
CS 312 Problem Set 6: λ-Shark (CTF)

Assigned: April 15, 2004 Due: 11:59PM, May 6, 2004
Design review: April 26–27, 2004

Virtucon Corporation has discovered that the originally plannedλ-Shark game doesn’t test well
with focus groups, who complain that the game lacks variety and places too much emphasis on
combat. They’ve asked you to instead develop what was meant to be a capture-the-flag expansion
pack forλ-Shark. The primary object of the game is now to capture the opposing team’s flag as
many times as possible. In the writeup below, new elements in the specification are highlighted in
blue; some text from the original spec is also struck out.

1 Introduction

A large multinational corporation, Virtucon, has hired your project group to use the RCL interpreter
you wrote in PS5 to build a roboticbattlecapture-the-flaggame calledλ-Shark1. In terms of RCL,
this will be accomplished by implementing a new world and its actions. We have provided some
graphical support that you can use to display the progress of the game graphically. You will keep
the same partner you had for PS5; consult the course staff if this is exceptionally problematic.

This problem set places few constraints on how you implement it. This does not mean you can
abandon what you’ve learned about abstraction, style and modularity; rather, this is an opportunity
to demonstrate all three in the creation of elegant code.

1.1 Source code

Source code for this project is available in CMS.

1.2 Clarifications and changes

Watch this space for clarifications and changes.

1.3 Use of RCL

The game will be played by bots driven by programs written in the RCL language. You will
implement not only the game but also at least one bot program that plays the game. Your PS5
evaluator will run this program. You will need to copy your PS5 code into the PS6 distribution in
order to compile it. You should not have to change your evaluator code except perhaps to fix bugs.

(Original sections on the spec change and design review omitted here)

1In honor of the lambda calculus, a predecessor to ML and other functional programming languages

1

(0,0)

(31,15)

x

y

Figure 1: The board layout

2 Game Rules

λ-Shark is a game played by two teams of RCL robots, the red team and the blue team.The
objectof thegameis for your teamto survivewhile destroyingasmanyrobotsof theotherteam
aspossible.The teamwith the mostsurviving robotsat the endof the gameis the winner.The
game is a version of capture-the-flag. The object of the game is to capture the opposing team’s
flag as many times as possible while defending one’s own flag. A flag is captured when a robot on
the opposing team picks it up and carries it all the way back to its own flag.The game runs for a
maximum of 10,000,000 execution steps (about 7 minutes).

2.1 The Board

Theλ-Shark board is a rectangle made of square tiles, as illustrated in Figure 1. The board is 32
tiles wide by 16 tiles tall. Board locations are named using Cartesian coordinates. The square in
the upper left corner is (0,0), and the bottom right corner is (31, 15). Thus, positivex is right, and
the positivey direction isdown. The board does not wrap; for example, you may not travel left
from board position (0, 6). Figure 2 illustrates the four directions in which a bot can move from
the tile that it is on.

Tiles may be occupied by at most one object at a time. These objects are bots, powerups, flag
standsand walls. Invalid board locations (that is,(x, y) wherex < 0, x > 31, y < 0, or y > 15)
are treated as walls.

As described in Sections 2.9 and 2.10, powerups and new bots will appear on the board from
time to time. The location at which these things can occur, as well as the locations of walls, and
flag stands,are attributes of the current map that is being used for the game.

2.2 Time

Time in the game is measured in steps. In one game step, each running bot (that is, each RCL
thread) is allowed to take one execution step. The game lasts for at most 10,000,000 steps total.
Some bot actions take more than one execution step: for example, moving, turning, and firing

2

(X,Y-1)
DIR_UP

(X,Y+1)
DIR_DOWN

(X+1,Y)
DIR_RIGHT

(X-1,Y)
DIR_LEFT

Figure 2: Board direction and coordinate conventions.

Figure 3: Manhattan distance from a tile.

the bot’s weapon. The delay involved in these actions is implemented using action identifiers as
described later.

2.3 Distance

Distance inλ-Shark is measured usingManhattan distance: the distance a taxi would have to drive
in Manhattan. The distance between(x, y) and(x′, y′) is defined to be|x−x′|+|y−y′|. Manhattan
distance is illustrated in Figure 3.

2.4 Scoring

Theteamwith thelargestnumberof robotsat theendof thegamewins thegame.However,if all
therobotsof oneteamaredestroyed,theotherteamwins immediately.Robotdestructioncanbe

3

resultof damage(seeSection2.12)or programterminationeithernormallyor by gettingstuckin
evaluation(self destruction).Ordinarily, the team with the largest number of points at the end of
the game wins. Points are scored by capturing the enemy team’s flag and bringing it back to one’s
own flag stand. A team may score whether or not its own flag is at its stand.

