence of dependency between . and the value stored in

� �
because in all the branches of this program the content of
the cell

�
must have the same type (i.e.

�D�=56! 5 + � � � � ! � # �).
Therefore, the three security levels of the matrix C will be
constrained to exceed that of

,
�

and
&
. Thus, an interest-

ing direction for further work consists in obtaining a fine-
grained analysis of dependencies due to side-effects.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A
core calculus of dependency. In Conference Record of the
26th ACM Symposium on Principles of Programming Lan-
guages, pages 147–160, San Antonio, Texas, Jan. 1999.
ACM Press. URL: http://www.soe.ucsc.edu/˜abadi/
Papers/flowpopl.ps.

[2] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7):504–513, July 1977.

[3] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. In Conference Record of
the 25th ACM Symposium on Principles of Programming
Languages, pages 365–377, San Diego, California, Jan.
1998. URL: http://cm.bell-labs.com/cm/cs/who/

nch/slam.ps.

[4] E. Moggi. An abstract view of programming languages.
Technical Report ECS-LFCS-90-113, University of Edin-
burgh, June 1989. URL: http://www.disi.unige.it/

person/MoggiE/ftp/abs-view.ps.gz.
[5] A. C. Myers. JFlow: practical mostly-static information

flow control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT on Principles of Programming Languages, pages
228–241, San Antonio, Texas, Jan. 1999. ACM Press.
URL: http://www.cs.cornell.edu/andru/papers/

popl99/myers-popl99.ps.gz.
[6] A. C. Myers. Mostly-Static Decentralized Information Flow

Control. PhD thesis, Massachusetts Institute of Tech-
nology, Jan. 1999. Technical Report MIT/LCS/TR-783.
URL: http://www.cs.cornell.edu/andru/release/

tr783.ps.gz.
[7] M. Odersky, M. Sulzmann, and M. Wehr. Type inference

with constrained types. Theory and Practice of Object Sys-
tems, 5(1):35–55, 1999. URL: http://www.cs.mu.oz.

au/˜sulzmann/publications/tapos.ps.
[8] J. Palsberg and P. Ørbæk. Trust in the � -calculus. Lec-

ture Notes in Computer Science, 983:314–330, 1995.
URL: ftp://ftp.daimi.au.dk/pub/empl/poe/

lambda-trust.dvi.gz.
[9] J. Palsberg, M. Wand, and P. M. O’Keefe. Type inference

with non-structural subtyping. Formal Aspects of Comput-
ing, 9:49–67, 1997. URL: http://www.cs.purdue.edu/
homes/palsberg/paper/fac97.ps.gz.

[10] F. Pottier. Wallace: an efficient implementation of type infer-
ence with subtyping, Feb. 2000. URL: http://pauillac.
inria.fr/˜fpottier/wallace/.

[11] F. Pottier. A semi-syntactic soundness proof for
HM ���
	 . Research Report 4150, INRIA, Mar. 2001.
URL: ftp://ftp.inria.fr/INRIA/publication/RR/

RR-4150.ps.gz.
[12] F. Pottier and S. Conchon. Information flow infer-

ence for free. In Proceedings of the the Fifth ACM
SIGPLAN International Conference on Functional Pro-
gramming (ICFP’00), pages 46–57, Sept. 2000. URL:
http://pauillac.inria.fr/˜fpottier/publis/

fpottier-conchon-icfp00.ps.gz.
[13] F. Pottier and V. Simonet. Information flow infer-

ence for ML. In Proceedings of the 29th ACM
Symposium on Principles of Programming Languages
(POPL’02), pages 319–330, Portland, Oregon, Jan. 2002.
URL: http://cristal.inria.fr/˜simonet/publis/

fpottier-simonet-popl02.ps.gz.
[14] D. Rémy. Records and variants as a natural extension of

ML. In Proceedings of the Sixteenth Annual Symposium on
Principles Of Programming Languages (POPL’89), pages
77–88, Austin, Texas, jan 1989.

[15] D. Rémy. Algèbres Touffues. Application au Typage Poly-
morphe des Objets Enregistrements dans les Langages
Fonctionnels. Thèse de doctorat, Université de Paris 7,
1990. URL: ftp://ftp.inria.fr/INRIA/Projects/

cristal/Didier.Remy/these.ps.gz.
[16] V. Simonet. Fine-grained information flow analy-

sis for a � -calculus with sum types. Full version.
URL: http://cristal.inria.fr/˜simonet/publis/

simonet-csfw-02-long.ps.gz, Feb. 2002.

16

[17] M. Sulzmann. A general framework for Hindley/Milner
type systems with constraints. PhD thesis, Yale
University, Department of Computer Science, May
2000. URL: http://www.cs.mu.oz.au/˜sulzmann/

publications/diss.ps.gz.
[18] D. Volpano and G. Smith. A type-based ap-

proach to program security. Lecture Notes in Com-
puter Science, 1214:607–621, Apr. 1997. URL:
http://www.cs.nps.navy.mil/people/faculty/

volpano/papers/tapsoft97.ps.Z.
[19] P. Wadler. Comprehending monads. Mathematical

Structures in Computer Science, 2:461–493, 1992. URL:
http://cm.bell-labs.com/cm/cs/who/wadler/

papers/monads/monads.ps.gz.
[20] A. K. Wright and M. Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94,
Nov. 1994. URL: http://www.cs.rice.edu/CS/PLT/

Publications/ic94-wf.ps.gz.
[21] S. Zdancewic and A. C. Myers. Secure information flow and

CPS. In D. Sands, editor, Proceedings of the 2001 European
Symposium on Programming (ESOP’01), Lecture Notes in
Computer Science. Springer Verlag, Apr. 2001. URL: http:
//www.cs.cornell.edu/zdance/lincont.ps.

17

