
CS 312 Problem Set 5: Concurrent Language Interpreter

Assigned: March 29, 2004 Due: 11:59PM, April 15, 2004
Partner sign-up deadline: 11:59PM, April 3, 2004

1 Introduction

You have just won a contract to build self-replicating robots. They will be able to move, sense the
world around them, and communicate with each other. One robot can even construct another robot
and download into it code that will control its subsequent behavior. Thus, multiple robots may be
operating simultaneously.

These robots will be controlled by programs written in a simple robot control language called
RCL. The first step in fulfilling your contract is to build an RCL interpreter that can simulate the
simultaneous operation of multiple robots, each running its own control program at the same time
as the others. These programs are largely separate but can interact with each other through a global
memory (presumably implemented using wireless communication). Thus, the RCL language is a
concurrent programming language in which there can be multiple simultaneous threads of execu-
tion.

For Problem Set 5, you will implement this interpreter. In Problem Set 6, you will use your
interpreter to implement a game that uses the robots.

2 Changes to problem set

The following changes have been made since it was released:

• Part 5, part (a) has been made a little easier. This was mentioned on the newsgroup earlier.

• Removed references tohd andtl. These operators do not exist in RCL.

• Specifications forif corrected.

• static.smlisValue recognizes pairs.

3 Instructions

You will do this problem set by modifying the source files provided in CMS, and submitting the
program that results. The program that you submit must compile without any warnings. Programs
that do not compile or compile with warnings will receive an automatic zero.

All files submitted shouldnot have any lines longer than 80 characters, and ideally all lines
should be less than 78 characters long.

Several parts of this assignment require that you implement a specification (and in some cases
finish designing the specification). For each part, we expect you to provide the following docu-
mentation in an attached file for each part, as well as any additional information required for that
part.

1



• Specification changes.If any changes to or refinements of the specifications given in the
problem set are necessary, you should describe the changes you have made and justify them.
Changes that are made with inadequate justification will result in point deductions even if
the changes are reasonable.

• Validation strategy. Report how you validated your implementation. You will want to
explain and justify your testing strategy, describing test cases or test harnesses that you
wrote and reporting on the results from these tests.

• Additional comments. We welcome (but do not require) any additional feedback you would
like to add; for example, tell us how much time the problem took, what was hard or easy
about the problem, suggestions for what would make it a better problem.

We will be evaluating your problem set on several different criteria: the specifications you write
(where appropriate), the correctness of your implementation, code style, efficiency, and validation
strategy. Correctness is worth about half the total score and the importance of the other criteria
varies from part to part.

Note that you will be building on your PS5 solution for PS6, so it behooves you to start early
on PS5 and understand the code given to you early. Solutions to PS5 willnot be given out. PS5
and PS6 are also partner assignments. You are expected to find a partner to do this assignment with
by April 1, and to sign up in CMS with that partner. If you do not have a partner and cannot find
one, please e-mail the course staff and we will pair you up with someone else in the class.

4 The RCL language

The RCL language has some interesting features. First, it is a concurrent language in which multi-
ple processes can be executing simultaneously. Second, it is an imperative language with memory
heaps that can be updated. Third, the robots can perform input and output and interact with an
external world.

To support concurrency, we will distinguish between different memories that the robots will
affect. Each robot has its own local memory, which can only be used by that robot. Local memory
is allocated withlref e expressions. In addition, there is a global memory that is global by all the
robots. Robots can communicate with each other by modifying locations in the global memory.
Global memory is allocated withgref e expressions.

Robots interact with the external world by performing actions, usually using an expression of
the formdo e. This expression is evaluated by sending the result ofe to the external world. Dif-
ferent possible values ofe are interpreted as requests to perform different actions. In this problem
set, thedo e expression will be used for I/O operations. For example, the expressiondo 0 causes
the external world to ask the user to input a number, which is returned as a result of the expression.