2.5 Game End

Games end after 10,000,000 evaluation stepsor whenoneteam’srobotsareall destroyed.or when
one team scores their tenth point. The team with more points wins. If the teams have equal scores,
then the game is a draw.

2.6 Health

Bots have a certain number of health points. They start with 3 health points, but successful attacks
against a bot deplete that health. When health reaches 0, the bot is destroyed (see Sections 2.11
and 2.12).Bots may have additional state indicating whether they are carrying a flag.

2.7 Motion

At any given time a bot is located on some tile(x, y) and is facing in one of the four directions
shown in Figure 2. A bot may turn to face in any of the four directions with a single action.
Additionally, a bot may attempt to move in the current direction. If the tile adjacent to the bot in
the direction it is facing is empty, the bot moves into the adjacent tile. If the adjacent tile is not
empty, the robot does not move, and the rules given in Sections2.8, 2.9, and 2.12 govern behavior.
Both moving and turning take some time. The actual action takes place immediately, but the bot
then waits for a number of steps before it can perform any more actions or computation.

2.8 Flags

A flag stand may be either occupied by a flag or empty. At the beginning of the game, each team’s
flag is located in the team’s flag stand. When a bot attempts to move into the tile of the opposing
flag stand, the bot does not change position. If the flag stand is occupied, the bot acquires the flag
and the flag stand becomes empty. Once a bot has a flag, it is considered to have the flag until the
bot is destroyed or attempts to move onto its own team’s flag stand. In the latter case, a point is
scored (see Section 2.4). In either case, the flag returns to its home flag stand.

2.9 Powerups

Robots may pick up spawn credit powerups that appear randomly. A powerup is picked up if a
robot moves into the square containing it. Each team holds a shared reserve of spawn credits.
When a bot picks up a powerup, its team’s spawn credit count is incremented by 1. The powerup
no longer exists once a bot occupies its square.

4

Powerups appear on the board at random intervals. The constantITEM DELAY, defined in
util.sml, specifies the mean number of steps between powerup creations; a powerup may ap-
pear after each evaluation step with probability 1/ITEM DELAY. When a powerup appears, it is
placed at a randomly selected powerup drop location that is currently empty (see Section 2.1). If
no drop location is empty then no new powerup is created.

2.10 Bot creation

When a bot executes aspawn e expression, a new bot may be created. However, the success of
the spawn is dependent on the state of the game. A spawn is successful if there is an open spawn
point of the appropriate color on the board and the spawning team has a sufficient number of spawn
credits. In the event of a successful spawn an empty spawn point is chosen randomly and a new
bot runninge pidparent is added at that board location. The number of spawn credits required to
spawn is as follows:

spawn cost(team size) =

{
1 team size< 5
team size− 4 otherwise

For example, a team of size 4 needs only one credit to spawn a new bot, but a team of size 7
needs 3 credits to spawn. The functionGameUtil.spawnCost implements this. In the event of a
successful spawn, the corresponding spawn credits are deducted from the spawning team.

If a spawn is unsuccessful (either because all the team’s spawn points are occupied or because
the team lacks sufficient spawn credits), no new bot is created andspawn e evaluates to 0. The
team’s spawn credits are unchanged.

2.11 Bot destruction

A bot is destroyed (“unspawned”) if its program terminates either by evaluating to a value or
attempting to perform an illegal operation (that is, evaluation becomes stuck). It is also destroyed
if its health is reduced to 0 or less. When a bot is destroyed, it is removed from the board and its
tile becomes empty. Additionally, this bot must not be permitted to take any more evaluator steps.
If a bot is destroyed while carrying a flag, the flag is returned to its flag stand.

2.12 Combat

Bots have the ability to fight each other using either close-range or long-range attacks.

2.12.1 Melee

When a bot attempts to move into a square occupied by another bot, the moving bot is the attacker
and the stationary bot the defender. If the defender is on the opposing team, it loses 2 health;
otherwise, the move has no effect. The attacker always waits after the attempted move, just as it
would if the destination square had been empty.

If the attack destroys the defender, the defender should be removed as described in Section 2.11.
The attacker does not move even if the defender is destroyed.

5

2.12.2 Laser Beams

Bots have lasers which may be fired in the direction that it is facing. The laser will hit the first
non-empty tile in its path, including enemy robots, walls, powerups,flag stands,etc. If the object it
strikes is a robot, that robot’s health is reduced by 1 point, even if it is a member of the same team.
In any other case, the laser has no effect. Like moving and turning, firing the laser takes time.

