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Abstract. Mixin layers are a technique for implementing layered object-oriented
designs (e.g., collaboration-based designs). Mixin layers are similar to abstract
subclasses (mixin classes) but scaled to a multiple-class granularity. We describe
mixin layers from a programming language viewpoint, discuss checking the
consistency of a mixin layer composition, and analyze the language support
issues involved.

1  Introduction

The complexity of software has driven both researchers and practitioners toward
design methodologies that decompose design problems into intellectually manageable
pieces and that assemble partial products into complete software artifacts. The princi-
ple of separating logically distinct and (largely independent) facets of an application is
behind many good software design practices. A key objective in designing reusable
software modules is to encapsulate within each module a single (and largely orthogo-
nal) aspect of application design. Many design methods in the object-oriented world
build on this principle of design modularity (e.g., design patterns [12] and collabora-
tion-based designs [7][14][15][28][37]). The central issue is to provide implementa-
tion (i.e., programming language) support for expressing modular designs concisely.

Our work addresses this problem in the context of collaboration-based (or role-
based) designs. Such designs decompose an object-oriented application into a set of
classes and a set of collaborations. Each application class encapsulates several roles,
where each role embodies a separate aspect of the class’s behavior. A cooperating suite
of roles is called a collaboration. In collaboration-based designs, collaborations
express distinct (and largely independent) aspects of an application. This property
makes collaborations an interesting way to express software designs in a modular way.
Collaboration-based design is an example of a layered design methodology: collabora-
tions are components and layered compositions of these components define an applica-
tion.

While collaboration-based designs cleanly capture different aspects of application
behavior, their implementations often do not preserve this modularity. Application
frameworks [17] are a standard implementation technique. As shown in [37], frame-
works not only do not preserve the design structure but also may result in inefficient
implementations, requiring excessive use of dynamic binding. VanHilst and Notkin

 1 We gratefully acknowledge the sponsorship of Microsoft Research, the Defense Advanced
Research Projects Agency (Cooperative Agreement F30602-96-2-0226), and the University
of Texas at Austin Applied Research Laboratories.



proposed an alternative technique [37][38][39] using mixin classes [8] in C++. Their
approach mapped design-level entities (roles) directly into implementation compo-
nents (mixin classes). It suffered, however, from highly complex parameterizations in
the presence of multiple classes, and the inability to contain intra-collaboration design
changes. This caused them to question its scalability [37], and seek a way to explicitly
capture collaborations as distinct implementation entities.

Our work shows how to remove the difficulties of the VanHilst and Notkin method
by scaling the concept of a mixin to multiple classes. We call these scaled entities
mixin layers. A mixin layer can be viewed as a mixin class encapsulating other mixins
with the restriction that the parameter (superclass) of an outer mixin must encapsulate
all parameters of inner mixins. We will use C++ templatized nested classes as our pri-
mary means of expressing mixin layers, but the ideas are not specific to C++. We will
discuss in detail the language support issues involved, mainly relative to C++, CLOS,
and Java. There are several examples of designs that can be expressed using mixin lay-
ers (e.g., see the enumeration in [2], as well as [4], [15], [31]). We will illustrate a sim-
ple example in this paper.

The primary emphasis of this paper is on mixin layers from a programming lan-
guage standpoint. In a previous paper [33] we studied the applications of a particular
implementation of mixin layers. Here, we will consider how the mechanism depends
on specific language features and how it addresses fundamental problems associated
with layered object-oriented implementations. Such problems include verifying the
consistency of a composition of layers and handling the propagation of type informa-
tion from a subclass to a superclass.

2  Background

2.1  Layered Designs

In an object-oriented design, objects are encapsulated entities but are rarely self-
sufficient. Although an object is fully responsible for maintaining the data it encapsu-
lates, it needs to cooperate with other objects to complete a task. An interesting way to
encode object interdependencies is through collaborations. A collaboration is a set of
objects and a protocol (i.e., a set of allowed behaviors) that determines how these
objects interact. The part of an object enforcing the protocol that a collaboration pre-
scribes is called the object’s role in the collaboration. Objects of an application gener-
ally participate in multiple collaborations simultaneously and, thus, may encode
several distinct roles. Each collaboration, in turn, is a collection of roles, and repre-
sents relationships across the corresponding objects. Essentially, a role isolates the part
of an object that is relevant to a collaboration from the rest of the object. Different
objects can participate in a collaboration, as long as they support the required roles.

In collaboration-based design, we try to express an application as a composition of
largely independently-definable collaborations. Viewed in terms of design modularity,
collaboration-based design acknowledges that a unit of functionality (module) is nei-
ther a whole object nor a part of it, but can cross-cut several different objects. If a col-
laboration is reasonably independent of other collaborations (i.e., a good
approximation of an ideal module) the benefits are great. First, the collaboration can be



reused in a variety of circumstances where the same functionality is needed, by just
mapping its roles to the right objects. Second, any changes in the encapsulated func-
tionality will only affect the collaboration and will not propagate throughout the whole
application.

Figure 1 depicts the overlay of objects and collaborations in a design. The figure
contains three different objects (OA, OB, OC), each supporting multiple roles. Object
OB, for example, encapsulates four distinct roles: B1, B2, B3, and B4. Four different
collaborations (c1, c2, c3, c4) capture distinct aspects of the application’s functional-
ity. To do this, collaborations have to prescribe certain roles for objects. For example,
collaboration c2 contains two distinct roles, A2 and B2, which are assumed by distinct
objects (namely OA and OB). An object does not need to play a role in every collabora-
tion — c2 does not affect object OC.

