
The IceCube approach to the reconciliation of divergent 
replicas 

Anne-Marie Kermarrec, Antony 
Rowstron, Marc Shapiro 

Microsoft Research 
Cambridge, CB2 3NH, UK 

{annemk, antr}@microsoft.com, 
marc.shapiro@acm.org 

Peter Druschel 
Rice University 

Houston, TX 77005, USA 
druschel@cs, rice.edu 

ABSTRACT 
We describe a novel approach to  log-based reconciliation 
called IceCube. I t  is general and is parameterised by appli- 
cation and object  semantics. IceCube considers more flex- 
ible orderings and is designed to  ease the  burden of recon- 
ciliation on the application programmers.  IceCube captures 
the stat ic and dynamic reconciliation constraints between all 
pairs of actions, proposes schedules tha t  satisfy the  s tat ic  
constraints, and  validates them against the  dynamic con- 
straints. 

Preliminary experience indicates tha t  strong stat ic  constraints 
successfully contain the  potential  combinatorial  explosion of 
the  simulation stage. Wi th  weaker s tat ic  constraints,  the 
system still finds good solutions in a reasonable time. 

1. INTRODUCTION 
Data  replication is widely used in dis t r ibuted systems for 
performance, availability and isolation. I t  enables access to  
shared information while disconnected (mobile computing) 
and to  work independently (groupware). However, replica- 
tion of mutable  shared da ta  inevitably raises the  issue of 
consistency. Pessimistic consistency techniques require re- 
mote synchronisation upon each modification. This is detri-  
mental in mobile systems, and is undesirable in groupware. 

1.1 Reconciliation of diverging replicas 
Alternatively a system may allow replicas to  be upda ted  in- 
dependently and in a conflicting manner,  and to  diverge. 
Reconciliation is the  activi ty of detecting, managing and re- 
solving conflicts, in order to produce a new consistent value. 

W h a t  consti tutes a conflict and  how to resolve it depends 
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on semantics and on user intent. (One example is CVS [3], 
where non-overlapping writes conflict if and  only if they oc- 
cur in the  same line of the same text  file.) Accordingly, many 
existing reconcilers are restr icted to a single d a t a  type,  such 
source files [3], a file system [1, 8] or calendars. In contrast,  
IceCube aims to  provide a general framework for reconcili- 
cation, parameterized to observe the  specific semantics of a 
given shared da ta  type,  application, or user. 

IceCube is log-based: the  input  to  the  reconciler is a com- 
mon initial s ta te  and  logs of actions tha t  were performed on 
each replica. The  reconciler merges the  logs in some fash- 
ion, and  replays the  operations in the  merged log against 
the  initial state,  yielding a reconciled, common final state. 
Logs provide the  reconciler with the history of user actions; 
thus it can infer information about  the  users' intents and is 
therefore potent ial ly more powerful. 

In previous systems [4, 5, 10] the logs are merged accord- 
ing to  some predetermined order, such as temporal  order. 
These systems cannot exploit cases where a reordering of 
operations would avoid a conflict. IceCube a t t empts  to  find 
an ordering tha t  minimizes conflicts, while observing object  
and application semantics and user intent. However, naively 
exploring all possible orderings suffers from a combinatorial  
explosion. Effectively pruning the  space of orderings is one 
of the  key design issues in IceCube. 

1.2 Contributions 
IceCube provides developers with a general but  parameter-  
isable framework for reconciliation. IceCube explicitly cap- 
tures constraints between actions. A central feature is the  
distinction between stat ic and  dynamic constraints. 1 Ice- 
Cube exploits s ta t ic  constraints in order to  reduce the  search 
space. A scheduling stage produces schedules tha t  satisfy 
the stat ic constraints.  These schedules are then verified in 
a simulation stage, where actions are executed against  a 
shadow copy of the  state,  to check for dynamic conflicts. Fi- 
nally, a selection stage chooses among those schedules tha t  
did not exhibit  dynamic conflicts. 

1 Informally, a s tat ic  constraint  does not  depend on the  s ta te  
of shared objects, whereas a dynamic constraint  cannot be 
detected statically, i.e., without  a t tempt ing  to execute the  
actions. 

210 



Developers can influence the  outcome of reconciliation, ei- 
ther by providing local semantic information (in the  form 
of pre- and post-conditions and the  order method) ,  or using 
local and global policy hooks. 

This paper  focuses on our approach to reconciliation at  a 
single site, and we ignore the  dis t r ibuted aspects of the  sys- 
tem. 

The paper  proceeds as follows. Section 2 presents the  main 
concepts of IceCube and the system overview. Section 3 de- 
tails  the  reconciliation process. We report  on experiments 
with a collaborative jigsaw application in Section 4. We 
compare IceCube with related work in Section 5 before con- 
cluding. 