2.13 Game Starting Conditions

Each team begins the game with 3 spawn credits and 1 bot, which is randomly placed on one of
the team’s spawn points.

3 Implementing the game

3.1 Map Files

Map files are defined by plain text files consisting of 16 lines of 32 characters. Each character is
one of{., *, r, b, R, B, i} and has the meaning specified below.

. empty space
* wall
r red spawn point
b blue spawn point
R red flag stand
B blue flag stand
i powerup drop point

The functionGameUtil.loadMap : string → mapdef provides a method to read map files.
You will want to use this function to build a better map representation.

3.2 Actions

Bots can perform a variety of actions using RCLdo expressions. The identifiers for the actions are
defined inconstants.rch. Actions are namedA x wherex indicates the kind of action. Some
actions cause bots to be delayed by some number of steps. The delay corresponding to actionA x
is namedAT x, and its value is given inworld/definitions.sml.

Available actions are summarized in Table 1.Objects andDirs are defined in Sections 3.3.2 and
3.3.1, respectively. Note that the lists described as result values are actually implemented as in the
list library from PS5.

Action delays are implemented using action identifiers as described in the PS5 language de-
scription. When an action needs to cause the bot to delay, the world returns a new action identifier
that will cause the bot to query the world again on the next execution step. Once the bot is to be
permitted to continue evaluation, the world returns some other expression to be evaluated.

6

Command Args Description Return
A MOVE The robot attempts to move.

See Section 2.7.
R OK if the bot moved;R FAIL

otherwise
A FACE i ∈ Dirs The robot turns to face direc-

tion i.
R OK

A SHOOT The robot shoots a laser beam.
See Section 2.12.2.

R OK

A INSPECT (x, y) Returns the object type lo-
cated at board position(x, y)

codec wherec ∈ Objects

A LOOK i ∈ Dirs From the bot’s location, finds
the first non-empty square in
directioni

(d, o) whered is the distance
to o ∈ Objects.

A NEAREST o ∈ Objects Returns the coordinates of the
object described byo that is
nearest to the bot. Ties are
broken arbitrarily.

coordinates of the object,
(x, y), or R FAIL if no object
found.

A MYSTATS Returns the bot’s current sta-
tus

[x, y, h] where (x, y) is
the bot’s position, h is its
health [x, y, h, f, d] where
(x, y) is the bot’s position,h
is its health,f is true if the
bot has the flag, andd is its
direction.

A TEAMSTATS Returns team status [c, pm, po, sm, so, l] wherec is
number of spawn credits the
bot’s team has,pm is the play-
ers on the bot’s team, andsm

is the score of the bot’s team.
po andso are opponents team
size and score.l is a list of the
bot’s teammates’ pids.

A FLAGPOS Returns current flag positions.
Note this can change when a
flag is being carried.

[xm, ym, xo, yo] where the
bot’s team’s flag is located at
(xm, ym) and the opponent’s
flag is located at(xm, ym).

A TALK s = [c1, c2, . . .] Sends messages to the com-
mand line.

R OK

Table 1: Table of game actions.

7

Code Meaning
O EMPTY Tile is not occupied.
O WALL Tile contains a wall. Please note that locations not on the

board are considered to be walls (see Section 2.1).
O MYFLAG Tile contains the team’s flag.
O OPPFLAG Tile contains the opponent’s flag.
O SPAWN Tile contains the spawn powerup.
O TEAMMATE Tile contains a teammate.
O TEAMMATE WITH FLAG Tile contains a teammate carrying a flag.
O OPPONENT Tile contains an opponent.
O OPPONENT WITH FLAG Tile contains an opponent carrying a flag.
O FLAGSTAND Tile contains a flag stand.

Table 2: Object code definitions.

3.3 Constants

3.3.1 Direction Codes

The direction codes areDIR UP, DIR DOWN, DIR LEFT, andDIR RIGHT. and are explained in Sec-
tion 2.1. The set of all direction codes is referred to asDirs.

3.3.2 Object Codes

Object codes are used to indicate the status of board square. They are returned byA LOOK and
A INSPECT and used as input toA NEAREST. Reference to “team” and “opponent” are relative to
the bot performing the action. The set of object codes is referred to asObjects, and each individual
code is defined in Table 2.

It is possible for a single square to match multiple object codes. While this does not affect
A NEAREST, we need to exercise caution specifying the output ofA LOOK andA INSPECT. These
functions return the most specific code that applies to the target square. The following table sum-
marizes several corner cases. Behavior is symmetric with respect to team membership.