Collaboration-based designs are an example of layered designs. In this paper we
will concentrate on collaboration-based designs, but a more general classification of
layered designs can be found in [2] and [33]. Additionally, the designs we will exam-
ine (as well as those examined by VanHilst and Notkin) are static: the roles played by
an object are uniquely determined by its class. For instance, in Figure 1, all three
objects must belong in different classes (since they all support different sets of roles).

2.2  Mixin Classes

The term “mixin class” (or just “mixin”) has been overloaded to mean several spe-
cific programming techniques and a general mechanism that they all approximate.
Here we will use “mixin” in the general sense of [8]. Common alternative meanings
include CLOS classes whose superclasses are determined by linearization of multiple
inheritance, as well as C++ classes used in a specific multiple inheritance pattern (as
superclasses of a single class that themselves have a common “virtual base class”).

The main idea implemented by mixins is quite simple: in object-oriented lan-

Figure 1: Example collaboration decomposition. Ovals represent collaborations, rectan-
gles represent objects, their intersections represent roles.
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guages, a superclass can be defined without specifying its subclasses. This is not, how-
ever, symmetric: when a subclass is defined, it must have a specific superclass. Mixins
(also commonly known as abstract subclasses [8]) represent a mechanism for specify-
ing classes that will eventually inherit from a superclass. This superclass, however, is
not specified at the site of the mixin’s definition. Thus a single mixin can be instanti-
ated with different superclasses yielding widely varying classes. This property of mix-
ins makes them appropriate for defining uniform incremental extensions for a
multitude of classes. When the mixin is instantiated with one of these classes as a
superclass, it produces a class incremented with the additional behavior.

Mixins can easily be implemented using parameterized inheritance. In this case, a
mixin is a parameterized class with the parameter becoming its superclass. Using C++
syntax we can write a mixin as:

template <class Super>
class Mixin : public Super { ... /* mixin body */ };

This was the primary implementation technique used by VanHilst and Notkin in
their approach to mapping collaboration-based designs into programs. Their mixin
classes represented roles and were also parameterized by any other classes that inter-
acted with the given role in its collaboration. For instance, role B4 in Figure 1 would be
expressed as:

template <class RoleSuper, class OA, class OC>
class B4 : public RoleSuper {

... /* role implementation, using OA, OC */
}; (1)

Consider that the actual values for parameters OA, OC would themselves be the
result of template instantiations, and their parameters also, and so on (up to a depth
equal to the number of collaborations). This makes the VanHilst and Notkin method
complicated even for relatively small examples. The programmer has to explicitly keep
track of the mapping between roles and classes. Additionally, the programmer has to
make explicit the collaborations in which a class participates. For instance, the mixin
for role A4 in Figure 1 has to be parameterized with the mixin for role A2 — the pro-
grammer cannot ignore the fact that collaboration c3 does not specify a role for object
OA. These limitations make the approach unscalable. As we show in [33], the length of
parameterization expressions increases exponentially with the number of different
roles for a class. This is illustrated in Appendix A by showing the parameterization
code from an example in [37].

Conceptually, the scalability problems of the VanHilst and Notkin approach are
due to the small granularity of the entities they represent. In their methodology, each
mixin class represents a role. Roles, however, have many external dependencies (for
instance, they often depend on many other roles in the same collaboration). To avoid
hard-coding such dependencies, we have to express them as extra parameters to the
mixin class, as in (1). VanHilst and Notkin acknowledged this limitation [37]. They
suggested trying to map entire collaborations to implementation entities as future
work. This is accomplished with the concept of a mixin layer.



3  Mixin Layers

We solve the scalability problems identified by VanHilst and Notkin by implement-
ing collaborations as mixins that encapsulate other mixins. We will call the encapsu-
lated mixin classes inner mixins, and the mixin that encapsulates them the outer mixin.
Inner mixins can be inherited, just like any member variables or methods of a class. An
outer mixin is called a mixin layer when the parameter (superclass) of the outer mixin
encapsulates all parameters (superclasses) of inner mixins2. This is illustrated in Fig-
ure 2. ThisMixinLayer is a mixin that refines (through inheritance) SuperMixin-
Layer. SuperMixinLayer encapsulates three classes: FirstClass, SecondClass,
and ThirdClass. ThisMixinLayer also encapsulates three inner classes that are
themselves mixins and refine the corresponding classes of SuperMixinLayer.

We can conceptually see how some of the problems of the VanHilst and Notkin
method are addressed if collaborations are expressed as mixin layers: classes that do
not participate in a certain collaboration are inherited from collaborations above (we
will subsequently use the term “collaboration” for the mixin layer representing a col-
laboration when no confusion can result). This way every collaboration can be
expressed in terms of its superclass collaboration only (since the superclass defines
roles for all objects, either explicitly or by inheritance). Parameters like OA and OC in
example (1) are not needed — a role can directly refer to other roles in the same col-
laboration.

We would like to support mixin layers using the same language mechanisms as
those used for mixin classes. To do this, we can standardize the names used for role
implementations (make them the same as the name of the class that plays them). This
yields an elegant form of mixin layers that can be expressed using common program-
ming language features. For instance, using C++ parameterized inheritance and nested
classes, we can express a mixin layer (see again Figure 2) implementing a collabora-
tion as:

 2 Inner mixins can actually themselves be mixin layers.
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template <class CollabSuper>
class CollabThis : public CollabSuper {
public:

class FirstRole : public CollabSuper::FirstRole { ... };
class SecondRole : public CollabSuper::SecondRole { ... };
class ThirdRole : public CollabSuper::ThirdRole { ... };
... // more roles

}; (2)

The code fragment in (2) represents the form of mixin layers that we will use in this
paper. Note that specifying a parameter for the outermost mixin automatically deter-
mines the parameters of all inner mixins.