2. ICECUBE OVERVIEW 
One of the  main powers of IceCube is the  abili ty to use some 
predetermined order for the updated.  This distinguishes 
IceCube from several other dis t r ibuted systems. In order to 
demonstra te  why this flexibility is important ,  let us consider 
two motivating examples. 

As the  first motivating example, consider two users A and B 
who collaboratively administer a computer  system through 
two shared objects: the  operating system, initially at  Ver- 
sion 4, and the expense budget,  initially containing £1000. 
User A upgrades the operating system, which automatical ly 
upgrades all installed drivers; realises tha t  the  new OS needs 
a new tape  drive; and obtains a budget increase to cover the  
cost. User B buys and installs a printer and  its driver within 
Version 4 of the  operating system. 

User A 
A1 Upgrade OS and drivers 

from v4 to v5. 
A2 Buy tape drive, £800. 

A3 Obtain £1500 budget in- 
g r e a s e .  

User B 
B1 Buy printer, cost £400. 

B2 Install printer driver, OS 
v4. 

Many collaborative tasks such as this  one combine several 
applications and da ta  types, which motivates a general-purpose 
system. However the  system must take into account the  se- 
mantics of objects; for instance the budget  may not go neg- 
ative. I t  is obvious tha t  s tate-based reconciliation will not 
work with this example. Even a log-based system will fail if 
i t  tr ies to combine the  logs in a pre-established order. For 
instance running log A before log B will fail because action 
B2 will find the  OS in the  wrong version. Running B before 
A will fail because the budget  goes negative. Interleaving log 
A and B falls similarly. Instead the system should recognise 
both dependencies across logs (B2 must  run before A1) and 
independencies inside a log (A3 may run before A1 and A2). 
Our IceCube implementat ion proposes solution A3, B1, B2, 
A1, A2, and recognises tha t  other solutions (for instance B1, 
B2, A3, A2, A1) are statically equivalent and do not need 
to be evaluated. 

As a second motivating example, consider a calendar appli- 
cation, with users A, B and C. As of Friday evening, A has 
no appointments  on Monday morning, B has two free slots 

a t  9:00 and 10:00, and C has appointments  tha t  fill all Mon- 
day morning. During the  weekend the three users a t tempt  
to make appointments  in their  off-line calendars, such tha t  
A requests a one-hour appointment  with B for as close to 
9:00 as possible on Monday morning (appAB), B requests a 
one-hour appointment  with C for as close to  9:00 as possi- 
ble on Monday morning (appBc),  and  User C cancels their 
appointment  a t  9:00 on Monday morning ( freec) .  

The order in which these updates  are applied is important .  
Assuming the  users arrive at  work at  8:55 Monday, there 
is only one ordering in which they  can all be successfully 
applied: f reec ,  a p p s c  and then appAB. Clearly, there is 
a dependency between f r eec  and appBc, since a free slot 
must  be created for C if B is to  make an appointment  with C. 
If  appAB is performed before appBc then B will be booked 
at  9:00, and C will be free only at  9:00, hence a p p v c  will 
fail. 

In IceCube, the  correct ordering will be determined, and  
the updates  will be applied without  generating any rejected 
appointments.  However, in general the  problem is tha t  the 
number of potential  orderings can be very large, and there- 
fore it is essential to  capture static conflicts tha t  reduce the 
size of the  search space. 

2.1 System model 
With  IceCube, an application is either in the  isolated ~ -  
ecution phase or in the reconciliation phase~ During iso- 
lated execution, a site executes i ts applications agaln~ a lo- 
cal replica of the  shared objects, called the  object universe. 
This brings the  local object  universe from some initial s tate 
to  some tentative final state. Actions are recorded in a local 
log. 

A log is an ordered set of actions. Although an isolated 
log is tentative,  i t  has been successfully performed against 
the local object  universe. Furthermore it satisfies some user 
intent, as well as correctness invariants. In tha t  sense, an 
action log is correct. On the  other hand, these constraints 
generally only impose a part ial  order on the actions in the 
log. In other words, some of the  actions in the  log can be 
reordered without  violating correctness. 

During the reconciliation phase, the  logs of two or more 
replicas are merged to bring the replicas to  a consistent 
state. In IceCube, reconciliation proceeds in three stages: 

• When combining two logs, the  scheduling stage consid- 
ers all possible combinations of their  actions, to gen- 
erate replay schedules. 2 A schedule is a sequence of 
actions tha t  satisfies the  s tat ic  constraints and is pro- 
posed to the  next stage. 

• The simulation stage then plays schedules against scratch 
replicas of the shared objects. A schedule tha t  does not 
satisfy a dynamic constraint is aborted.  

• The selection stage ranks and chooses among outcomes 
from the simulation. 

2Actions are assumed deterministic. Replaying a log against 
the  initial s tate results in the  same flnal state. 
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Figure 1 depicts the  architecture of the IceCube framework. 
To simplify exposition we present the  stages as if they  exe- 
cute sequentially. In fact they run in a pipeline with various 
feedbac& loops, in order to  provide bet ter  interactivity and 
faster response. 

