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We describe the design of a transaction facility for a language that supports higher�order functions�
We factor transactions into four separable features� persistence� undoability� locking� and threads�
Then� relying on function composition� we show how we can put them together again� Our
modular approach towards building transactions enables us to construct a model of concurrent�
nested� multi�threaded transactions� as well as other non�traditional models where not all features
of traditional transactions are present� Key to our approach is the use of higher�order functions
to make transactions �rst�class� Not only do we get clean composability of transactional features�
but also we avoid the need to introduce special control and block�structured constructs as done
in more traditional transactional systems� We implemented our design in Standard ML of New
Jersey�

Categories and Subject Descriptors� D���� �Programming Languages	� Language Classi�ca�
tions
Applicative Languages� D���� �Programming Languages	� Language Constructs and
Features
Control structures� Modules� packages � Procedures� functions and subroutines� D���

�Operating Systems	� Process Management
Concurrency�Mutual exclusion � Synchronization�
D���� �Operating Systems	� Reliability
Fault�tolerance

General Terms� Languages� Reliability

Additional Key Words and Phrases� transactions� threads� skeins� persistence� recovery� undoa�
bility� serializability� Standard ML� modules

�� INTRODUCTION

Transactions are a well�known and fundamental control abstraction that arose from
the database community� They have three properties that distinguish them from
normal sequential processes� ��� A transaction is a sequence of operations that is
performed atomically ��all�or�nothing��� If it completes successfully	 it commits

otherwise	 it aborts and has no e�ects� ��� Concurrent transactions are serializable
�appear to occur one�at�a�time�	 supporting the principle of isolation� �
� E�ects of
committed transactions are persistent �survive failures�� In our model	 transactions
can be nested�
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The goal of our work is to provide modular support for transactions in a language
that supports higher�order functions� By �modular� we mean

�Factored� Each key feature of transactions is supported independently of the
others�

�Composable� Each individual feature can be composed with any other in a mean�
ingful way� Furthermore	 transactions themselves are composable with other
features of the language�

As part of the Venari project	 we chose to pursue these goals in the context of
Standard ML of New Jersey �Milner	 Tofte	 and Harper ������ SML�NJ supports
higher�order functions	 has a powerful modules facility	 is freely available	 and has
an easily modi�ed implementation� We broke transactions into these four separate
features�

�Persistence� E�ects of a computation can outlive the computation�

�Undoability� E�ects of a computation on the store can be undone�

�Threads� A computation may have multiple threads of control�

�Locks� Reader�writer �R�W� locks can be used to synchronize access to shared
mutable data�

All but the last of these are useful as independent features and represent signi�cant
extensions to the semantics of SML� We package each feature into an SML module

each module exports some key higher�order functions� We then rely on higher�order
function application to enable seamless composition of transactional features�
In the rest of this section we describe our modular approach to transactions and

contrast it with a more traditional approach taken by the transaction community�
In Section � we describe our design� the four building blocks in our model of
transactions and how they compose� In Section 
	 we explain how we express
our design in SML� We close with discussions evaluating and summarizing our
contributions� Throughout	 we discuss related work in relevant sections�

��� Our Approach

Essential to our approach is linguistic support for higher�order functions� Given a
function f we want to be able to create a transactional version of f by applying the
transact function to it� Thus	

�transact f� a

has the e�ect of applying f to a within a transaction� A more typical use is as
follows�

��transact f� a�

handle Abort �� �some work�

The Abort exception handler allows some special action to be taken if the transac�
tion aborts� Since �transact f� is simply a function and functions are �rst�class	
our approach yields �rst�class transactions�
Most importantly	 we want to be able to treat the function f as a black box� We

want to be able to �wrap� transact around any f without changing the source
code of f �or at most by applying a mechanical transformation to it�� Someone
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else may have written f
 it might even be multi�threaded� Without being able to
simply wrap a transaction around a multi�threaded program	 for instance	 we would
be forced to recode each separate thread in f as a concurrent nested transaction
of a top�level transaction� This violates one aspect of modularity since the entire
program would have to be recoded�
Consider a concrete �and the canonical� example where we want to transfer money