Another action is the expressionspawn e, which launches another robot. The expressione
provides the program that the newly created robot executes. Again, this action involves informing
the external world so it can, for example, provide some information both to the old and to the new
robot.

2



The behavior of the external world is not specified by the RCL language. We have given you
one possible implementation of the external world, but it will be modified in PS6 to allow robots
to sense and interact with their environment in many more ways.

4.1 Expressions

An RCL program for a single robot can contain the following expressions:

n An integer constant, as in SML. Examples:∼3, 0, 2.
(e1, e2) A pair. Evaluates to the value(v1, v2) wherev1 andv2 are the respective

results of evaluating the expressionse1 ande2.
unope Returnsunopapplied to the result of evaluation ofe. unopis one of the fol-

lowing unary operators:∼ (negates an integer), andrand (returns a random
number between 1 andn wheren is the result of evaluation ofe).

e1 binope2 Applies binary operatorbinop to the results of evaluations of the two ex-
pressions. Bothe1 ande2 must evaluate to an integer.binop is one of the
following operators:+,−, ∗, /, mod, <, =. For the last two operators the
result will be 1 if the comparison is true, and 0 otherwise.

e1 ; e2 A sequence of expressions. It is evaluated similarly to an ML sequence.
First expressione1 is evaluated, possibly creating side effects (modifying
memories). After that the result ofe1 is thrown away and expressione2 is
evaluated.

let id = e1 in e2 Binds the result of evaluatinge1 to the identifierid and uses the binding to
evaluatee2. Identifiers start with a letter and consist of letters, underscores,
and primes.

fn id => e Anonymous function with the argumentid and the bodye. Note that func-
tions are values, so the bodye is not evaluated until an argument is supplied
to the function.

id Identifier. Must be contained inside alet or fn expression with the same
identifier name, otherwise unbound identifier error will occur.

e1 e2 Function application. Evaluates expressione1 to a functionfn id => e,
expressione2 to a valuev2, bindsv2 to the identifierid and uses the binding
to evaluatee.

if e then e1 else e2 Similar to the MLif/then/else expression except that the result of ex-
pressione is tested for being greater than 0 (there are no booleans in RCL).
Examples:if 1 then 1 else 2 returns1, if 4<3 then 1 else 2 re-
turns2.

split e of e1 else e2 First evaluates expressione. If the result is a pair(v, v′) then evaluates
expressione1 to a functionf1 and returns the result of function applications
((f1 v) v′). If the result ofe is a valuev that is not a pair then evaluatese2

and returns the resultv2.
This operation is useful for emulating lists in RCL using pairs. Like pattern
matching in ML, it gives the ability to treat the end of a list and a middle of
a list differently.

3



typeof e Evaluatese to a valuev then returns an integer which indicates the type of
v. A return value of 0 indicates thatv is a function. Integers are 1; pairs are
2; references are 3.

lref e Similar to the ML operationref. First expressione is evaluated to a value
v. After that a new locationloc is allocated in the robot’s local memory
and valuev is stored at this location. The return result of the expression is
locationloc which can be viewed as a memory address.

gref e Similar tolref except that the new location is allocated in the global shared
memory. Before allocating the location the result ofe is checked to ensure
that it satisfies the “global memory invariant” (see section 4.3).

! e Evaluates expressione to locationloc and returns the value stored at this
location.

e1 := e2 Evaluates expressione1 to a locationloc1 and expressione2 to a valuev2.
After that replaces the value at the locationloc1 with v2. The return result
of this expression isv2. If loc1 is a location in the global memory, then the
valuev2 is checked for the “global memory invariant” before assigning (see
section 4.3).

acquire e This expression evaluatese to a location,loc, and, except as noted below,
returnsloc. If loc is in local memory, there is no side effect. Ifloc is in
global memory and is not already locked, than the current process acquires
a lock. If any other process already has a lock, this returnsacquire v,
and the process will continue to attempt the operation until the old lock is
removed. All other cases are runtime errors.