Square Contains Output Code
Team flag and flag standO MYFLAG

Teammate with flag O TEAMMATE WITH FLAG

4 Graphics

Unfortunately, interfaces to graphical functions from SML leave much to be desired, so instead
the graphics will be displayed by a Java application that we have given you. SML connects to this
program through TCP/IP and sends primitive commands to display images on the screen.

8

SML doesn’t have built-in graphics support, so we have provided a simple graphics module.
TheGraphics module innetwork/graphics.sml provides the functions listed below.

setup(): unit

(* Effects: establishes a connection to the graphical client.

All other Graphics functions require that a connection exists. *)

reportMap(m: GameUtil.mapdef): unit

(* Effects: Draws the map m.

Requires: m is a valid mapdef generated by GameUtil.loadMap. *)

draw(s: string, x: int, y: int): unit

(* Effects: Draws the image corresponding to s at (x,y).

Requires: s is the name of an image. *)

erase(x: int, y: int): unit

(* Effects: Draws an empty tile at (x,y). *)

reportShot((x: int, y: int), (x’: int, y’:int)): unit

(* Effects: Draws a laser shot from (x, y) to (x′, y′).
Requires: x=x’ or y=y’ *)

reportSpawn(r: int, b: int): unit

(* Effects: Makes the spawn credit counter read r and b

for red and blue respectively. *)

reportNames(r: string, b: string): unit

(* Effects: Sets the displayed names of the red and blue teams to

r and b respectively. *)

reportScore(r: int, b: int): unit

(* Effects: Sets the displayed scores for the red and blue teams

to r and b, respectively. *)

reportSpawn(r: int, b: int): unit

(* Effects: Sets the displayed spawn credit counter to r and b

for red and blue respectively *)

reportWin(s: string): unit

(* Effects: Displays a message saying s is the winning team. *)

reportTime(t: string): unit

(* Effects: Sets the displayed time to t. *)

report(s: string): unit

(* Effects: Sends the string s directly to the Java client program.

Do not call this function directly unless you really know what you are doing.*)

4.1 Images

The functionGraphics.draw takes a string corresponding to image as part of its argument. A few
sample images are shown in Table 4, and the set of defined strings is given in Table 3.

9

4.2 Starting the graphics

The graphics library is actually implemented by a Java client program. SML connects to this
program through TCP/IP and sends primitive commands to display images on the screen.

To compile the graphics client from the command line, type:javac *.java from thegfx
directory. If you have difficulty getting the application to compile and run, you may need to
download the latest version of the Java SDK (1.4) fromhttp://java.sun.com/j2se/1.4.2/
download.html.

When you run your game, you will need to separately start this client. To start it from the
command line, type:java Start from thegfx directory.

5 Your Tasks

This project has several parts. You are advised to spend time thinking about each part before you
start. Start on this projectearly. There are many things you will have to take into consideration
when designing the code for each section. Starting with a good design can prevent many problems
from occurring in the future. You will be required to set up a 20-minute design review with one of
the TAs. These meetings will take place roughly a week after the problem set has been released,
and will cover your design decisions and your method of approaching the project.

5.1 RCL interpreter

For the game to work, the RCL interpreter must be correct. We are not asking you to do any new
implementation work on the RCL interpreter, but you are expected to fix any bugs that may have
been found in it from PS5. If you need assistance with this, come to office hours or consulting
hours and we will be happy to help you.

5.2 World Design

You should think about implementing the world before you start coding.Your code is required
to enforce all of the rules. In particular, the following are important things to think about:

• Robot movement according to the movement rules.

“RED LEFT” “ BLUE LEFT” “ WALL”
“RED RIGHT” “ BLUE RIGHT” “ POWERUP SPAWN”
“RED UP” “ BLUE UP”
“RED DOWN” “ BLUE DOWN”
“RED LEFT FLAG” “BLUE LEFT FLAG”
“RED RIGHT FLAG” “BLUE RIGHT FLAG”
“RED UP FLAG” “BLUE UP FLAG”
“RED DOWN FLAG” “BLUE DOWN FLAG”

Table 3: Defined image names

10

http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com/j2se/1.4.2/download.html

“BLUE LEFT” “ POWERUP SPAWN” “ WALL”

Table 4: Sample images.

• Spawn credit powerups

• Spawning and unspawning

• Scoringand handling the flag

• Robot combat

• Execution step limit

• Graphics and interfacing with the GUI in JAVA

A good implementation is modular, clean, and adaptable. You should consider things that could
be changed in the project and think about how your code would evolve.

5.3 Design Review

You and your partner will be required to set up a 20-minute design meeting with a TA about a week
after the problem set is released. These meetings will be held at various times during the day so
you should be able to find one that fits your schedule. During this meeting you will be expected to
explain your entire design to the TA, as well as discuss possible issues with your implementation.
This is a presentation and you should come prepared to lead the discussion of your design.