In (2) we mapped the main elements of the mixin layer definition to specific imple-
mentation techniques: we used nested classes to implement class encapsulation. We
also used parameterized inheritance to implement mixins. None of these implementa-
tion choices is part of the mixin layer definition. There are very different ways of
encoding the same design. For example, we can encode mixin layers in CLOS with
different implementation dependencies. Class encapsulation is implemented by defin-
ing member methods that return CLOS class-metaobjects. No lexical nesting of any
kind (as in (2)) is necessary. This combines nicely with the method-based character of
CLOS mixins and the reflective capabilities of the language. (To keep the discussion
short, we put the CLOS counterpart of code fragment (2) in Appendix B). Note the
importance of the above discussion: mixin layers are not a linguistic idiom. Many fla-
vors of the mixin layer concept, however, can be expressed via specific programming
language idioms: as stand-alone language constructs, as a combination of C++ nested
classes and parameterized inheritance, as a combination of CLOS class-metaobjects
and mixins, etc. We will use a C++ idiom in our examples, in the belief that concrete
syntax will clarify, rather than obscure, our ideas.

Back to (2), composing mixin layers to form concrete classes is now as simple as
composing mixin classes. If, like in Figure 1, we have four mixin layers (Collab1,
Collab2, Collab3, Collab4) implementing four different collaborations, we can
compose them as Collab4 < Collab3 < Collab2 < Collab1 > > >3. Note
that even though some collaborations (like c2, c3 in Figure 1) do not specify roles for
all classes, they inherit such roles from their superclasses. This results in linear length
expressions for collaboration-based designs and, hence, solves the scalability problems
of the VanHilst and Notkin approach (see Appendix A).

4  A Concrete Example

In this section, we will show the benefits of mixin layers through an example. More
complex examples are presented in [6] and [33].

4.1  A Data Structure

We examine a data structure design that was used in both the P2 lightweight

 3 Collab1 will then have to be a concrete class (i.e., not a mixin). Alternatively we can have a
collaboration of empty roles that we use as the root of all compositions.



DBMS generator [3][4], as well as in the DiSTiL library for data structures [32]. In this
example we add functionality to a data structure by assigning more roles to the classes
that participate in the design. There are two such classes: a node class, of which all
data nodes are instances, and a container class, which has one instance per data struc-
ture. A third class for data structure cursors (iterators) is generally needed but to keep
the example simple we will equate cursors with pointers to node objects. This model
for data structure construction is, in fact, quite general. Composite data structures, run-
time bound checks, garbage collection, a lock and transaction manager, etc., can all be
specified as new roles for the node and container classes (see [4]). This can be
achieved using mixin layers, as we will show with extensions to a binary tree data
structure.

Our target data structure consists of four different collaborations: bintree, alloc,
timestamp, and sizeof. Bintree captures the functionality of a binary tree. Alloc cap-
tures the functionality of memory allocation. Timestamp is responsible for maintaining
timestamps for data structure and element updates. Sizeof simply keeps track of the
data structure size. The design is simple and we will not concern ourselves with its
schematic representation (in the form of Figure 1) or the way we obtained it. For a
good reference on how to obtain collaboration-based designs from use-case scenarios
[29] see VanHilst’s Ph.D. dissertation [40].

A mixin layer implementing a binary tree collaboration has the form4:

template <class Super> class BINTREE : public Super {
public:

class Node : public Super::Node {
Node* parent_link,

left_link, right_link ; // Node data members
public:

... // Node interface
};

class Container : public Super::Container {
Node* header; // Container data members

public:
void insert ( EleType el ) { ... }

// Definition of EleType inherited
void erase ( Node* node ) { ... }
bool find ( EleType* el ) { ... }
... // Other methods

};
};

Note that the Container class is aware of the Node class (e.g., it declares a mem-
ber variable of type Node*). The two classes must be designed together and, hence, it
makes sense to encapsulate both in a single unit.

 4 We will present simplified code fragments, ignoring implementation details that are not
directly relevant to our discussion. We will highlight class definitions for readability and use
ellipses (...) for omitted code.



Now consider the implementation of the timestamp collaboration: the data struc-
ture maintains the time of its last update, as well as the creation and update time of
each node. The set of exported operations on the data structure can be enriched (e.g.,
by defining an operation that returns the data structure update time, as well as a variant
of find: find_newer). This enrichment can be viewed as a collaboration prescribing
roles for both the Node and the Container class. Its implementation using mixin lay-
ers has the form:

template <class Super> class TIMESTAMP : public Super {
public:

class Node : public Super::Node {
time_t creation_time, update_time; // Node data members

public:
bool more_recent (time_t t) { ... }
... // Other time-related methods

};

class Container : public Super::Container {
time_t update_time; // Container data members

public:
bool find_newer ( EleType* el, time_t t ) { ... }
void insert ( EleType el ) { ... }
... // Other time-related methods

};
};

Not all collaborations need to specify roles for all classes in a design. The sizeof
collaboration, for instance, only needs to maintain a counter of elements associated
with a container and only prescribes a role for the Container class. It can be imple-
mented as a mixin layer that is a trivial wrapper around a mixin class:

template <class Super> class SIZEOF : public Super {
public:

class Container : public Super::Container {
int count; // Container data members

public:
Container() : count(0), Super::Container() {};

// Constructor
void insert ( EleType el ) {

Super::Container::insert(el); count++; }
void erase ( Node* node ) {

Super::Container::erase(el); count--; }
int size () { return count; }

};
};

Again, classes generated by instantiating the SIZEOF mixin layer do have a Node

nested class — this class is inherited from mixin layers above SIZEOF in the inherit-
ance chain.