release e This expression evaluatese to a location,loc, and returnsloc. If loc is in
local memory, then there is no side effect. Ifloc is in global memory, and is
locked by the current process, thenloc is unlocked. All other situations are
runtime errors.

do e This expression is an example of anaction. This is the main way for a
robot to interact with the external world. First expressione is evaluated to
a valuev which is then sent to the external world. The return result of this
expression can be arbitrary (it is specified by the external world). The list of
actions currently recognized by the external world is given in section 4.6.

spawn e Evaluates expressione to a functionf , asks the external world for an expres-
sion e′ and then starts a new robot by callingf e′. This gives the external
world a chance to provide some information to the new robot.

In addition, there are some expressions that cannot be present in a robot source program, but
can occur during evaluation of the program:

loc Location. A location can be viewed as a pair(scope, addr) wherescope
identifies whether it is in the local or global memory andaddr is a mem-
ory address. A location can be initially generated only bylref andgref
expressions.

aid Action identifier. Can initially be generated only by the external world as a
result of evaluating an action (do, spawn or another action identifier). The

4



evaluation ofaid depends entirely on the external world. The main purpose
of this expression is to allow the external world to suspend the execution of
a robot after performing an action.

We have provided for you an implementation of the expression type asAbSyn.exp in the file
absyn/absyn.sml.

4.2 Values

Some of the expressions described above are values (i.e. they cannot be evaluated any further).
Here is the list of possible values:

• Integer constantsn

• Pairs(v1, v2) (provided thatv1 andv2 are values)

• Functionsfn id => e

• Locationsloc

Note that there is no special type for values in our implementation; it is up to the programmer to
identify which expressions are values.

4.3 Local and global memories

A memoryσ can be viewed as a mapping from locations (or addresses) to values. Each robot
has its own local memory that cannot be accessed by other robots. In addition, there is a global
memory shared among all robots.

A difference between a local and the global memories can be illustrated with the following
example:

let

r = lref 0

in

spawn (fn x => (r := 1));

!r

This robot (let’s call it “A”) allocates a location (call itloc) for an integer 0 and then launches

another robot (let’s call it “B”). The local memory ofA is copied to the local memory ofB, so
local memories ofA andB will contain two different locations storing value 0.

After some reductions robotA evaluates to expression!loc and robotB to expression (loc :=
1). RobotB then modifies its own copy of locationloc to 1; memory of robotA is unchanged.
Thus, robotA will return 0.

Now consider the same code wherelref is replaced withgref. Then locationloc will be
allocated in the global memory, so after launchingB locationsloc in both robots will point to the
same place. Therefore, depending on the order of executions ofA andB, robotA will return either
0 (if A is executed beforeB) or 1 (if A is executed afterB).

5



processn

pidn local memoryMn expressionen

ppp
process2

pid2 local memoryM2 expressione2

process1

pid1 local memoryM1 expressione1

global memoryMg

-

process1

pid1 local memoryM ′
1 expressione′

1

processn

pidn local memoryMn expressionen

ppp
process2

pid2 local memoryM2 expressione2

global memoryM ′
g

Figure 1: Single step of the interpreter on process 1. Expressione′ is the result of a single evalua-
tion step one. Possible side effects include modifying local memoryM1 and global memoryMg

To make sure that the local memory of a robot cannot be accessed by other robots we need
to maintain the followingglobal memory invariant: values stored in the global memory do not
contain locations from local memories. Thus, each modification of the global memory (i.e. ex-
pressionsgref v and loc := v where loc is a location in the global memory) must be checked
before evaluation: if valuev contains references to local memories, then a run-time error will oc-
cur. An example of an invalid expression isgref (lref 0, 0). A robot trying to execute such
an expression should be terminated.

4.4 Evaluation

A process (that is, a single robot) is represented by a unique process identifierpid, local memory
M and expressione. A current state of the interpreter is described by a queue of processes, as
well as a global memoryMg. The interpreter repeatedly performs the following operation: it takes
the process at the head of the queue, performs a single evaluation step on its expression (possibly
modifying the process local memory or the global memory), and places the modified process at the
end of the queue. A single step is illustrated in Figure 1.