from a savings account to a checking account in a bank� The transfer involves
withdrawing money from the savings account and depositing it in the checking
account� We need to make sure that either both the withdrawal and the deposit
succeed	 or that neither of them occurs� So	 we use a transaction to e�ect the
desired behavior	 where the actual work of the transfer is done by the do transfer

function�

fun transfer �savings� checking� amount� �

let fun do�transfer �� �

�withdraw �savings� amount�	 �


�

deposit �checking� amount�� �


�

in

transact do�transfer ��

end

We wrap a transaction around the do transfer function so that if anything goes
wrong	 e�g�	 if withdraw raises an exception indicating that savings has insu�cient
funds	 the whole transfer will be aborted� According to our semantics for transact
�Section 
���	 if the transfer aborts	 we re�raise the exception that caused the abort�
The do transfer function could even have been multi�threaded� For instance	 if

the lines marked with ����� above appeared as following�

�fork �fn �� �� withdraw �savings� amount��	

deposit �checking� amount��

then do transfer could still be turned into a transaction simply by applying
transact to it�

��� The Traditional Approach

In contrast	 a more traditional approach supported by transactional systems and
languages such as CICS �Helland �����	 R� �Lindsay	 Haas	 Mohan	 Wilms	 and
Yost �����	 Camelot �Eppinger	 Mummert	 and Spector �����	 Quicksilver �Haskin	
Malachi	 Sawdon	 and Chan �����	 Argus �Liskov and Schei�er ���
�	 Arjuna �Shri�
vastava	 Dixon	 Hedayati	 Parrington	 andWheater �����	 and Avalon�C�� �Detlefs	
Herlihy	 andWing �����	 requires separate control constructs like begin transaction

and end transaction to delimit a transaction�s boundary�
For example	 a skeleton of the bank transfer operation in Camelot would ap�

pear as in Figure � �Eppinger	 Mummert	 and Spector ������ There are several
disadvantages to this approach� It requires syntactic extensions to the language to
support transactions� Such textual extensions do not compose conveniently	 nor
can such transactions be manipulated as �rst�class values� Also the lack of excep�
tion handling forces the use of the special status variable� The programmer could
easily forget to check the status after a transaction	 in which case aborts would be
ignored� Furthermore it is up to the programmer to propagate aborts in nested
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BEGIN�TRANSACTION

���

if �savings�balance � amount� 


ABORT�ERROR�INSUFFICIENT�FUNDS�	

�

��� transfer money ���

END�TRANSACTION�status�

if �status �� ERROR�INSUFFICIENT�FUNDS� 


���

�

Fig� 
� A Bank Transaction in Camelot

transactions�

�� DESIGN OVERVIEW

Transactions may execute at the top level �Figure �a�	 be nested inside one another
�Figure �b�	 or execute concurrently with each other �Figure �c�� Each may be
multi�threaded �Figure �d�� The combination of all these kinds of transactions yields
concurrent	 nested	 multi�threaded transactions �Figure �e�� In our pictures	 we
use a wavy line to denote a thread and a box to delimit the scope of a transaction

time advances from left to right� We appeal to tree terminology in discussing
nested transactions� a transaction has a unique parent	 a set of children	 and sets
of ancestors and descendants� A transaction is considered its own ancestor and
descendant�
Since we separate the basic transactional features into individual components	

we need to introduce terms that distinguish a regular transaction from one that
supports some but not all features� A regular transaction is persistent	 undoable	
and locking� We use the term persist�only transaction for a computation that
supports only persistence
 we use the term persistent transaction for a computation
that supports at least persistence� We use similar terms for undo and locking�
When we say �transaction� unquali�ed	 we mean a transaction of any kind �regular	
persist�only	 undo�only	 locking�only	 etc��� We will argue in Section ��� that all
concurrent transactions need to be locking transactions as well�
In Section ��� we consider top�level and nested transactions of each �avor
 in

Section ���	 we discuss concurrency	 and more generally	 di�erent combinations of
the features�

��� The Pieces

����� Persistence� A persistent value is one that outlives the computation that
created it� In particular	 a persistent value will survive a �crash�� We support
a model of persistence popularized by the persistent programming language com�
munity �Atkinson	 Bailey	 Chisolm	 Cockshott	 and Morrison ���
�� orthogonal
persistence� In this model	 all data reachable by pointer dereferencing from a dis�
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(c) Concurrent
transactions

(d)
Multi-threaded
transaction

Top-level
transaction(a)

Nested
transactions

(b)

(e)

Concurrent, nested,
multi-threaded
transactions

Fig� �� Nesting� Concurrency� and Multi�Threading
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(c) if abort, undo

Transaction

(a) (b)
f f

UndoabilityPersistence

g

Abort!