To put everything together we need a concrete (i.e., non-mixin) class to be the root
of our inheritance hierarchy. This could be a “dummy” class, containing only empty



roles. In most applications, however, it is easy to identify a collaboration, which has to
be the basis upon all other functionality is built. In this particular example, the alloc
collaboration serves this purpose. Alloc is responsible for the actual memory allocation
for the data structure. Note that the implementation of this collaboration (as well as
any of the other mixin layers) can have parameters other than the one we used to desig-
nate the superclass. These extra parameters can be used to specify polymorphic behav-
ior. In our example, it makes sense to parameterize the layer representing alloc by the
type of the elements stored in the data structure. Then we have:

template <class EleType> class ALLOC {
public:

class Node {
EleType element; // The actual stored data

public:
... // Any methods pertaining to stored data

};

class Container {
protected:

typedef Super::EleType EleType;
// The actual type of stored data

void* node_alloc();
... // Other allocation methods

};
};

We form our target data structure by composing mixin layers. A binary tree storing
integers and maintaining time information and size is defined as:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC < int > > > >
Tree1; (3)

The Node and Container classes are accessible5 as Tree1::Node and
Tree1::Container. An outline of the composition of (3) is shown in Figure 3. We
have annotated the design with some of the inherited member variables and methods.
Note how both the SIZEOF and the TIMESTAMP mixin layers depend on layers above
them to insert and erase elements from the data structure. We will return to this later.

4.2  Discussion

Our example illustrates the benefits of mixin layers:
• Mixin layers preserve the structure of the design. This enhances the maintainabil-

ity of an application. If changes are introduced in the design (e.g., in our data
structure example, if we want to use a different form of a binary tree, if we want to
maintain time information for retrievals as well, etc.) it is easy to isolate them. A
single mixin layer encapsulates changes to multiple classes. Additionally, the
specification of the inheritance hierarchy is separate from the definition of class

 5 There is no reason why the Node class should be user accessible. What really needs to be user
accessible is an iterator class, which for this example is the same as a pointer to a Node

object.



functionality. Hence, changing the inheritance chain is as simple as editing a com-
position like (3), above.

• Mixin layers are reusable and interchangeable. A single layer can be used in sev-
eral different compositions and is, to an extent, isolated from other layers. In our
data structure example, the SIZEOF, ALLOC, and TIMESTAMP layers are not spe-
cific to binary trees. They could just as well be used with a doubly-linked list or
many other data structures. The change is minimal: we only have to swap the
BINTREE layer with a different layer.

• Mixin layer compositions are scalable. In our example, if we have more than one
variation of a data structure in the same application, very little hand editing is
involved. For instance, we could have a second binary tree that maintains no time
information in the same program. The definition would be:
typedef SIZEOF < BINTREE < ALLOC < int > > > Tree2;

Consider what would happen if application frameworks were used to implement
our design. (Frameworks specify superclasses and implementations are defined
via subclassing). To express the second data structure, we would have to explicitly
subclass from the binary tree abstract class and reintroduce by hand the changes
dictated by the SIZEOF class. In general, application frameworks cannot express
more than one feature variation without code replication. Mixin layers, on the
other hand, can be composed in an exponential number of ways to express a large
variety of implementations (see also [3]).

Such benefits have usually been claimed for techniques that group many objects
into large-scale components (e.g., [2], [13], [19], [31]). In these approaches, grouping
objects into components was not done with existing object-oriented mechanisms.
Mixin layers can be used to express similar functionality using a novel combination of
object-oriented constructs.
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5  Discussion and Related Work

We glossed over several important issues in our example of Section 4. In this sec-
tion, we consider the issues of compositional consistency, virtual types, and language
support for mixin layers, with references to related work.

5.1  Composition Consistency

The most important issue arising in mixin layer composition is ensuring composi-
tion correctness. Some mixin layers depend on the existence or the right ordering of
others. Many problems can be detected immediately. As shown in Figure 3, the BIN-
TREE layer calls the allocator directly for every element insertion (i.e., it does not
propagate the insert and erase operations). Omitting the BINTREE layer in (3) will
cause a compilation error in C++: operations like insert that are propagated by
SIZEOF and TIMESTAMP will be undefined. Other problems, however, are more subtle.
Consider reordering the BINTREE and SIZEOF layers in a composition:

typedef BINTREE < SIZEOF < ALLOC < int > > > Tree3;

This will cause the insert and erase methods of SIZEOF to be shadowed (over-
ridden) by those of BINTREE. Hence, the implementation is wrong: the count of ele-
ments in the data structure will never be updated (since this is only done in the insert
and erase methods of SIZEOF and these methods are not called by BINTREE). The
size operation will be visible, however, and will always return 0, although the data
structure may contain elements.