2:~ Actions 
An action is the  basic unit  recorded in the  log. We think of 
an action as an object  composed of four parts:  

• A target, identifying the shared object(s) tha t  this ac- 
t ion ~ .  

• A precondition, a method with no side effects t ha t  re- 
turns  a boolean. 3 If  true,  the  operat ion proceeds, oth- 
erwise execution fails. A precondition is a dynamic 
constraint,  often used to  check tha t  the  s ta te  of the  
object  universe at  simulation t ime is compatible  with 
the  one observed during isolated execution (similarly 
to, but  more flexibly than,  a database  lock). 

• An operation, a method tha t  may have side effects on 
the  object  universe. I t  re turns a boolean to indicate 
post-condition success or failure, another  dynamic con- 
stralnt. 

• Any amount of private data ,  collectively called a tag. 
The tag stores all the information about  this  action 
that will be  used to  evaluate stat ic constraints involv- 
ing this action. A tag  often records the  type  of opera- 
t ion and its parameters.  

Codes of the  precondition and operation methods  are opaque 
to  IceCube. The  tag  is also opaque but  will be accessed by 
the order method described later  (in Section 2.4). 

2.3 Constraints 
Reconciliation should combine the  initial logs in some way to 
produce a new log, which can be replayed to bring the object  
universe from its last  common state  to  a new common state.  
Ideally, the  reconciled log would contain all actions and sat- 
isfy object invariants and user intents. Ins tead of combining 
logs in some predetermined order, IceCube allows the appli-  
cation programmer to  expose constraints between actions, 
and explores orderings tha t  satisfy these constraints. 

IceCube distinguishes between static and dynamic constraints. 
A stat ic constraint  can be evaluated without  reference to  
the s ta te  of the object  universe, i.e., is intrinsic to the  na- 
ture and/or  the  tags of the  two actions being compared. 
Static constraints restrict  the search space of schedules in 
the scheduling stage. A dynamic constraint  is checked both  
during the isolated execution stage and the simulation stage. 
I t  may refer to  the  current s ta te  of the  object  universe. A 
dynamic constraint  is the return value either of the  precon- 
dition or of the  operation method (i.e., a post-condition) of 
an action; if either is false, execution is aborted.  

A stat ic constraint  restricts a priori the  possible orderings 
between two actions. The constraint  relation between two 

Sin object-oriented programming terms, a method is a pro- 
cedure in an object 's  interface. 

b 
a write read 

write maybe unsafe 
read safe safe 

F i g u r e  2: R e a d - w r i t e  integer order (a, b),  a c r o s s  logs  

increment 
decrement 

increment decrement 
safe safe 

maybe safe 

F i g u r e  3: C o u n t e r  i n t e g e r  order (a, b),  a c r o s s  logs  

arbi t rary  actions a and b has one of the  values safe, maybe 
or unsafe, meaning a schedule containing a before b is re- 
spectively allowed, possible (modulo dynamic conflicts), or 
disallowed. In part icular,  if both  constraint (a, b) = safe 
and constraint (b, a) = safe then a and b commute, and the 
scheduler is free to pick some arb i t ra ry  order. If two or more 
actions forms a cycle of unsafe constraints,  they conflict s ta t -  
icaily, i.e., they  can never all appear  in the  same schedule. 
In part icular  two mutual ly  unsafe actions conflict with each 
other. 

The  scheduler compares every pair of actions, both  across 
logs and within each log. The scheduler builds the  s tat ic  
constraint  relation from several sources: (i) the  order of the  
logs, (ii) the  identities of the target  objects,  and (iii) the 
order method (defined in the next section). If  the  actions'  
targets  differ, they  are assumed independent  and commuta-  
tive. If the  actions come from different logs, IceCube con- 
strains them according to the  re turn  value of each common 
target ' s  order method.  If both  actions are from the  same log, 
the  order in which they appear  in the  log is safe (to reflect 
the  end user 's intent); the reverse order is constrained by 
order. 4 In summary:  

safe i f  a.target ~ b.target 
constraint(a,b) = safe i f  a appears before b in the same log 

a.target.order(a,b) otherwise 

2.4 The "order" method 
For some object  x, method x.order(a, b) compares two actions 
a and b tha t  have x as a common target ,  returning safe, 
maybe or unsafe to  signify tha t  according to the  semantics 
of x, ordering action a before b in a reconciled schedule is 
respectively allowed, possible (modulo dynamic conflicts), or 
disallowed. This provides the  bridge between semantics and 
stat ic constraints. Only local knowledge is needed, viz., a 
specification of the interactions between two given actions at  
object  x. Accordingly, writing an order method  is a relatively 
intuit ive task.  