You are required to bring a document listing each of the modules you plan to use, withfully
specified signatures. You should also describe in detail the representation of data in each module,
and the data structures you plan to use. It is highly recommended that you bring a module depen-
dency diagram as well. We expect both partners to have worked together in designing the modules.
Therefore, each partner is responsible for having a complete understanding of the project and you
proposed implementation.

E-mail all of your documents to the TA that you are going to see by midnight the night before
your review. Your documents should be in PDF or plain text format. This way, the TA will be
familiar with your design ideas before the meeting and can be more helpful during the meeting.
Your design meeting will be worth 15 percent of your total project grade; make sure to prepare for
it adequately.

You are not required to have a bot designed in time for the design review.

5.4 World Implementation

Implement the world according to your design. You are being given considerable freedom in your
design, and should be able to responsibly design and implement a project of this scale. Remember
to start early, and think before you code.

11

Your world needs to implement the rules explained in this document, and interface with the
given Java client to produce watchable games.

5.5 Bot Programming

In addition to implementing the world, you need to program a bot in RCL capable of playingλ-
Shark. To help you with this, we have provided you withbotlib.rch, which contains some useful
primitives for interacting with the world. Be sure to review this file as the functions it contains will
illustrate how RCL programs interact with world. Your robot should be able to consistently beat
the providedrandom.rcl bot. After the design reviews, we will bring severalλ-Shark servers
online. Your bots should also be able to beatstupidbot, which will be playable on the servers
only.

These servers will likely be maintained on thethunderbunny.net domain. Do not attempt
to attack these servers. You have been warned. These servers are provided for your benefit, and
any abuse will result in the servers being taken down and action under the Cornell computer abuse
policy http://www.cit.cornell.edu/computer/policies/abuse.html.

5.6 Karma Exercise

You may wish to explore the Java-based graphics client. The team that best enhances this system
by adding functionality and/or new graphics will receive a prize of “refreshments” from the course
staff.

Extending the game to allow for bots programmed in SML is an interesting, and challenging,
extension.

5.7 Deliverables

You will submit a single zip file containing your source code and documentation for ps6. We are
not specifying files to submit, so you are free to create new source files as necessary. Likewise
your code will not be tested using automated tools that are dependent on your signatures. As this
implies, you may add or change signatures to create well structured modular code.

Your zip file must contain a file calledreadme.pdf or readme.txt. This document should
discuss your design, implementation, and testing strategies. If setting up your program is not
trivial, please include directions. Your zip file must also contain a bot calledsubmission.rcl,
which we will test againstrandom andstupidbot.

It is, of course, imperative that your code compiles.

6 Tournament

At the end of this semester there will be a competition between robot AI submissions. Participation
is entirely voluntary, and students are encouraged to come to the tournament even if they do not
wish to enter their bots. There will be free food. Each student group project group may submit

12

http://www.cit.cornell.edu/computer/policies/abuse.html

an entry and the winning team will receive a prize. Tournament time, location, and submission
procedure will be announced in the 312 website and on the newsgroup.

7 Files

This program contains the following files and directories.

gfx/*.java GUI server source code
gfx/gui status.png Status area background
gfx/water tiles.png Tile images
gfx/water backdrop.jpg Background image

maps/* Sample map files

network/client.sml Networking primitives
network/graphics.sml Interface to graphics server

rcl/random.rcl A bot that moves randomly
rcl/constants.rch Constants for rcl programs

world/definitions.sml Game constants in SML
world/sigs.sig Signatures
world/action.sig Action signature
world/action.sml Action implementation
world/game.sml Game logic
world/loop.sml Main game loop– drives all other code
world/util.sml Utility functions for loading maps, etc

absyn/* Same as PS5
compat/* Same as PS5
debug/* Same as PS5
eval/* Same as PS5
parser/* Same as PS5

13

	Introduction
	Source code
	Clarifications and changes
	Use of RCL

	Game Rules
	The Board
	Time
	Distance
	Scoring
	Game End
	Health
	Motion
	Flags
	Powerups
	Bot creation
	Bot destruction
	Combat
	Melee
	Laser Beams

	Game Starting Conditions

	Implementing the game
	Map Files
	Actions
	Constants
	Direction Codes
	Object Codes

	Graphics
	Images
	Starting the graphics

	Your Tasks
	RCL interpreter
	World Design
	Design Review
	World Implementation
	Bot Programming
	Karma Exercise
	Deliverables

	Tournament
	Files