Such mistakes may not actually cause a compilation error. This can be true even for
statically typed languages — in C++, for instance, no error will be signalled even
though SIZEOF::Container has an explicit call to the insert method of its super-
class and no such method is defined. This has to do with the treatment of methods in
parameterized classes as function templates, as we will discuss in Section 5.3. In
essence, the insert method for SIZEOF::Container is never compiled since it is
not needed, thus the error is never discovered.

In general, mixin layers may have subtle semantic dependencies that are not
reflected in their interfaces. In large libraries there may be a variety of layers support-
ing identical interfaces but implementing different semantics. Many combinations of
layers may be illegal but there may not be a way to detect this from the interfaces
alone.

This problem has been studied in the context of layered systems. The design rule
checking approach of [5] offers a solution using propositional properties and require-
ments that are propagated both up and down a layer hierarchy. The nested mixin-meth-
ods of [34] resulted in a powerful constraint system. Nesting of mixins was used as a
way to restrict their scope. A mixin class of [34] can define other mixins that can be
composed with it, inherit some mixins when composed, and cancel inherited mixins.
The feature-oriented programming approach of [27] uses the assumes keyword to
express the property that the correctness of one feature (layered component) assumes
the existence of another.

Interestingly enough there is a simple way to express basic dependencies within the
mixin layers framework. Every mixin layer can export propositional properties



describing its behavior (essentially encoding semantic knowledge in its interface).
Recall that when mixin layers are composed, they are linked in an inheritance chain.
Properties are propagated in the same direction as inherited methods and variables:
from superclasses to subclasses. Layers can explicitly make inherited properties
unavailable to their subclasses. Finally, a layer can check (require) whether it has
inherited a property or not. A composition is correct if none of these requirements
fails. This technique is similar to the assumes functionality of [27] and the design rule
checking of [5]. Consider the example of Section 4. There are four requirements that
we need to express:
• A BINTREE mixin layer cannot have a SIZEOF layer as an ancestor in its inherit-

ance chain (because otherwise the insert method of SIZEOF will be shadowed).
• A BINTREE mixin layer cannot have a TIMESTAMP layer as an ancestor (same rea-

son as above).
• A SIZEOF mixin layer needs to ensure that some sort of a data structure is present

in the composition. In our example the only data structure is a binary tree but we
can easily imagine the same mixin layer being composed, for instance, with a dou-
bly linked list layer.

• A TIMESTAMP mixin layer also needs to ensure that a data structure is present.
These can be specified as requirements on the existence of three properties (inher-

ited from ancestors in the inheritance chain):
• No SIZEOF layer is present (call this property P_NoSizeof).
• No TIMESTAMP layer is present (call this property P_NoTimestamp).
• A data structure layer is present (call this property P_DataStructure).

The implementation is simple. All properties can be expressed as empty classes
encapsulated in a mixin layer. Properties are inherited but can be negated by using
access control (that is, “hiding” of class members — e.g., by making them “private”
members in C++). If the class representing the property is made visible to subclasses
(either by declaration or by inheritance without “hiding”), then the property is
asserted. Otherwise the property is negated. The requirement that a certain property be
satisfied is then enforced by declaring an instance of this class.

In our example, BINTREE exports property P_DataStructure and requires prop-
erties P_NoSizeof and P_NoTimestamp.

template <class Super> class BINTREE : public Super {
protected:

class P_DataStructure { };
// Assert this property for subclasses

private:
P_NoSizeof dummy1;
P_NoTimestamp dummy2;

// Require P_NoSizeof and P_NoTimestamp from ancestors
public:

... // nested mixins (same as before)
};

The other three mixin layers are modified accordingly:

template <class Super> class SIZEOF : public Super {
private:



class P_NoSizeof { }; // Negate property for subclasses
P_DataStructure dummy1;  // Require P_DataStructure

public:
... // nested mixins (same as before)

};

template <class Super> class TIMESTAMP : public Super {
private:

class P_NoTimestamp { }; // Negate property for subclasses
P_DataStructure dummy1; // Require P_DataStructure

public:
... // nested mixins (same as before)

};

template <class EleType> class ALLOC {
protected:

class P_NoSizeof { }; // Assert property for subclasses
class P_NoTimestamp { }; // Assert property for subclasses

public:
... // nested classes (same as before)

};

Note how the constraint is enforced: the ALLOC mixin layer asserts properties
P_NoSizeof and P_NoTimestamp. The BINTREE layer requires that they not be
negated by some layer between BINTREE and ALLOC in the inheritance hierarchy.
SIZEOF and TIMESTAMP negate P_NoSizeof and P_NoTimestamp, respectively.
Also they require that they have some ancestor asserting property P_Datastructure.
This accurately describes the constraints we want to impose on the compositions of
these four mixin layers: a BINTREE has to be present and if a TIMESTAMP or SIZEOF
are present they must be descendants of BINTREE in the inheritance chain.

The method described above only makes use of access control (such as commonly
found in C++ or Java and easily emulated in CLOS) and the same general language
mechanisms used for mixin layers. The method’s clarity could be improved using
some form of syntactic sugar. In the absence of static typing (e.g., if we were to imple-
ment this technique in CLOS) the checking would have to be performed at run-time by
calling an appropriate method. We have developed other constraint techniques for C++
but they are language-specific (or even compiler-specific as is the case with many com-
pile-time techniques that rely on constant-folding).