Let us proceed by example. If some action u uses object  
x and action d deletes x, then u must  appear  before d. 
Accordingly we expect tha t  for any shared object  type  T, 
T.order (u, d) = safe and T.order (d, u) = unsafe. 

4"When an action targets  multiple objects,  the system calls 
each of their  order in turn and returns the  most constraining 
value. 
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Fwdlmck Rmdkvk Fmdblck 

F i g u r e  1: I c e C u b e  o v e r v i e w  

b 
a write read 

write safe unsafe 
read unsafe safe 

F i g u r e  4: R e a d - w r i t e  i n t e g e r  order (a, b),  w i t h i n  log  

increment 
decrement 

increment decrement 
safe safe 

unsafe safe 

F i g u r e  5: C o u n t e r  i n t e g e r  order (a, b),  w i t h i n  log  

instance two isolated users sharing files; one writes a file, 
while the other deletes tha t  same file's parent  directory. For- 
really it  is safe to write then delete (the write does not influ- 
ence the  outcome of the  delete), but  not  to  delete then write 
(the write will fail). However the  former ordering causes the 
first user 's work to be lost. To avoid this, and contrary 
to mathematical  intuition, the  file system's order method 
marks the  order write before delete as unsafe, and delete be- 
fore write as maybe. This will tr igger a dynamic failure and 
the user will be notified. 

An order method can also support  application-specific poli- 
cies, as we will see in Section 4. 

Consider now a shared integer variable R with the  usual 
read-write semantics. When considering actions from ~ -  
ent logs (i.e., independent work), the  order values of Figure 2 
avoid losing writes, but  allow a read to  be ordered before an 
unrelated write. 

An integer representing a bank account or a budget  has a 
different semantics: i t  may not become negative, and its 
methods are increment and decrement ra ther  than  read and 
write. The order method of Figure 3 orders increments be- 
fore decrements; increments commute with one another,  and  
decrements commute with one another subject  to  the dy- 
namic constraint  tha t  the budget not become negative. 

The result of the  order method also depends on whether ac- 
tions come from the  same log or different logs. For instance, 
multiple reads of the  same variable may be reordered within 
a log if they  are not separated by a write to  the  variable; 
similarly, mult iple writes to the same variable if they are not 
separated by a read of the  variable. However, it is not  safe 
to reorder a read with respect to a write of the same log, 
because tha t  would change the  value returned.  

Figures 4 and 5 present the  result of order for actions of the 
same log. Recall t ha t  the  order provided by a log is safe 
by default; an in-log order method answers the following 
question: "given tha t  the  log contains action b before a, is 
i t  safe to  swap them and execute a before b?" 

An ordering is classitied as safe (resp. unsafe) either because 
i t  is provably safe (resp. unsafe), or because application se- 
mantics make it desirable (resp. undesirable). Consider for 

3. CONTROLLING THE RECONCILIATION 
ALGORITHMS 

A key objective of the application programmer is to  limit 
the space of possible schedules, in order to  keep the simu- 
lation tractable.  This is accomplished through static con- 
straints, and through application-specific policies to dynam- 
ically t runcate  reduncl~nt port ions of the  search space. This 
section describes the algorithms used in the  scheduling and 
simulation stages, and shows how the application program- 
mer can control them. 

3.1 Inputs to the scheduling and simulation 
stage 

The inputs to scheduling and simulation consist of a set of 
actions A, relations 2) (dependence) and 2~ (independence) 
on A, a s tar t ing s tate  So, and a parameter  H.  

A is the  set of actions to be reconciled. The dependence 
relation 2) is defined as follows. For actions a, b E A, if a2)b 
then action a must  appear  before (not necessarily immedi- 
ately before) action b in any schedule tha t  contains both a 
and b. 2) is reflexive and transitive. 

The independence relation Z is defined as follows. For ac- 
tions a, b E A, if aZb then the order a followed immediately 
by b is known (or highly likely) not  to  create precondition or 
execution failures in a schedule. Z is not necessarily reflexive 
or transitive. 

I and 2) are both empty  by default. The constraint relation 
described in Section 2.3 maps to  Z and 2) as follows: 
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constraint(a, b) Z 2~ 
safe aIb 

maybe 
unsafe b2~a 

The parameter  H controls how the  :Z relation affects the  
scheduling of actions for the simulation and allows applica- 
tion programmers to guide the  scheduler into exploring those 
portions of the  space of allowed sequences (according to the 
2) relation) tha t  are most likely to produce good solutions. 

3.2 Dependence cycle analysis 
Relation 29 may contain cycles, i.e. a set of actions Cyc = 
cl ,  c2, ..., c~, such tha t  c129c2, c229c3, ..., c~29ci. A schedule 
cannot both  satisfy 29 and contain all actions of a cycle. We 
define a cutse t  S to be a subset of A, such tha t  the  removal 
of the  actions in S and the  associated edges from 29 leaves 
no cycles in 29. A proper  cu tse t  S is a cutset  such tha t  no 
proper subset of ,q is also a cutset. 