Fig� �� Persistence and Undoability

tinguished location	 the persistent root	 are persistent� Figure 
a depicts the exe�
cution of a function f in a top�level persist�only transaction
 when it terminates	
all persistent data modi�ed by the transaction are atomically saved to stable stor�
age� If a crash occurs during the execution of f	 we recover the last committed
state from stable storage� All data not reachable from the persistent root are lost�
Conceptually	 a crash aborts all top�level transactions �of any �avor� and termi�
nates all threads	 so there is no mechanism for a persist�only transaction to abort
in isolation�
A variety of approaches can be taken to guarantee that the e�ects of top�level

transactions on stable storage are atomic� For example	 our implementation makes
the e�ects of nested transactions permanent only when the enclosing top�level trans�
action commits� This approach simpli�es crash recovery but assumes that the num�
ber of modi�cations done by nested transactions is relatively small� An alternative
approach would make nested transactions� e�ects permanent when they commit	
but then crash recovery would have to undo such e�ects�

����� Undoability� A top�level undo�only transaction has no special e�ect if it
commits� If it aborts then all changes it made to the store are undone� Our
semantics for undo di�ers from traditional transactional systems because changes to
volatile data are undone in addition to changes to persistent data� Figure 
b depicts
the execution of a function f whose e�ects may possibly be undone� At the start
�conceptually� a checkpoint of the store is made� If it terminates successfully	 then
nothing unusual happens
 if not	 then f�s e�ects are rolled back to the checkpointed
state	 at which point a possibly di�erent computation g can begin�
Undo�only transactions may commit or abort regardless of whether they are

nested� However	 since a nested transaction�s commit is relative to the action of its
parent	 if the parent aborts then the e�ects of the �committed� nested transaction
must be undone along with the parent�s other changes� Thus	 when a child trans�
action commits it hands back ��anti�inherits�� to its parent its set of changes to
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the store�

����
 Threads� Threads are lightweight processes that communicate using shared
mutable data and synchronize by acquiring and releasing mutual exclusion �mutex�
locks� Individual threads may fork and start other computations	 thereby providing
a way to begin concurrent	 nested transactions�
We do not require threads within a transaction to be serializable
 thus	 they can

engage in two�way communication using shared mutable data� Otherwise	 we could
not wrap transact around existing multi�threaded code without modi�cation�

����� Locks� Two�phase reader�writer �R�W� locks are a well�known mechanism
for ensuring serializability� Alone	 they provide no support for commit or abort�
A transaction acquires a R�W lock and holds it until the transaction commits or
aborts	 thereby avoiding the problem of �cascading aborts�� Write locks guarantee
that any two concurrent transactions modify disjoint sets of data in the store	 unless
one is a descendant of the other�
Under Moss�s standard locking rules for nested transactions �Moss �����	 trans�

actions acquire locks subject to the following rules�

�A transaction may acquire a read lock if all writers are ancestors of the transac�
tion�

�A transaction may acquire a write lock if all readers and writers are ancestors of
the transaction�

�When a transaction commits	 all its locks are anti�inherited	 i�e�	 handed o� to
the parent or released if the transaction is top�level� If the transaction aborts	
all its locks are released�

In our model	 however	 a parent transaction may run concurrently with its children	
so we use a variation of these rules in which we must check that the read �or
write� condition holds not only when a lock is acquired	 but also every time the
transaction reads �or writes� the associated data object� This check is reasonable
for SML programs	 which use mutable data infrequently	 in contrast to imperative
languages such as C�

��� Putting the Pieces Together

Nesting enables us to construct a top�level regular transaction from an undo�only
transaction nested inside a top�level persist�only transaction �Figure 
c�� If the
undo�only transaction commits then all changes to the stable store are saved by
the persist�only transaction� If the undo�only transaction aborts	 all changes are
rolled back� Thus when the persist�only transaction saves all changes to the stable
store	 there will be no changes on behalf of the aborted undo�only transaction to
save
 the net e�ect is that the stable store is in the same state as at the beginning
of the transaction�
More generally	 each combination of the di�erent kinds of transactions has a well�

de�ned meaning� For example	 an undo�only transaction can have a persist�only
transaction nested within it	 and vice versa� A transaction can have nested within
it concurrent transactions of di�erent �avors�
To support complete �mixing�and�matching� of features	 however	 we impose two

rules	 one to deal with concurrency and one to deal with arbitrary nesting�
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��� All accesses to mutable data shared among concurrent transactions �of any
�avor� must be coordinated by R�W locks�

��� Modi�cations to the persistent store will survive a crash only if the transaction
containing the modi�cations and all its ancestors commit�

The �rst rule is needed to guarantee the serializability �i�e�	 non�interference� of
transactions� We enforce the rule by checking on each access of a mutable object
that the appropriate read or write condition holds�
The second rule gives programmers consistency guarantees regarding the state of

stable storage� Our implementation uses this rule to justify delaying writes to stable
storage until the commits of top�level transactions� Delaying writes is reasonable
for our application domain �short�lived	 small transactions� and avoids rolling back
partially completed transactions�
Finally	 programmers using threads outside of any transaction should not expect

strong consistency guarantees
 otherwise they should use transactions� Such threads
have no interaction with the undo mechanism
 their e�ects cannot be undone� Such
threads may modify the persistent store	 but since they do so outside of a persistent
transaction	 programmers cannot expect these changes to be immediately re�ected
in stable storage� We choose to write such changes to stable storage whenever a
top�level persistent transaction completes
 we must do such writes at these times
because the committing transaction may have depended on the value of persistent
data modi�ed by the thread� Other transactional facilities that allow threads to
exist outside transactions	 e�g�	 Camelot �Eppinger	 Mummert	 and Spector �����
and Encina �Dixon ���
�	 have similar caveats�

�� EXPRESSING OUR DESIGN IN SML

We are able to express our design in a simple	 straightforward	 and elegant manner
in SML� In the next three sections we �rst individually describe the SML interfaces
for the four transactional building blocks	 then show how we put them all together	
and �nally show how we can use our constructs to implement the bank example�
Implementation details for persistence are discussed in greater detail by Nettles
and Wing ������
 for undoability	 by Nettles and Wing ������ and Morrisett ����
�

and for threads in SML	 by Cooper and Morrisett ������� In Figures ��� we show
only the portions of the PERS	 UNDO	 RW LOCK	 and THREADS interfaces that are
relevant to this paper� The Venari�ML technical report gives further details of
these interfaces and examples showing their use �Wing	 Faehndrich	 Haines	 Kietzke	
Kindred	 Morrisett	 and Nettles ���
��

��� The Pieces


���� Persistence� The key higher�order function exported by PERS is persist��

The expression �persist f� a has the e�ect of evaluating f a� If it is the outer�
most call of persist and f a terminates	 f�s changes to persistent data are saved
to disk� If f does not terminate	 e�g�	 a crash occurs during its execution	 none of
f�s changes are saved�

�We use the underscore character� as in � a and � b� for weak �imperative� type variables �Milner�
Tofte� and Harper 
���	�
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signature PERS � sig

val persist � ��a �� ��b� �� �a �� ��b

val bind � identifier 
 �a �� unit

val unbind � identifier �� unit

val retrieve � identifier �� �a

���

end

Fig� �� PERS Interface

All data reachable from the persistent root are persistent	 and thus	 recoverable�
Any SML value can be made persistent simply by arranging that it be reachable
from the persistent root� The other functions of PERS allow manipulation of a
symbol table that stores bindings between identifiers and values
 the table itself
is reachable� Thus	 we can store and retrieve persistent values by name�
Our implementation uses a separate persistent heap to store all values reachable

from the persistent root� Modi�cations to these values may cause values in the
volatile heap to become reachable as well� On commit	 any newly reachable values
must be moved into the persistent heap	 and all modi�cations to persistent values
must be written to stable storage� We use the Recoverable Virtual Memory sys�
tem �Satyanarayanan	 Mashburn	 Kumar	 Steere	 and Kistler ���
� to provide an
e�cient implementation of stable storage based on logging�

signature UNDO � sig

val undoably � ��a �� ��b� �� �a �� ��b

exception Restore of exn

���

end

Fig� �� UNDO Interface


���� Undoability� UNDO exports the undoably function	 which allows users to
make undoable changes to the store	 an essential feature of a transaction that may
abort� The undoably function is a wrapper for any function f such that if the
exception Restore is raised while executing f	 all of f�s e�ects on the store are
undone
 undoably f behaves exactly like f if no exception is raised� The changes
undone include those done within any nested transactions�
The semantics of undoably is de�ned only with respect to the store� In particular	

a transaction�s e�ects through I�O �e�g�	 writing to a terminal� are unde�ned�
We implement undo by logging the location and old value of every mutation�

Upon abort we replay the log in reverse order to restore the old values� To anti�
inherit changes to the store we splice the child transaction�s log onto the parent�s
log�
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In most imperative languages this implementation would have unacceptable per�
formance� In SML�NJ it works well for several reasons� First	 assignments are
relative rare� Second	 the locations of many assignments are already logged to
support generational garbage collection �Lieberman and Hewitt ���

 Ungar ������
We have simply extended these logs to capture all assignments and to record old
values�
Our implementation for both persistence and undoability assumes that concur�

rent transactions modify disjoint sets of data in the store
 this assumption is easily
discharged by our �rst rule �Section ���� that concurrent transactions use write
locks for accessing data�


���
 R�W Locks and Safe State

signature RW�LOCK � sig

eqtype rw�lock

val create�rw�lock� unit �� rw�lock

val acquire�read � rw�lock �� unit

val acquire�write � rw�lock �� unit

���

end

Fig� �� RW LOCK Interface

A� R�W Locks� We provide R�W locks to enable the programmer to enforce iso�
lation and serializability among concurrent transactions� These locks are associated
with mutable objects �see below� and are held per transaction�
A lock is created by a call to create rw lock� It is acquired for reading or

writing by a call to acquire read or acquire write respectively� A thread within
a transaction can perform reads and writes on the data protected by a lock	 subject
to our variation of Moss�s rules stated in Section ������ When a transaction commits	
all R�W locks are anti�inherited to the parent transaction �if any�	 or are released
if the transaction is top�level� If a transaction aborts	 all locks are released�

B� Safe State

signature RW�REF � sig

type �a rw�ref

type rw�lock

exception Read�Not�Held

exception Write�Not�Held

val create�rw�ref � ��a 
 rw�lock �� ��a rw�ref

val rw�get � �a rw�ref �� �a

val rw�set � �a rw�ref �� �a �� unit

val lock�of � �a rw�ref �� rw�lock

���

end
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The only mutable data types in SML are refs and arrays� Thus	 it is easy to
provide two structures �the one for refs is shown above� that ensure that a mutable
object is only accessed safely �i�e�	 when the appropriate locks are held� �Tolmach
and Appel ����
 Morrisett and Tolmach ���
�� Reader�writer refs �RW REF� are refs
protected by R�W locks
 in order for a transaction to access these objects	 it must
hold the rw lock �for reading or writing	 as appropriate��
The above RW REF signature subsumes the SML pervasive REF signature� The

accessing functions �rw get	 rw set� verify that the appropriate read or write con�
ditions hold according to our variation on Moss�s locking rules �see Section ������� If
the lock is not held in the appropriate mode	 the Read Not Held or Write Not Held

exception is raised� The lock of function returns the lock associated with a rw ref�


���� Threads and Skeins

signature THREADS � sig

val fork � �unit �� unit� �� unit

type mutex

val create�mutex � unit �� mutex

val acquire � mutex �� unit

val release � mutex �� unit

���

end

Fig� �� THREADS Interface

A� Threads� The THREADSmodule exports essential functions for creating a thread	
and for acquiring and releasing mutex locks� Other functions	 not relevant here	
support manipulating condition variables and thread state� Our interface is similar
to other threads packages for C �Cooper and Draves �����	 Modula��� �Rovner
�����	 and Modula�
 �Harbison ������
The function create mutex creates a new mutex value� The function acquire

attempts to lock a mutex and blocks the calling thread until it succeeds� At most
one thread may hold a given mutex at any time� The function release unlocks
a mutex	 giving other threads a chance to acquire it� Unlike R�W locks	 mutex
locks are short�term	 i�e�	 they are not held for the duration of a transaction� Pro�
grammers have complete control over when to release them� Furthermore	 R�W
locks are used to coordinate transactions	 while mutex locks are used to coordinate
threads within a transaction�

B� Skeins� We introduce a new abstraction	 called a skein�	 for encapsulating
the di�cult control aspects of a transaction� Conceptually a skein is a �generic�
transaction and implements each of the boxes drawn in Figures � and 
� Within a
skein some SML function �the body� is executed� The body itself may fork threads�
We assume a barrier synchronization model for skein termination� The skein will

�A skein is a collection of threads�



�� � Haines et al�

not �nish until the body thread returns a value and all other threads have �nished

only one thread ever leaves a skein� In this respect	 a skein is similar to a Qlisp
�heavyweight future� �Goldman	 Gabriel	 and Sexton ������ All held mutexes must
be released before return� If any thread �including the body thread� running inside
a skein raises an uncaught exception	 the skein aborts� Any extant forked threads
and child skeins are killed	 and the exception is propagated to the outside� A skein
also holds R�W locks that are shared among its threads�
A transaction might need to execute certain code within a skein �while the R�W

locks are still held�	 but after all threads within that skein have completed or died�
Such code might	 for example	 commit persistent changes to disk or release R�W
locks� Thus	 our skein abstraction has the following interface�

signature SKEIN � sig

datatype �a result � Result of �a

� Exception of exn

exception Abort

val skein�

�unit �� unit� �� �
 initializer 
�

���b result �� ��b result� �� �
 completer 
�

��a �� ��b� �� �
 body 
�

�a �� ��b �
 result 
�

end

The body of a skein is executed in a sub�thread within the skein	 while a control
thread waits for it to complete� The �rst two arguments to skein are ��� an
initializer function	 which is called in the control thread before the body thread is
forked
 and ��� a completer function	 which is called in the control thread after the
body has returned and any extant threads have ended� The completer is applied to
the value returned by the body or the exception that caused premature termination	
and it returns a result value that is in turn presented as the result of the call to
skein�
If the body of a skein �nishes while sub�skeins are still executing	 the sub�skeins

are terminated	 calling their completer functions with the Abort exception� The
parent skein�s completing function is not called until all sub�skeins have completed�
We use skeins to implement multi�threaded transactions of all kinds	 e�g�	 persist�

only and undo�only transactions	 by passing in appropriate initializer and completer
functions�

��� Putting It All Together

Putting all these pieces together into a single SML module culminates in our main
VENARI interface	 shown in Figure �� It provides a way for application program�
mers to create and manipulate concurrent	 nested	 multi�threaded transactions� A
transaction is a locking skein of threads whose e�ects are undone if the transac�
tion aborts or made persistent if it terminates normally� We require that each
transaction access only safe state�
The various features described in the previous sections are all used in VENARI�s

main function	 transact	 which evaluates its argument within a transaction� We
implement transact as a special case of a skein	 reusing the initializer and com�
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signature VENARI � sig

val transact � ��a �� ��b� �� �a �� ��b

structure Pers � PERS

structure Undo � UNDO

structure RW�Lock � RW�LOCK

structure RW�Ref � RW�REF

structure RW�Array � RW�ARRAY

structure Skein � SKEIN

structure Threads � THREADS

end

Fig� �� Transaction Interface

pleter functions de�ned for persist�only and undo�only transactions�

val init�transact � Undo�init�undo o Pers�init�pers

val complete�transact � Pers�complete�pers o Undo�complete�undo

val transact � Skein�skein init�transact complete�transact

��� Implementation of the Bank Example

We give an implementation of a bank account in Figure �� L is the Venari�RW Lock

substructure	 R is Venari�RW Ref	 and V is Venari�
The account is a ref to a real �initially ����	 protected by a R�W lock� Assuming

that amount is non�negative	 the deposit function �rst acquires the lock associated
with the account in write mode
 it then updates the account�s value to the sum of the
old value and the new amount� The withdraw function is slightly more complicated
since it needs to check whether there is su�cient money in the account before the
withdrawal occurs� Raising the unhandled Insufficient Funds exception would
cause the transaction to abort�
Using this interface we can implement a bank transfer as described in Section ����

�� EVALUATION

In the introduction we stated two goals of our work� factoring transactions into
individual features and composing these features with each other and with other
features of SML� For the most part	 we succeeded in accomplishing both goals
and are able to express our results concretely through our Venari�ML interfaces�
In this section we evaluate the successes and limitations of our work� We also
compare Venari�ML to Avalon�C���
We achieve composability by making transactions with higher�order functions�

Making transact higher�order means that transact can easily be used as a wrap�
per function� This kind of composability facilitates code reuse� For example	 sup�
pose we have an interface along with a non�transactional implementation� We can
implement a transactional version of this interface by wrapping a transact around
each of the non�transactional functions without any knowledge of their internal
structure�



�� � Haines et al�

functor Account �structure Venari� VENARI�

� ACCOUNT � struct

type account � real R�rw�ref

fun new�account �� �

R�rw�ref ����� L�create�rw�lock���

fun deposit account amount �

let fun do�deposit �� �

�L�acquire�write �R�lock�of account�	

R�rw�set account ��R�rw�get account� � amount��

in

V�transact do�deposit ��

end

exception Insufficient�Funds

fun withdraw account amount �

let fun do�withdraw �� �

�L�acquire�write �R�lock�of account�	

let val bal � �R�rw�get account�

in

if bal � amount then

raise Insufficient�Funds

else

R�rw�set account �bal � amount�

end�

in

V�transact do�withdraw ��

end

end

Fig� �� Bank Account Implementation
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The one feature of the New Jersey implementation of SML with which our trans�
actional extensions do not interact well is �rst�class continuations� We use contin�
uations extensively in our implementation of threads� However	 we cannot export
continuations directly to the user because they do not interact well with SML�s
exception handling	 which we use to deal with aborted transactions in a graceful
manner� Unfortunately	 when a continuation is invoked	 a new exception handler
context is installed� Consequently	 we cannot guarantee that a computation will
pass through our handlers� For example	 if continuations were exported to the
user	 we could not guarantee that a skein�s completer function would be called� A
solution to this problem would be to implement a mechanism similar to Scheme�s
unwind�protect �Friedman and Haynes ����
 Rees ������
We also successfully achieved a factorization of transactions into their component

parts� We found that to allow transactions of any type to execute concurrently
requires the use of R�W locks� That support for concurrency needs support for
synchronization should come as little surprise� More surprising was that we were
successful at decoupling the other three features from each other�
One advantage of decoupling transaction features is that each feature can be used

independently� For example	 undoability is useful for implementing backtracking
search� Typical Prolog implementations use an explicit mutation log	 called a trail	
which is used to undo variable bindings when backtracking �Warren ���
�� Undo
would allow the elimination of the trail and allow the desired functionality to be
expressed directly using undoably�
Another bene�t of this factorization is that it helped us recognize new abstrac�

tions� In our implementation of undo	 the ability to save and restore the state of the
store is implicit and governed by rules about nesting transactions� Inspired by this
work and the semantics of imperative programming languages	 Morrisett ����
� has
recently proposed and implemented a new programming language feature	 re�ned
�rst�class stores� In his system the current store can be captured and saved away
like any other �rst�class value� At any later point during the program�s execution
the saved store can be restored�
A �nal bene�t to factoring our design has been in factoring our implementation�

Our original implementation of the persistence and undo subsystems was factored
largely for convenience of implementation� At the same time	 our original threads
implementation was built completely independently of the transaction system� Sur�
prisingly	 adding support for concurrent	 multi�threaded transactions has not forced
these implementations to merge and become monolithic� Instead the mutation log
serves as a common data structure used independently by the undo and persistence
subsystems	 and is maintained on a per transaction basis� Needless to say the
factored nature of the implementation has made it easier to build and maintain�
We have not yet attempted to design and implement support for distributed

transactions� If we were to attempt such support	 our factored implementation as
well as the notion of �rst�class stores mentioned above would be useful� Committing
a distributed transaction requires a two�phase protocol� In the �rst phase the
current state of the transaction must be made persistent in such a way that it can
be undone� We can achieve this e�ect by capturing the store as a �rst�class value
and then making that value persistent� Given support for some kind of distribution	
adding distributed transactions should be straightforward�
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We deliberately chose not to explore support for other ways to ensure serializ�
ability	 since this issue has been thoroughly addressed by the database community�
Also	 we intentionally avoided the hard problems of undoing I�O �as in undoing
the dispensing of cash from an ATM machine �Pausch �������
We have also made signi�cant progress in measuring and improving the per�

formance of our system� Recently O�Toole	 Nettles	 and Gi�ord ����
� added a
concurrent garbage collector for the persistent heap� They show that the perfor�
mance of both the collector and the persistence subsystem is good�comparable to a
simpler system that supports neither orthogonal persistence nor garbage collection�
Nettles ������ is currently completing a more thorough performance evaluation that
will allow us to improve the performance of our system substantially�
Avalon�C�� �Detlefs	 Herlihy	 and Wing ����� super�cially shares part of the

factorization of transactional concepts with Venari�ML� Avalon�C���s recoverable	
atomic	 and subatomic classes provide functions similar to those provided in Ve�
nari�ML�s persistence	 R�W locks	 and threads modules� Avalon�C�� exploits
C���s class inheritance mechanism to achieve composition of features� For exam�
ple	 one way to de�ne an atomic array class would be to inherit from class atomic	
to use a regular C�� array to represent an atomic array	 and to implement atomic
array operations in terms of regular C�� array operations plus R�W lock oper�
ations inherited from atomic� Composition of features in terms of higher�order
functions as done in Venari�ML would not be possible in Avalon�C�� because
functions cannot be returned as results in C���
Unlike Venari�ML	 Avalon�C�� does not separate the undoability feature from

transactions at all	 does not separate persistence from R�W or mutex locks	 and
does not support multi�threaded transactions� Avalon�C��	 however	 does support
distributed transactions� Finally	 Avalon�C�� is implemented in a completely
di�erent runtime environment	 i�e�	 Camelot
 Venari�ML uses RVM	 which provides
only a small subset of Camelot�s functionality�

�� SUMMARY OF CONTRIBUTIONS

The main contribution of our work is to show that transactions can be broken into
separable components	 each supporting a di�erent aspect of a traditional transac�
tional model� persistence	 undoability	 locking	 and threads� These components can
then be composed to build the traditional model or even new models with weaker
semantics�
Two technical ideas resulted from pushing hard to achieve our goal of composabil�

ity� One is the idea of a general�purpose control abstraction	 the skein	 with which
we can build variations of the transactional model as simple special cases� The other
is a set of guarantees	 captured by our variation of Moss�s rules	 that gives a rea�
sonable semantics to nested	 multi�threaded transactions� Heretofore other systems
either permit only a single thread of control to execute with a transaction �Liskov
and Schei�er ���

 Detlefs	 Herlihy	 and Wing ����� or support multi�threaded
transactions with no semantic guarantees �Eppinger	 Mummert	 and Spector ����

Dixon ���
�� Except for Humm ����
� we are not aware of any other work that
attempts to give nested	 multi�threaded transactions such guarantees�
A more concrete contribution is our speci�c set of extensions to SML�NJ in sup�

port of concurrent	 nested	 multi�threaded transactions� In our design	 we exploited
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SML�s higher�order functions and modules facility� We use its exception handling
mechanism to give control to the programmer in case a transaction aborts� Our
implementation uses the New Jersey implementation of SML in some critical ways	
e�g�	 its support for continuations and the logs used by its garbage collector� Our
current implementation is based on SML�NJ ������ and runs in the Mach ��� en�
vironment�
By adding such extensions to an advanced programming language like SML	 we

have provided application programmers with some high�level constructs �above the
operating�system level� to use transactions unintrusively� By using simple wrapper
functions	 programmers need not worry about formatting and unformatting data
into �les in order to achieve persistence
 they can undo e�ects to the store if desired
�e�g�	 for backtracking�
 and they have explicit control over concurrent access to
shared mutable data through mutex and R�W locks�
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