It is important that robot programs execute one step at time. If we evaluated a program down
to a value all at once, the system would not be concurrent because only that robot would be able to
run. Therefore, we must evaluate in steps.

Given an expression, the evaluator finds the leftmost subexpression that can be reduced, and
reduces this subexpression.

Note that just as in ML, some expressions do not evaluate some of their subexpressions before
doing a reduction. These expressions areif v then e1 else e2, split v of e1 else e2, let id =

6



v in e, fn id => e, andv ; e. Thev’s indicate subexpressions that must be fully evaluated before
the expression can be reduced, and thee’s indicate subexpressions that are not evaluated until after
the reduction of the expression.

4.5 Reductions

The list of possible reductions that can be performed during evaluation is given below. First we
consider reductions that do not change local or global memories. Lettersv stand for values, and
letterse for expressions which may or may not be values.

unopv −→ v′ wherev′ = unopv
v0 binopv1 −→ v′ wherev′ = v0 binopv1

v; e −→ e
let id = v in e −→ e{v/id}

(fn id => e) v −→ e{v/id}
if v then e1 else e2 −→ e1 v ∈ {1, 2, 3 . . . }
if v then e1 else e2 −→ e2 all otherv

split (v, v′) of e1 else e2 −→ (e1 v) v′

split v of e1 else e2 −→ e2 wherev is not a pair
typeof v −→ v′ wherev′ ∈ {0, 1, 2, 3} (see section 4.1)

!loc −→ v where loc is a location in the process local
memory or in the global memory, andv is the
value stored at this location

e{v/id} stands for the result of substitution of valuev for all occurrences of identifierid in
expressione.

With the exception ofsplit, these reductions are similar to the reductions you have learned
for SML. Thesplit expression is like a simple version ofcase. In typical usage the expression
e1 would have the formfn x => fn y => e wheree is an expression to be evaluated withx and
y bound to the two components of the pair.

Now consider simple reductions which have side effects:

lref v −→ loc whereloc is a new location in the process local memory
Side effect: a locationloc is allocated in the memory, its content
is initialized withv

gref v −→ loc whereloc is a new location in the global memory
Checks:v satisfies the global memory invariant (Section 4.3)
Side effect: a locationloc is allocated in the memory, with its
contents initialized tov

loc := v −→ v whereloc is a location in the process local memory or in the global
memory
Checks:v satisfies global memory invariant (ifloc is global)
Side effect: content of the locationloc is replaced withv

acquire loc −→ loc whereloc is locked if it is a location in global memory that is not
currently locked

7



p p p
pid M . . . do v . . .p p p

��
��*

send
doAction(pid, v)

�
�

�
�External

world

�
�

�
�User

?

6
I/O

H
HHHj

e

p p p
pid M . . . e . . .p p p

Figure 2: Evaluation of thedo v expression

acquire loc −→ acquire loc where loc is locked if it is a location in global memory that is
currently locked by another process

release loc −→ loc whereloc is released if it is a location in global memory that is
locked by the current process

do v −→ e wheree is the expression returned by the external world
Side effect: senddoAction(pid, v) to the external world (which
will return an expressione) wherepid is the process identifier of
the robot (see Figure 2)

spawn v −→ e wheree is the expression returned by the external world
Side effects: (1) select a fresh process identifierpid′

(2) sendspawn(pid, pid′) to the external world (which will re-
turn two expressions(e, e′)). As far as the interpreter is concerned,
e ande′ are arbitrary.
(3) launch a new process with the process identifierpid′, expres-
sionv e′ and a copy of the process local memory (see Figure 3)

aid −→ e wheree is the expression returned by the external world
Side effect: sendactionID(pid, aid) to the external world (which
will return an expressione)

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example,e1 binope2 must be evaluated as

e1 binope2 −→ v1 binope2 −→ v1 binopv2 −→ v

4.6 Actions and the external world

Evaluating actions (that is, expressionsdo e, spawn e andaid) will cause sending certain events
to the external world (Figures 2,3. We have provided an implementation of the external world in
world/action.sml.