The first s tep of the  scheduler is to  detect  cycles in 29 and 
to  generate all proper  cutsets. The applicat ion then accepts 
one or more cutsets. For each one, the  system then generates 
and simulates sequences, as described in the  next section. 

3.3 Scheduling 
Now, we define how the 29 and 2~ relations, and  the  param-  
eter H ,  affect the  scheduling of actions. 

Consider an ordered prefix of already chosen actions P = 
al ,a2,  ...,an. S is the  set of actions tha t  can extend P by 
one action, according to  29. Recall tha t  if both  a and  b 
appear  in a schedule, and a29b, then a must  appear  before 
b. Accordingly, an action b may be in S iff, either it  does 
not depend by 29 on any other action, or t ha t  other action 
is already in P .  Formally: Vb E S, a29b =~ a E P .  

The scheduling of the  next action to follow P then depends 
on the value of parameter  H ,  which controls which heuristic 
is used to  limit the  size of the  search space. Informally, 
when H = Al~  the  scheduler generates all sequences tha t  
are consistent with the  part ia l  order defined by 29. When  
H = Safe, the  scheduler generates sequences tha t  use only 
safe orderings when choosing the next action to  follow a 
given prefix, whenever such safe orderings exist. When  H = 
Strict, the  scheduler generates sequences tha t  use only one of 
potentially multiple possible safe orderings, when choosing 
the next action to  follow a given prefix. 

A formal definition of H follows. Let C be a subset of S, 
such tha t  Vc E C, an2~c. Tha t  is, actions in C axe known or 
highly likely not to  cause a precondition or execution failure 
when immediately following P .  Lastly, let B be a subset of 
S, such tha t  Vb E B,  Zlc E C, ¢Zb. 

H = All: The scheduler tries all actions in S as immediate  
successors to P .  That  is, Z is ignored. 

H = Safe  A C ~ 0: The scheduler only tr ies  actions in C as 
immediate successors to P .  Tha t  is, if "safe" next 
actions exist, only those actions are tried.  

H = Safe  A C = 0: The scheduler tries all actions in S as 
immediate successors to  P .  

H = S t r i c t  A C ~ ¢: The scheduler picks one action in C ar- 
bi trari ly and tries only this  action as a successor to P .  

H = S t r i c t  A C = 0: The scheduler only tries actions in S -  
B as immediate  successors to P .  This choice maxi- 
mizes opportunit ies  for the  use of safe orderings when 
choosing subsequent actions. 

3.4 Simulation 
Simulation is interleaved with scheduling. The scheduler 
and simulator recursively explore all schedules tha t  are con- 
sistent with 29 and Z, as described in the  previous section. 

A simulation step has the  following inputs: (i) a prefix of 
already chosen and executed actions, (i i)  the  current s ta te  
of the object  universe (resulting from execution of the  pre- 
fix fTom initial s ta te  S, ) ,  and ( i i i )  the  next  action to  be 
simulated. 

The  act ion 's  precondition is evaluated within the  current 
state.  If  true,  the  action is executed on a shadow copy of 
the  state.  If execution succeeds (i.e., there  were no runt ime 
errors and the  postcondition is t rue) ,  then the now action is 
appended to the  current prefix. The  resulting s tate  becomes 
the  input  s ta te  for a recursive simulation of all sequences 
s tar t ing with the  current prefix. 

If the  precondition fails, the  application is notified and this  
branch of simulations aborts.  If the  execution fails, the  ap- 
plication is notified, the  shadow copy of the  s ta te  is discarded 
and the  current branch aborts.  

3.5 Application policy hooks 
For IceCube to  be flexible and generic, applicat ion specific 
policies can be applied in various forms during the  schedul- 
ing and simulation stage, as described in this  section. F i rs t  
of all, applications may define an order function tha t  en- 
forces a part icular  heuristic. For example, keeping the  log 
ordering for a given type  of action as we'll see in Section 4. 

Second, the  applicat ion can influence the  selection of cutsets. 
This can be used, for instance, to  prioritise an action by not 
allowing it to  be excluded from the reconciled log. For a 
given cutset,  the application controls the  order in which the 
schedules are explored. 

During sequence generation and scheduling, the  applicat ion 
can apply  policies in several vrays. Based on an intermediate 
state,  the  applicat ion may decide to  abor t  the simulation 
of a prefix t ha t  is deemed not sufficiently promising, or i t  
may inject addit ional s tat ic  dependencies, conditional on the  
current prefix. If a precondition or execution failure occurs, 
the application is provided with the  prefix and s tate  causing 
the failure. The application may analyse the  s ta te  and derive 
addit ional information about  the  causes of the  failure. 

Finally, the applicat ion is called whenever a complete sched- 
ule tha t  include all actions in A minus the  cutset is found. 
The application selects among mult iple successful outcomes 
e.g. using an application-specific cost function. 