There is a more important restriction of the technique we presented, however. Even
though an erroneous composition will be detected, the error message will be far from
informative. In essence, we express relatively deep errors (e.g., semantic incompatibil-
ities among large scale components) as the absence of an inherited class. The compiler
will still complain about an undefined type, but the cause of the error (not to mention a
possible fix) is not immediately apparent. The problem is intensified in the case of
mixin layers developed and used independently by different programmers. A casual
user will expect much more expressive error reporting from a black-box component
than our technique can offer. Reference [5] presents a general technique for automati-
cally detecting (and suggesting repairs to) errors in layered implementations.



5.2  Virtual Types

An interesting issue arises in various layered implementations that use inheritance
together with static typing (not necessarily in fully statically typed languages). This is
essentially a symmetric problem to the one that originally motivated mixins. Recall
that mixins were introduced to remove the restriction that the definition of a subclass
in an inheritance relation needs to reference its superclass. This restriction, however,
means that superclasses are generally known when a subclass is defined (and refer-
ences to them may exist in subclass code) while the converse is not true. This is not a
problem when a superclass only needs to transfer control to a subclass (i.e., when a
superclass needs to call a subclass method). The usual dynamic binding (or late bind-
ing) of methods (the hallmark of object-oriented programming) deals with exactly this.
When, however, superclass code depends on type information that is specific to the
current subclass, the problem is harder — type sub-languages usually do not have late
binding capabilities.

Recall the ALLOC layer from our data structure example. ALLOC is the root of the
inheritance hierarchy for all compositions of mixin layers in Section 4. One of the
compositions we examined is replicated here:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC < int > > > >
Tree1; (4)

The node_alloc method in the Container nested class of ALLOC is responsible
for allocating storage for a data structure element. One would think that the implemen-
tation of this method would be as simple as:

{ return new Node; }

Unfortunately, this is not true. The actual allocated object should not be of type
Node, as defined in the ALLOC layer (that is, ALLOC<int>::Node in (4)). Instead it
should be of class Node as defined in the most refined layer (i.e., the final subclass in
the hierarchy — Tree1::Node in (4)). In this way, the allocated node will have
enough room for the stored data as well as fields added by every one of the mixin lay-
ers of composition Tree1 (e.g., the parent_link, left_link, and right_link

pointers added by BINTREE). We can circumvent this problem by weakening our type
constraints and obtaining the necessary information at run-time through dynamic bind-
ing. In this particular example we need to set the return value of the node_alloc

method to a universal pointer type (void*) and get the size of the allocated node
through a C++ virtual call (not shown). This solution is general but inconvenient,
error-prone (type information is lost), and possibly inefficient (depending on the over-
head of dynamic binding). Although there appear to be no generally available alterna-
tives, the problem has been studied extensively and it is interesting to cite some
language mechanisms that address it.

A complete and elegant solution to the problem is offered by virtual types language
mechanisms. Virtual types can be refined by subclasses in an inheritance chain and the
most refined version is the one used by superclass code. In our data structure example,
by declaring Node as a virtual type we express precisely our intention. Any references
to Node (for instance, in “new Node”) are taken relative to the most refined class in
the inheritance chain (Tree1::Node in (4)).



Virtual types first appeared as virtual class patterns in the Beta programming lan-
guage (see [21], ch.9). Recently they have been employed in a variety of programming
language mechanisms implementing parameterization and layered frameworks similar
to mixin layers. The work of [36], proposes an approach for genericity in Java using
virtual types. We recognize the “assumes inner” primitive of feature-oriented pro-
gramming [27] as a virtual type declaration specifier. The forward construct in the
P++ language [31] serves exactly the same purpose, declaring that a certain type will
be refined by subsequent layers in a composition. Our language extensions to Java that
add support for mixin layers (currently under implementation — see Section 5.3)
include virtual types.

5.3  Language Support

Mixin layers are mixins that encapsulate other mixins. Therefore, the actual
semantics of mixin layers depends directly on the class manipulation and inheritance
semantics of the host language. Mixin layers in CLOS or Smalltalk are semantically
different than mixin layers in C++, but they can all be viewed as different implementa-
tion flavors of the same concept. For example, CLOS classes (and, therefore, mixins)
have no default class encapsulation (class encapsulation can be emulated by defining
an appropriate metaclass, however). This means that class slots (i.e., member vari-
ables) are not proprietary to the class that defines them. Thus, in an inheritance hierar-
chy, slots with the same name are merged. This prevents reusing a mixin in a single
composition.

Keeping such differences in mind, we would like to examine the support for mixin
layers provided by different languages. The language techniques used for encapsula-
tion of mixins vary from reflection (i.e., methods that return class meta-objects) to lex-
ical nesting of classes. In all the examined languages, supporting mixin layers seems to
be as simple as supporting mixin classes.

CLOS. The original use of mixins was a CLOS idiom so it makes sense to ask how
well our ideas are supported in CLOS. As we show in Appendix B, encapsulation of
mixins can be expressed using methods that return mixins. Combined with the CLOS
mixin functionality, this provides a flavor of mixin layers, adapted to the CLOS inher-
itance and class manipulation capabilities. In all, CLOS offers a very powerful extensi-
bility platform for object systems, so it is no surprise that mixin layers are expressible
in this context. We are, however, satisfied that the CLOS mixin layer idiom described
in Appendix B is a natural one and directly relates the concept to CLOS mixins. The
syntactic transformation machinery of Common Lisp (macros) can be used to add syn-
tactic sugar to this implementation.

Smalltalk. Although we have not experimented with the Smalltalk language, we
expect that the ideas explored in CLOS will be largely applicable. Smalltalk has been a
traditional test bed for mixins, both for researchers (e.g., [9], [22], [34]) and for practi-
tioners [24]. Like CLOS, the language has powerful reflective capabilities. These can
be used to emulate encapsulated classes by methods that return classes. We believe
(but have yet to verify) that this technique can be used in conjunction with existing
mixin mechanisms to implement mixin layers.