Currently thedo action performs simple I/O operations, though in PS6 it will be a general
mechanism for interacting with the world. The following actions are currently provided:

8



p p p
pid M . . . spawn v . . .

p p p

�
���*

send
spawn(pid, pid′)

�
�

�
�External

world HHH
Hj

(e, e′)

p p p
pid M . . . e . . .

pid′ M v e′

p p p
Figure 3: Evaluation of thespawn v expression. Before sending an event to the external world the
interpreter picks a fresh process identifierpid′

• do 0 : reads a number from the input, returns it to the interpreter

• do (1, v) : prints the valuev to the output and returnsv.

• do (2, (c1, (c2, (c3, (. . ., (cn, 0)))))) : prints the charactersc1, . . . , cn. Returns
1 if well-formatted, 0 otherwise.

• do (3, v) : if value v is well formed, printsv and returns 1, otherwise prints undefined
text and returns 0. Herev is considered well formed if it only contains pair and integer
expressions.

In the current implementation of the external world, thespawn action prints a debugging mes-
sage and returns two process identifiers.

Also, note that in the current implementation the external world never returns an action identi-
fier. Therefore, the execution of processes will resume afterdo andspawn actions. If we wanted to
delay processes, we would pick a fresh action identifieraid and return it as a result ofdoAction
or spawn. The interpreter would then keep callingactionID for the corresponding process until
the external world decides to resume it by returning an expression different fromaid.

4.7 Configurations

A configurationis the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of processes, each of which has a currently executing expression
and local memory, and a global memory that is shared by all the processes.

We can describe a single process as a triple〈pid, M, e〉. The entire interpreter configuration is
a tuple containing the global memoryMg and the current queue of processes:

〈Mg, 〈pid1, M1, e1〉, . . . , 〈pidn, Mn, en〉〉

The process at the head of the queue, process 1, is the one that will take the next evaluation
step and be pushed to the end of the queue. Suppose that this process takes the evaluation step

9



e1 −→ e′
1, with side effects that change the local memoryM1 to M ′

1 and the global memoryMg to
M ′

g. Then the effect of this step on the configuration as a whole is this:

〈Mg, 〈pid1, M1, e1〉, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉
−→ 〈M ′

g, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉, 〈pid1, M
′
1, e

′
1〉〉

The type for configurationsConfiguration.configuration is implemented in
eval/configuration.sml. A single step of the interpreter is performed by the function
Evaluation.stepConfig in eval/evaluation.sml.

4.8 Creating and terminating robots

Robots can create other robots by callingspawn e. As a result, a new process will be added to
the list of processes. The new process will have a copy of the old process local memory. The two
processes will be able to communicate with each other if the old process had allocated locations in
the global memory before spawning.

If a process has evaluated to a value, then itterminates—it is deleted from the list of processes.
Thus, we have the following evaluation rule:

〈Mg, 〈pid1, M1, v1〉, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉
−→ 〈M ′

g, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉

HereM ′
g is the global memory with all locks belonging topid1 released. This can be formalized

with

∀loc, M ′
g(loc) 7→ (v, p) iff Mg(loc) 7→ (v, p) andp 6= pid1

and
∀loc, M ′

g(loc) 7→ (v, ∅) iff Mg(loc) 7→ (v, p) andp ∈ {pid1, ∅}

A process should also be terminated if it causes a run-time error such as a type error (e.g.!0)
or a violation of the global memory invariant (e.g.gref (lref 0)). These run-time errors cor-
respond to processes for which there is no legal reduction. Note that such errors should terminate
the process encountering an error but should not affect other running processes.