4. APPLICATION EXPERIENCE: COLLAB- 
ORATIVE JIGSAW 
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This section reports  on our experience with a multi-user 
jigsaw puzzle, s This  application (Figure 6) was chosen as 
representative of a collaborative workload. 

Collaborotlve ~ t~r/e~ Anne 

D I  

mm 

@R 
[] 

Machine A 

Colloboroflve Jigsaw Player: Pete¢ 

e-J~xt~.etQ Ja , , - - ,ml  

[] 

mm 
[] 

, ~ _ _ _ _ _ _ _ _  Machine B 

F i g u r e  6: T w o  u s e r s '  v i e w  o f  J i g s a w  

4.1 Application description and semantics 
A game state,  Jigsaw, is composed a fixed set of pieces, some 
on the board, the  others available. A state  is correct if every 
piece on the  board so far matches its correct position in the  
final picture. Every part icipant  s tar ts  with an empty  board. 

A completed board contains n x m  pieces Po...P,~x,~-l. Each 
piece has a square shape with 4 edges: bot tom,  top, left and  
right. Once the board  has been initialised with a single 
insert, a par t ic ipant  plays in isolation, executing a series of 
join and remove actions: 

jo/n(P~, e~,/~, e~) 
Target: P~, P~ 
Precondition: (i) The board  is not empty, and (ii) ei- 
ther  P~ or Pj is available (but  not both) ,  and (iii) edge 
ei of Pi and  edge ej of P1 are not already taken. 
Operation: Move the  available piece onto the  board,  
join edges e~ and e¢ of pieces Pi and  PC. 
Tag: records operation type  and parameters:  join; 
P~, e~; P.~, e~. 

(P,) 
Target: Pi 
Precondition: 1~ is on the  boarcL 
Operation: Moves Pi from the board,  make it avail- 
able. 
Tag: remove; Pi. 

4.2 Experiments 
We considered four different cases, varying the nature  of 
the  s tat ic  constraints. In the  first case we used =seman- 
tic" constraints, i.e., an order method designed to reflect the 
semantics of the  objects involved (similarly to Section 2.4). 
For reasons tha t  will become apparent ,  the  three other cases 
use "application policy" constraints t ha t  do not reflect the  
semantics directly but  are designed to orient the simulation 
towards promising schedules. 

C a s e  1: The semantic constraints represent the  rules of the  
game, and laws of physics such as "two different pieces 
can ' t  join the  same edge of the  same other piece" . The 
corresponding order method is given in Figures 7 and 8. 

5A game where players are presented with pieces of a picture 
and reconsti tute the  whole picture. 

join 
(P~,ek, 
P.et) 
remove 

(e,~) 

join (Pi,e,, Pj,ej) remove (PI) 
maybe if physically maybe 
possible; unsafe oth- 
erwise 
unsafe if m = i or maybe if m ~ f; 
m ---- j ;  maybe other- unsafe otherwise 
wise 

F i g u r e  7": J i g s a w  g a m e  order: s a m e  log,  s e m a n t i c  
c o n s t r a i n t s  

join 
(Pk,ek, 
P.et) 
remove 
(P~) 

join (P~,ei, Pj,ej) 
maybe if physically 
possible; unsafe oth- 
erwise 
unsafe if m = i or 
m = j ;  maybe other- 
wise 

remove (Pf) 
unsafe if k = f or I = 
f; maybe otherwise 

maybe if m ~ / ;  
unsafe otherwise 

F i g u r e  8: J i g s a w  g a m e  order: a c r o s s  logs ,  s e m a n t i c  
c o n s t r a i n t s  

C a s e  2 uses a policy constraint tha t  preserves each player 's 
log order. Thus: for two actions a and b, order(b, a )=  
unsafe if a precedes b in the  same log. 

C a s e  3 keeps the  log ordering for join actions only. This 
policy weakens the previous one, allowing removes to 
be scheduled at  any place. For two actions a and b, 
order(b, a ) =  unsafe if a precedes b in the  same log, and 
a and b are joins. 

C a s e  4 applies the  preference order alb between join ac- 
tions a and b having one piece in common. This policy 
favours uninterrupted strings of adjacent joins. 

With in  each case, several user scenarios are available. In 
scenario U1 a par t ic ipant  joins correct pieces, left to right, 
row by row downwards, s tar t ing from square 0. U2 is sym- 
metric to  UI:  right to  left and  upwards, s tar t ing from the 
last square. In scenario U3 a part icipant  executes a random 
sequence of correct and incorrect joins and removes (strongly 
biased towards correct moves) s tar t ing from square 0. We 
experimented two variants: (i) one user plays U1 and the 
other U2, (ii) one user plays U1 and the  other U3. 

Furthermore we varied the  size of the  board (up to  10 x 
10) and the number of actions in each scenario (up to  the 
maximum number of pieces). 