C++. As we have seen, C++ offers direct support for most of the mixin layers



ideas. Nevertheless, there are interesting issues that arise in statically typed languages
(like C++ and Java). Programming with C++ inheritance and templates can be cumber-
some due to the lack of type-checking for templates. C++ templates are not types in
the language (in the terminology of [10], they are type operators). Hence, their consis-
tency is not checked until composition time. Furthermore, methods of templatized
classes are themselves considered function templates. This means that, even after
mixin layers are composed, not all of their methods will be type-checked. Only the
methods actually referenced in the object code will be instantiated and, hence, type-
checked (see [35] p.330-331). The result is an “interpretive” behavior of template pro-
gramming. Type errors (including type mismatches and references to undeclared meth-
ods) can only be detected with the right template instantiations and method calls. This
makes it hard to develop C++ mixin layers independently of the application that will
use them.

Java. The Java language is an obvious next candidate for mixin layers. Java has no
support for mixins, but this is the topic of active research [1][11]. The work of [11]
presented a semantics for mixins in Java. This is particularly interesting from a theo-
retical standpoint as it addresses issues of mixin integration in a type-safe framework.
Also, the latest additions to the language [16] support nested classes and interfaces
(actually both “nested” classes as in C++ and member classes — where nesting has
access control implications). Nested classes can be inherited just like any other mem-
bers of a class. Thus, mixin layers will be straightforwardly supported by any exten-
sion adding mixin functionality to Java.

As we saw, mixins can be expressed in C++ using parameterized inheritance. There
have been several recent proposals for adding parameterization/genericity to Java
[1][25][26][36]. All of them have relatively clean semantics and address most of the
problems we identified with C++ templates. Only the first [1] supports parameterized
inheritance and, hence, can express mixin layers. Additionally, we are already working
on our own Java language extensions to support mixins and mixin layers. In this effort
we are using our JTS set of tools [6] for creating pre-compilers for domain-specific
languages. The system currently supports a form of parameterized inheritance (and,
therefore, mixin layers, when combined with nested classes). We are in the process of
implementing language extensions that capture mixins and mixin layers explicitly. The
extensions include a form of virtual types to address the problems identified in Section
5.2. Additionally, the fundamental building blocks of the JTS system itself were
expressed as mixin layers, resulting in an elegant bootstrapped implementation.

It is interesting to examine the technical issues involved in supporting mixins in
Java parameterization mechanisms. Two of these mechanisms [26][36] are based on a
homogeneous model of parameterization: the same code is used for different instantia-
tions of generics. This is not applicable in the case of parameterized inheritance — the
superclass needs to actually change (see [1] for more details). Additionally, there may
be conceptual difficulties in adding parameterized inheritance capabilities: The param-
eterization approach of [36] is based on virtual types. Parameterized inheritance can be
approximated with virtual types by employing virtual superclasses [20], but this is not
part of the design of [36]. The conceptual problems in the case of Pizza [26] are differ-
ent. Pizza employs type inference (a characteristic of Hindley/Milner [23] type sys-



tems): it infers the type of parameters directly from the code (instead of requiring that
the programmer declare the type explicitly and then checking that the type is indeed
valid). There seem to be difficulties in combining parameterized inheritance with type
inference. The difficulties are not insurmountable but an implementation may be quite
complex and may require significant changes to the existing Pizza semantics.

The approaches of Myers et al. [25] and Agesen et al. [1] are conceptually similar
from a language design standpoint. Even though parameterized implementations are
not types in the language, their parameters can be explicitly constrained. Instantiation
is explicit with constraint checking but no type inference involved. This makes these
techniques easily amenable to adding parameterized inheritance capabilities, as was
demonstrated in [1].

5.4  Other Related Work

There is a wealth of related research in the area of adding new responsibilities to
objects — we will selectively mention a few examples. Subject-oriented programming
[13] supports defining new roles for multiple objects dynamically. Aspect-oriented
programming [19] also emphasizes changing the semantics of multiple objects,
although in a more abstract way (aspects may encapsulate changes in the semantics of
components or in implementation policies). Mezini’s approach [22] emphasizes
dynamic (single-)object evolution with mixin components. The context relations of
[30] concentrate on dynamic modifications to a group of classes. Feature-oriented pro-
gramming [27] focuses on role (or feature) interaction, through explicit entities (called
lifters) that determine how two features interact. The nested mixin-methods of Agora
[34] offer a powerful mechanism to control the addition of new roles.

None of the above has been associated with object-oriented design techniques and
all of them require special-purpose programming language support. Nevertheless, it
will be interesting to examine the main elements of these approaches (e.g., dynamic
extensions, support for role interaction, and extension control through member mixins)
in the context of mixin layers. We expect this to be part of our future work.

6  Conclusions

Software design methodologies that identify reusable building blocks of applica-
tion construction are important. Collaboration-based design is one such methodology.
It asserts that an application building block, called a collaboration, is neither a whole
object nor a part of it, but rather cooperating parts of many different objects (called
roles). A collaboration encapsulates one aspect of an application that is largely inde-
pendent of other aspects. When this modularity is preserved in an implementation, we
end up with components suitable for application synthesis through modular composi-
tion. There is a substantial track record in building applications through modular com-
position in this manner. This approach corresponds to layered implementation
paradigms (see [2], [3], [31]). Nevertheless, the connection between this work and
object-oriented design and implementation techniques has not been recognized in the
above cited references.