4.9 Formal description of the RCL language

This section has given an informal English description of the RCL language. Also available is
a more formal mathematical description of the RCL language semantics, which is the canonical
reference for the RCL language. The RCL language semantics may help if you are confused with
certain parts of this section, however it assumes a lot of knowledge. Feel free to ask the course
staff for help in understanding the formalisms used in the RCL language semantics.

10

https://www.cs.cornell.edu/courses/cs312/2004sp/hw/ps5/ps5-language.pdf


5 Using the interpreter

5.1 File structure

The code is structured as follows:

• absyn/absyn.sml: definitions of basic types (AbSyn.exp, AbSyn.pid, Absyn.action)

• eval/memory.sig, memory.sml: definition of the memory type (’a Memory.memory) and
associated operations

• eval/configuration.sml: definition of the configuration type
(Configuration.configuration)

• eval/evaluation.sml: a single step of the main interpreter loop
(Evaluation.stepConfig)

• eval/gc.sig, gc.sml: garbage collector

• world/action.sig: interface for interaction with the external world

• debug/debug-loop.sml: interface for debugging

• eval/static.sig, static.sml: well-formedness and consistency checking for expres-
sions, processes and memories. Useful when debugging.

• compat/compatibility07.sml, compatibility44.sml: compatibility layer for differ-
ent versions of the SML library. Useful for users of the working version.

• rcl/tests/*.rcl, rcl/*.rch: sample RCL programs and libraries

5.2 Running RCL code

After compiling the code (CM.make()) you can enter the debugging mode using the command

Debug.debug “Your RCL program”

which starts a single robot. You will see a prompt (>). You can get the list of available commands
by typing “help”. These are some commands for quick start:

• step: steps one step and shows the new stepped expression

• run: runs until the end

• l file: resets the interpreter and loads a file with an RCL program

• h: gives you the help message and shows you many more commands

• q: quits the debugger

There are many other helpful functions and debugger commands; seedebug/debug-loop.sml

for more details. If you feel that the debugging tools implemented are inadequate, feel free to
modify them.

11



5.3 RCL files

Complete RCL programs are stored in files with an.rcl extension. RCL programs and libraries
may import libraries (extension.rch) with the include keyword. A library file contains RCL
code which is incomplete but can be completed by appending a single expression. The files
rcl/logic.rch andrcl/lists.h are examples.

5.4 String Literals

Although strings are not part of RCL the parser will convert string literals into lists of integers. For
example,"hello" parses as(104, (101, (108, (108, (111, 0))))).

6 Your task

Part 1: Evaluator (60 pts)

Parts of the single-step evaluator are currently written, but there are holes in the implementation.
Also, the implementation has not been tested fully, and there are three bugs in the code that is
already written.

Your task is to finish the single-step evaluator. You will have to make changes to the following
files:

• eval/evaluation.sml

• eval/reductions.sml

To help in your task, we have also implemented some functions ineval/static.sml that can
be used to check whether expression, processes, and memories are well formed. These functions
will be useful in checking that your interpreter is implemented correctly.

To Submit: Completed versions ofeval/evaluation.sml andeval/reductions.sml. Also
submit a summary of your changes in an ASCII filedoc1.txt, so that we know where to look
when we are grading.

Part 2: Robot design (7 pts)

Implement the following simple programs in RCL:
Write a RCL library that gives us functions that would be useful for manipulating binary search

trees that map integers to integers. Each node of the BST should contain a key, the value that the
key maps to, and two children (left and right). You must implement at least the following:

• empty: a value representing the empty tree

• empty?: a function returning 0 if the input is the empty tree, or 1 if the input is a non-empty
tree

12



• add: a function that takes in a key, a piece of data, and a tree, and returns a new tree with the
key-data mapping inside

• lookup: a function that takes in a key and a tree, and returns the data corresponding to the
key.

• rlookup: a function that takes in a value and a tree, and searches for a key that maps to that
value.