Finally we varied the  heuristics parameter  H.  

For space reasons, we provide only a l imited number of rep- 
resentative measurements here. 

4.3 Observations 
We compared the reconciliation results according to d i t ~ -  
ent criteria: (i) the number of actions in the  schedule, (ii) 
the number of pieces in the reconciled state,  and (iii) the 
number of correct pieces. 

Case I is based on the semantic constraints. Wi th  a board 
size of 4 x 4,  reconciliation and simulation of a 20-actions 
game produces the  best solution with respect to all the  com- 
parison criteria. 

215  



In this example, semantic constraints ensure immediate  con- 
vergence. This is the  preferred approach when logs are 
"clean," i.e., contain no redundant  actions. If  not  spuri- 
ous conflicts appear;  consider for instance the  case where 
one player adds then removes some piece, while another user 
concurrently inserts the  same piece: this is flagged as a stat ic 
conflict, even though the piece is dynamically available. Im- 
posing a clean log either imposes unnatural  restrictions on 
the interactive user, who is not  allowed to change his mind, 
or assumes a mechanism to clean the  log after the  fact. 

Cases ~ to ~( Because of the  questions around semantic con- 
straints, we t r ied  weaker s tat ic  constraints. We observe tha t ,  
in the  absence of any s ta t ic  constraints, simulation runs into 
combinatorial explosion and does not te rminate  in a reason- 
able time. Therefore the  following experiments explored the 
application policy constraints, as described in Section 4.2. 
They are found to  part ial ly solve the  problem. 

Consider for instance a game where the first player puts  7 
pieces in scenario U1, and  the second puts  down 12 pieces 
in scenario U2, on the  4 x 4 board. 

For Case 2, when H = Strict, reconciliation provides two 
solutions, which are equivalent to log 1 and  log 2 alone, re- 
spectively. When  H = ~qafe the  result is the  same; Cases 3 
and 4 also give the  same result,  independently of the  value of 
H. For Case 2, when H -~ All the  reconciler finds the  opti- 
mal solution, i.e., where all 16 pieces are correctly placed. In 
this case, the  simulator finds the  opt imal  solution after two 
sequences, in 0,11 s, after which it continues to  run through 
all possible 38,102 schedules. This would be appropr ia te  if 
the  user has immediate interactive feedback. 

In a game where the  second player follows scenario U3, we 
observe in Cases 3 and 4 occasional reorderings tha t  provide 
bet ter  solutions th~n in Case 2 (which disallows reorder- 
ings). 

Policy constraints do not always ensure convergence. As the  
size of the  input  logs increases, the  stronger policies t end  
to  over-constrain the  system and no solution is found; the  
weaker policies do not  te rminate  within the  (arbi trary)  limit 
of 100,000 simulations. 

Finally we measure the  overhead of s ta t ic  constraints. In the 
absence of s tat ic  constraints, a simulation of 10,000 sched- 
ules is 0.781s. In  Case 2 the  same number of schedules is 
simulv, t ed  in 2.294s, three t imes longer. Simulation t imes 
are proport ional  to  the  number of simulated schedules. For 
instance 100,000 simulations without  s tat ic  constraints ter-  
minate in in 7.7s. 

4.4 Discussion 
The experiments confirm tha t  strong stat ic  constraints are 
necessary to  limit combinatorial explosion in the  simulation 
stage, but  the  results are very sensitive to the  choice of con- 
straints. Both semantic constraints and policy constraints 
were considered. 

Semantic constraints are desirable but  impose "clean" logs. 
If more than  one action in the  same log updates  the  same 
object, spurious conflicts may occur. For instance, consider 

some action A tha t  semantically conflicts with B. The in- 
teractive user will expect tha t  cancelling out A with some 
compensating action A will remove the  conflict. On the 
contrary, the A - B and the .4 - B pairs both  flag a stat ic 
conflict. 

If  the application is not  going to impose unreasonable con- 
straints  on the  interactive user, one possible solution is log 
cleaning [2, 4], i.e., to  combine several actions from a same 
log target t ing a same object  into a single one. For instance 
in the  jigsaw game, the sequence join (P1, top,  P2, bot tom),  
remove (P2), join (P1, top,  P2, bot tom)  would be reduced 
to  join (P1, top, P2, bot tom).  

5. RELATED WORK 
Isolated execution is re la ted to  optimist ic concurrency con- 
trol  [9], which allows concurrent t ransact ions to  access shared 
data,  checking for dependencies only when t ransact ions com- 
mit. In part icular  Herlihy [7] defines precisely what  it  means 
for a schedule to  be correct in the  context of a semantic con- 
currency relation similar to our order. In contrast,  the  focus 
of this  paper  is reconciliation, i.e., finding alternatives when 
a schedule fails. 