The contribution of our work is in bridging the gap between layered design ideas
and their implementations in object-oriented languages. The main point of this paper is



that encapsulation of mixins within mixins is a central concept in scalable implementa-
tions of layered designs. We named this concept “mixin layers” and showed how it can
be expressed in a variety of ways using object-oriented language constructs. We
believe this work is important: it directly maps a design methodology to an implemen-
tation methodology. It emphasizes object-oriented programming at the level of multi-
ple-object components in a novel way. It shows a direction of programming language
research that holds promise for realistic component-based application development.

Our work has immediate consequences: a form of mixin layers is already well sup-
ported by widely-used programming languages and can concisely express collabora-
tion-based designs. In particular, using mixin layers in C++, we can eliminate the
scalability problems of the VanHilst and Notkin implementation method. The result is
a practical layered implementation approach in C++.

There remain several issues to be explored. One of the primary concerns of layered
designs is that of compositional correctness: given a composition we need to ensure
that it is consistent. We indicated how compositional constraints could be captured
within the mixin layer framework. We also indicated the limitations of such an
approach (w.r.t. unintelligible error messages). Work on composition validation raises
interesting questions on how type systems can accommodate such checking. We
expect this to remain a fruitful area of research for some time to come.

Appendix A — Problems with the VanHilst/Notkin Model

The length of a parameterization expression in the VanHilst/Notkin method
depends on the actual roles composed and their interdependencies. In the worst case,

as we show in [33], it is equal to  for n collaborations, each with m roles. Usually,
however, not all roles need to be parameterized by all classes. Instead of devising an
example, we show the one presented by VanHilst and Notkin in Figure 6 of [37]. The
parameterization expression for a design with seven collaborations and three classes is:

class Empty {};
class WS         : public WorkspaceNumber                {};
class WS2        : public WorkspaceCycle                 {};
class VGraph     : public VertexAdj<Empty>  {};
class VWork      : public VertexDefaultWork<WS,VGraph>   {};
class VNumber    : public VertexNumber<WS,VWork>         {};
class V          : public VertexDFT<WS,VNumber>          {};
class VWork2     : public VertexDefaultWork<WS2,V>       {};
class VCycle     : public VertexCycle<WS2,VWork2>        {};
class V2         : public VertexDFT<WS2,VCycle>          {};
class GGraph     : public GraphUndirected<V2>            {};
class GWork      : public GraphDefaultWork<V,WS,GGraph>  {};
class Graph      : public GraphDFT<V,WS,GWork>           {};
class GWork2     : public GraphDefaultWork<V2,WS2,Graph> {};
class GCycle     : public GraphCycle<WS2,GWork2>         {};
class Graph2     : public GraphDFT<V2,WS2,GCycle>        {};

Note the introduction of many intermediate types that encode common sub-expres-
sions (so as to avoid making the expression even lengthier). Considering that we have

mn



encountered designs with several collaborations and more than 30 roles in some of
them, this approach is clearly unrealistic.

In contrast, the same composition using mixin layers was as simple as:

class NumberC : public DFT < NUMBER < DEFAULTW < UGRAPH > > > {};
class CycleC : public DFT < CYCLE < DEFAULTW < NumberC > > > {};

The actual application classes are nested inside NumberC and CycleC.

Appendix B — Mixin Layers in CLOS

Mixin layers can be easily expressed in CLOS by combining CLOS mixins with its
powerful reflective capabilities. Keep in mind that the semantics of every incarnation
of mixin layers depends on the semantics of the host language. Thus, although CLOS
mixin layers are not semantically equivalent to C++ mixin layers (e.g., there is no
default class encapsulation), they are just a different flavor of the same idea.

The main mixin layer template, illustrated in code fragment (2), is written as:

(defclass first-dummy() (...)) ; Definition of 1st inner mixin
(defclass second-dummy () (...)) ; Definition of 2nd inner mixin
(defclass third-dummy () (...)) ; Definition of 3rd inner mixin
...
(defclass collab-this () ())
(defmethod first-role ((self collab-this))

(cons (find-class ‘first-dummy) (call-next-method)))
; Encapsulate class as method

(defmethod second-role ((self collab-this))
(cons (find-class ‘second-dummy) (call-next-method)))

(defmethod third-role ((self collab-this))
(cons (find-class ‘third-dummy) (call-next-method))) (5)

Note that, just like in the C++ example, the root of the outer inheritance hierarchy
must be concrete (i.e., not parameterized). In the above, this means that its role-defin-
ing methods should not use call-next-method. Composition of mixin layers is a
simple matter of using CLOS multiple inheritance (same as with regular mixins). For
instance, if we have mixin layers first-collab, second-collab, third-collab,
their composition is defined as:

(defclass composition
(first-collab second-collab third-collab) (...))

(setq composite-obj (make-instance ‘composition))

Note that role-defining methods (like first-role, second-role, etc. in (5))
return a list of all inner mixins. Constructing the inner classes is then a simple matter
of creating classes programmatically using this list. This is a standard CLOS technique
(e.g., see function find-programmatic-class in [18], p.68). For instance, creating
the first of the inner classes could be expressed as:

(setq first-inner-class (find-programmatic-class
(first-role composite-obj)))

The above idiom should be taken as a proof-of-concept, rather than an optimal
implementation of mixin layers in CLOS.
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