Write your own specifications for these functions based on the description above. All of these
functions should execute in robot time of at mostO(h) whereh is the height of the tree. For one
of these functions, this time bound will require spawning robots that work in parallel to get the job
done. The exampleparfibo.rcl may be a useful model.

You are allowed to use as many RCL helper functions that you want, as long as they are in
the same file. You should also write implementation documentation that gives your abstraction
function and rep invariant.

To Submit: A file bst.rch that implements the functions above and appropriate documentation
that will convince us that your implementation works.

Part 3: Memory synchronization(10 pts)

We would like you to modifymemory.sml to implement the functionsacquire, release and
releaseAll, each of which are specified inmemory.sig.

To Submit: A completed copy ofmemory.sml.

Part 4: The garbage collector (13 pts)

Garbage is data in local or global memory that is not reachable by following any chain of references
from a running process. These locations should be periodically reclaimed and used for subsequent
allocation requests. The process of reclaiming unreachable locations is known asgarbage collec-
tion.

The signaturegc.sig describes an automatic garbage collector for the RCL language. Occa-
sionally the garbage collector will be used to clean up memory. For the purpose of RCL, two kinds
of garbage collection are defined: local garbage collection and global garbage collection. Local
garbage collection cleans up the local memory of a particular robot. Global garbage collection
cleans the local memory of all robots as well as the shared global memory in a configuration.

Implement global and local garbage collection using the mark-and-sweep algorithm described
in class. As implied bygc.sig, themalloc function should try to reuse locations that the garbage
collector has reclaimed.

To help you test your garbage collector, thelocalGC andglobalGC commands in debug mode
will force garbage collections to take place immediately.

To Submit: Provide an implementation of the signaturegc.sig (do not change the signature) in
the filegc.sml.

13



Part 5: Complexity analysis (10 pts)

A sorted array (or vector) is an appealing data structure for storing ordered data, because it offers
the sameO(lg n) lookup time as a balanced binary tree but has a compact representation and a
good constant factor in front oflg n. Unfortunately it doesn’t support fast insertion.

Mort Ization has a idea for how to build a faster mutable ordered set abstraction. Instead of
storing all the elements in the sorted array, he will maintain a separate short linked list of up tom
elements, wherem is some function ofn yet to be determined.

type set = { sorted: element array ref,

recent: element list ref }

When the data structure is searched, both the listrecent (of lengthm) and the arraysorted
(of lengthn) are traversed. When an element is added to the data structure, it is appended to the
list in constant time. If therecent list becomes longer thanm elements, them elements are sorted
using a mergesort and then merged in linear time with then elements, which are already in order.

a. Mort wants to getO(lg n) insertion, so he setsm = lg n. What is the amortized asymptotic
complexity for a series ofn lookups? What aboutm inserts? Show your work. (For the
insert part you may assume that the listrecent is initially empty.)

b. How should Mort set the value ofm (as a function ofn) to get the best possible asymptotic
amortized complexity for a series ofn inserts andn lookups in any order? What is that
resulting complexity? Explain.

To Submit: Turn in a filecomplexity.txt in simple ASCII format containing the solution to this
problem. Note: this is a good problem to do as a warm-up for Prelim 2.

Optional Part 6: Karma

(Only good karma is received for doing these problems.)

• There are many improvements that could be done to the debugger. Options include but are
not limited to: changing memory limits, better printing of AST’s, more control over printing
of the configurations, breakpoints, etc.

• Write a string library in RCL (seehello-world.rcl for an example of using strings) and
add a new action to let the user input a string for use by the RCL program. Write an inter-
esting program that does string manipulation.

• Implement red-black trees in RCL.

• Add vectors to RCL and implement hash tables.

14


	Introduction
	Changes to problem set
	Instructions
	The RCL language
	Expressions
	Values
	Local and global memories
	Evaluation
	Reductions
	Actions and the external world
	Configurations
	Creating and terminating robots
	Formal description of the RCL language

	Using the interpreter
	File structure
	Running RCL code
	RCL files
	String Literals

	Your task