The work of Pha tak  and Badr inath  [11] presents similarities 
with IceCube al though our ideas were developed indepen- 
dently. They present an incremental algorithm, based on 
optimistic concurrency control in a multi-version database,  
for incorporating disconnected t ransact ions into a schedule. 
I t  inserts each such transact ion into the  schedule at  an op- 
t imal  position, such tha t  the  combined schedule respects a 
weakened snapshot isolation condition. One key dli~erence is 
tha t  their  preconditions are based purely on read-sets  and  
write-sets, whereas in IceCube preconditions take into ac- 
count da t a  semantics. Another  is t ha t  they assume trans- 
actions are independent,  whereas IceCube supports  depen- 
dencies between actions. Finally, Pha tak  and Badr ina th ' s  
algorithm l ~ s  a scheduling phase, which we found essen- 
t ial  to fight combinatorial  explosion. I t  is not clear whether 
their  algori thm has been implemented. 

Recent work by Ramsey and Csirmaz [12] proposes an alge- 
braic approach to file synchronisation, a restricted instance 
of the general reconciliation problem. Operations on files 
are carefully crafted to make them almost entirely indepen- 
dent and idempotent. The only dependencies are between 
an object (file or directory) and the existence of its ances- 
tor directories. A log is assumed clean, i.e., it contains no 
more than one operation ai~ecting a given object. This al- 
lows them to define a canonical ordering between operations 
such that reconciliation has a unique, static solution: non- 
commutative operations appear in their natural order, and 
commutative operations are ordered arbitrarily but consis- 
tently. This is a very elegant approach, but it is not clear 
how it will fare in practice. 

Schwarz et al. [13] describe lock compatibility tables that 
capture interactions between concurrent transactions, in or- 
der to increase concurrency. A compatibility table captures 
static conflicts, similarly to our order method. However, 
order captures not just compatibility but also ordering in- 
formation. Moreover, IceCube's maybe points to possible 
conflicts to be checked at simulation time using the dynamic 
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preconditions. IceCube is designed to facilitate reconcilia- 
tion, not to increase transaction throughput. 

IceCube's logs are modeled after Bayou [i0], where a logged 
action contains a precondition (called a dependency check) 
and code that performs the operation. Bayou also provides 
fox an alternative code path called mergeproc, invoked when 
the precondition fails (i.e. in case of a conflict), which is 
supposed to resolve the conflict. Bayou may reorder ac- 
tions several times; the committed order is consistent with 
the real times at actions were accepted at their respective 
"home" servers; this ordering is arbitrary from a client's 
perspective. IceCube extends these ideas, and attempts to 
provide a best ordering. IceCube also captures more static 
information, using the order method. IceCube would be able 
to schedule actions automatically without conflict in some 
cases where Bayou spuriously invokes mergeproc. Thus Ice- 
Cube arguably reduces the burden on the application pro- 
grammer. 

Reconciliation needs to compensate for the difference be- 
tween an operation performed by an isolated user in the con- 
text of its local view of the shared object universe, and per- 
forming the same operation in the context of the reconciled 
state of the object universe, in a manner that preserves the 
user's intent. For instance, a text editing application might 
designate edits by the position of the affected characters in 
the text--but concurrent edits scheduled earlier by reconcil- 
iation might change that numbering, or even invalidate or 
obviate the need for the edit. Accordingly, arguments need 
to be translated to make sense in the new context, viz., 
character numbers remapped. This translation, called Op- 
erational Transformation, is surprisingly complex [14]. In 
general, performing such transformations correctly requires 
that the system capture and observe as much information 
about the users' intent as possible and is arguably the key 
problem in reconcilation. 

6. C O N C L U S I O N  
We presented IceCube, a general-purpose log-based recon- 
ciliation system parameterised by object and application se- 
mantics. It differs from previous work in that the ordering 
of the reconciled log is computed flexibly, and that the pro- 
gramrner's contribution to reconciliation is relatively simple. 
Although two actions from different logs are causally inde- 
pendent, IceCube discovers implicit (data and semantic) de- 
pendencies and constrains schedules accordingly. Although 
two actions from a same log have been executed in sequence, 
IceCube discovers when they are independent and relaxies 
schedules accordingly. Static constraints are crucial to con- 
trolling combinatorial explosion. 

We have reported on preliminary experiments, which are 
promising where there are strong static constraints. Other- 
wise, appropriate policies help find good-quality answers in 
an acceptable amount of time. 

The current status suggests several lines of future work. We 
need to experiment with larger and more realistic e~amples, 
based on real-life situations. Although the scheduling stage 
and the application policies reduce the search space consid- 
erably, additional techniques to further focus and narrow 
the search may be necessary. In particular, we are currently 

investigating the use of constraint programming methods in 
IceCube [6]. Also, we envisage to use the causality informa- 
tion encoded in the order method to identify schedules that 
will fail identically. Finally, the action-based style of pro- 
gramming is unfamiliar, but could probably be made easier 
with appropriate programming language support. 
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